Exploratory analysis to identify the best antigen and the best immune biomarkers to study SARS-CoV-2 infection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-06-26

AUTHORS

Elisa Petruccioli, Saeid Najafi Fard, Assunta Navarra, Linda Petrone, Valentina Vanini, Gilda Cuzzi, Gina Gualano, Luca Pierelli, Antonio Bertoletti, Emanuele Nicastri, Fabrizio Palmieri, Giuseppe Ippolito, Delia Goletti

ABSTRACT

BackgroundRecent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients.MethodsWhole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals.ResultsWe identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p < 0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts.ConclusionsWe set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens. More... »

PAGES

272

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12967-021-02938-8

DOI

http://dx.doi.org/10.1186/s12967-021-02938-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139178510

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34174875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19 Vaccines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petruccioli", 
        "givenName": "Elisa", 
        "id": "sg:person.01316222666.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316222666.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Najafi Fard", 
        "givenName": "Saeid", 
        "id": "sg:person.015377351025.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377351025.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.414603.4", 
          "name": [
            "Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Navarra", 
        "givenName": "Assunta", 
        "id": "sg:person.01240170055.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240170055.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrone", 
        "givenName": "Linda", 
        "id": "sg:person.0755160366.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755160366.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UOS Professioni Sanitarie Tecniche National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
            "UOS Professioni Sanitarie Tecniche National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanini", 
        "givenName": "Valentina", 
        "id": "sg:person.0650313551.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650313551.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuzzi", 
        "givenName": "Gilda", 
        "id": "sg:person.0604346205.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604346205.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gualano", 
        "givenName": "Gina", 
        "id": "sg:person.01175731375.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175731375.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UOC Transfusion Medicine and Stem Cell Unit, San Camillo Forlanini Hospital, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "UOC Transfusion Medicine and Stem Cell Unit, San Camillo Forlanini Hospital, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pierelli", 
        "givenName": "Luca", 
        "id": "sg:person.01234033320.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234033320.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.428397.3", 
          "name": [
            "Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertoletti", 
        "givenName": "Antonio", 
        "id": "sg:person.01214412542.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214412542.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicastri", 
        "givenName": "Emanuele", 
        "id": "sg:person.01160152235.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160152235.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palmieri", 
        "givenName": "Fabrizio", 
        "id": "sg:person.0655031534.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655031534.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Direction, National Institute for Infectious Disease \u201cLazzaro Spallanzani\u201d-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.414603.4", 
          "name": [
            "Scientific Direction, National Institute for Infectious Disease \u201cLazzaro Spallanzani\u201d-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ippolito", 
        "givenName": "Giuseppe", 
        "id": "sg:person.0710457221.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710457221.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419423.9", 
          "name": [
            "Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goletti", 
        "givenName": "Delia", 
        "id": "sg:person.01200446072.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41591-020-1038-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130146709", 
          "https://doi.org/10.1038/s41591-020-1038-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2550-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129347263", 
          "https://doi.org/10.1038/s41586-020-2550-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-015-0513-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004856024", 
          "https://doi.org/10.1186/s12967-015-0513-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40265-020-01421-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131847400", 
          "https://doi.org/10.1007/s40265-020-01421-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-020-17292-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129010410", 
          "https://doi.org/10.1038/s41467-020-17292-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41392-020-0148-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126709525", 
          "https://doi.org/10.1038/s41392-020-0148-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41591-020-1051-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130292831", 
          "https://doi.org/10.1038/s41591-020-1051-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-020-2588-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129667300", 
          "https://doi.org/10.1038/s41586-020-2588-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-26", 
    "datePublishedReg": "2021-06-26", 
    "description": "BackgroundRecent studies proposed the whole-blood based IFN-\u03b3-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients.MethodsWhole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1\u03b2, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-\u03b3, IP-10, MCP-1, MIP-1\u03b1, MIP-1\u03b2, PDGF, RANTES, TNF-\u03b1, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals.ResultsWe identified a COVID-19 signature based on six immune factors: IFN-\u03b3, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p \u2009<\u2009 0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts.ConclusionsWe set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients.\u00a0We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12967-021-02938-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032886", 
        "issn": [
          "1479-5876"
        ], 
        "name": "Journal of Translational Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "SARS-CoV-2 infection", 
      "IP-10", 
      "IL-2", 
      "immune response", 
      "immune biomarkers", 
      "vaccine trials", 
      "SARS-CoV-2 peptide pools", 
      "SARS-CoV-2 vaccine trials", 
      "IFN-\u03b3 release assays", 
      "SARS-CoV-2 response", 
      "COVID-19 patient cohort", 
      "good antigen", 
      "soluble factors", 
      "COVID-19", 
      "immunogenic viral antigens", 
      "acute COVID-19", 
      "IP-10 detection", 
      "SARS-CoV2 infection", 
      "T cell responses", 
      "optimal treatment strategy", 
      "IP-10 production", 
      "important soluble factors", 
      "MethodsWhole blood", 
      "IL-12p70", 
      "IL-17A", 
      "clinical characteristics", 
      "IL-10", 
      "MIP-1\u03b2", 
      "IL-1ra", 
      "IL-15", 
      "MIP-1\u03b1", 
      "IL-1\u03b2", 
      "BackgroundRecent studies", 
      "antibody response", 
      "IL-6", 
      "IL-8", 
      "IL-13", 
      "MCP-1", 
      "IL-4", 
      "IL-5", 
      "immune factors", 
      "disease progression", 
      "viral antigens", 
      "treatment strategies", 
      "T cells", 
      "IL-9", 
      "IL-7", 
      "vaccine candidates", 
      "peptide pools", 
      "G-CSF", 
      "good biomarker", 
      "potential biomarkers", 
      "GM-CSF", 
      "infectious diseases", 
      "sparse partial least squares discriminant analysis", 
      "highest AUC", 
      "biomarkers", 
      "spike protein", 
      "infection", 
      "antigen", 
      "patients", 
      "IFN", 
      "immunogenicity", 
      "trials", 
      "early prediction", 
      "partial least squares discriminant analysis", 
      "platform test", 
      "least squares discriminant analysis", 
      "exploratory analysis", 
      "COVID-19 signature", 
      "diagnostic results", 
      "squares discriminant analysis", 
      "response", 
      "HCV", 
      "response detection", 
      "eotaxin", 
      "RANTES", 
      "RANTES", 
      "TNF", 
      "vaccine", 
      "cohort", 
      "tuberculosis", 
      "factors", 
      "disease", 
      "progression", 
      "VEGF", 
      "ResultsWe", 
      "AUC", 
      "PDGF", 
      "spikes", 
      "virus", 
      "test", 
      "ConclusionsWe", 
      "assays", 
      "FGF", 
      "ORF3a", 
      "peptides", 
      "individuals", 
      "additional applications", 
      "evaluation", 
      "study", 
      "detection", 
      "analysis", 
      "discriminant analysis", 
      "use", 
      "candidates", 
      "strategies", 
      "pool", 
      "knowledge", 
      "production", 
      "results", 
      "characteristics", 
      "new approach", 
      "signatures", 
      "approach", 
      "integrated knowledge", 
      "prediction", 
      "foundation", 
      "NPs", 
      "applications"
    ], 
    "name": "Exploratory analysis to identify the best antigen and the best immune biomarkers to study SARS-CoV-2 infection", 
    "pagination": "272", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139178510"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12967-021-02938-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34174875"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12967-021-02938-8", 
      "https://app.dimensions.ai/details/publication/pub.1139178510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_878.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12967-021-02938-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-02938-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-02938-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-02938-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12967-021-02938-8'


 

This table displays all metadata directly associated to this object as RDF triples.

339 TRIPLES      22 PREDICATES      160 URIs      143 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12967-021-02938-8 schema:about N2865e1fbfb274dd6975a495c5b288782
2 N55ad2783bf3b4ebf93203603c6846205
3 N5ca8a9be218842b898f2cbe7fc5531b0
4 N9b19ca5b50294cfdaaf32a124c98350c
5 Na8454da0a311474d9ba2e61135a215ff
6 Ne8696a45037d405c8cdff54e406083a2
7 anzsrc-for:11
8 anzsrc-for:1103
9 anzsrc-for:1107
10 schema:author Nc78d3d48e41644148598e6489d487eb3
11 schema:citation sg:pub.10.1007/s40265-020-01421-w
12 sg:pub.10.1038/s41392-020-0148-4
13 sg:pub.10.1038/s41467-020-17292-4
14 sg:pub.10.1038/s41586-020-2550-z
15 sg:pub.10.1038/s41586-020-2588-y
16 sg:pub.10.1038/s41591-020-1038-6
17 sg:pub.10.1038/s41591-020-1051-9
18 sg:pub.10.1186/s12967-015-0513-1
19 schema:datePublished 2021-06-26
20 schema:datePublishedReg 2021-06-26
21 schema:description BackgroundRecent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results. Here, we aimed to identify in the whole-blood-platform the best immunogenic viral antigen and the best immune biomarker to identify COVID-19-patients.MethodsWhole-blood was overnight-stimulated with SARS-CoV-2 peptide pools of nucleoprotein-(NP) Membrane-, ORF3a- and Spike-protein. We evaluated: IL-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL- 15, IL-17A, eotaxin, FGF, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, RANTES, TNF-α, VEGF. By a sparse partial least squares discriminant analysis we identified the most important soluble factors discriminating COVID-19- from NO-COVID-19-individuals.ResultsWe identified a COVID-19 signature based on six immune factors: IFN-γ, IP-10 and IL-2 induced by Spike; RANTES and IP-10 induced by NP and IL-2 induced by ORF3a. We demonstrated that the test based on IP-10 induced by Spike had the highest AUC (0.85, p  <  0.0001) and that the clinical characteristics of the COVID-19-patients did not affect IP-10 production. Finally, we validated the use of IP-10 as biomarker for SARS-CoV2 infection in two additional COVID-19-patients cohorts.ConclusionsWe set-up a whole-blood assay identifying the best antigen to induce a T-cell response and the best biomarkers for SARS-CoV-2 infection evaluating patients with acute COVID-19 and recovered patients. We focused on IP-10, already described as a potential biomarker for other infectious disease such as tuberculosis and HCV. An additional application of this test is the evaluation of immune response in SARS-CoV-2 vaccine trials: the IP-10 detection may define the immunogenicity of a Spike-based vaccine, whereas the immune response to the virus may be evaluated detecting other soluble factors induced by other viral-antigens.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N041457b2904d438390cd990a063937f0
26 N664e19684fc640909d32cd4b0c362c74
27 sg:journal.1032886
28 schema:keywords AUC
29 BackgroundRecent studies
30 COVID-19
31 COVID-19 patient cohort
32 COVID-19 signature
33 ConclusionsWe
34 FGF
35 G-CSF
36 GM-CSF
37 HCV
38 IFN
39 IFN-γ release assays
40 IL-10
41 IL-12p70
42 IL-13
43 IL-15
44 IL-17A
45 IL-1ra
46 IL-1β
47 IL-2
48 IL-4
49 IL-5
50 IL-6
51 IL-7
52 IL-8
53 IL-9
54 IP-10
55 IP-10 detection
56 IP-10 production
57 MCP-1
58 MIP-1α
59 MIP-1β
60 MethodsWhole blood
61 NPs
62 ORF3a
63 PDGF
64 RANTES
65 ResultsWe
66 SARS-CoV-2 infection
67 SARS-CoV-2 peptide pools
68 SARS-CoV-2 response
69 SARS-CoV-2 vaccine trials
70 SARS-CoV2 infection
71 T cell responses
72 T cells
73 TNF
74 VEGF
75 acute COVID-19
76 additional applications
77 analysis
78 antibody response
79 antigen
80 applications
81 approach
82 assays
83 biomarkers
84 candidates
85 characteristics
86 clinical characteristics
87 cohort
88 detection
89 diagnostic results
90 discriminant analysis
91 disease
92 disease progression
93 early prediction
94 eotaxin
95 evaluation
96 exploratory analysis
97 factors
98 foundation
99 good antigen
100 good biomarker
101 highest AUC
102 immune biomarkers
103 immune factors
104 immune response
105 immunogenic viral antigens
106 immunogenicity
107 important soluble factors
108 individuals
109 infection
110 infectious diseases
111 integrated knowledge
112 knowledge
113 least squares discriminant analysis
114 new approach
115 optimal treatment strategy
116 partial least squares discriminant analysis
117 patients
118 peptide pools
119 peptides
120 platform test
121 pool
122 potential biomarkers
123 prediction
124 production
125 progression
126 response
127 response detection
128 results
129 signatures
130 soluble factors
131 sparse partial least squares discriminant analysis
132 spike protein
133 spikes
134 squares discriminant analysis
135 strategies
136 study
137 test
138 treatment strategies
139 trials
140 tuberculosis
141 use
142 vaccine
143 vaccine candidates
144 vaccine trials
145 viral antigens
146 virus
147 schema:name Exploratory analysis to identify the best antigen and the best immune biomarkers to study SARS-CoV-2 infection
148 schema:pagination 272
149 schema:productId N8967023a5c5a43d1aefbb45aaa0d3c04
150 Ncee232fcc2124f85a44b6edcffc4046e
151 Nf6163029af1b43d48cf1b7fd6732ae33
152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139178510
153 https://doi.org/10.1186/s12967-021-02938-8
154 schema:sdDatePublished 2022-05-10T10:26
155 schema:sdLicense https://scigraph.springernature.com/explorer/license/
156 schema:sdPublisher N7fc6b8e99d4342e6b813a06fea535d8f
157 schema:url https://doi.org/10.1186/s12967-021-02938-8
158 sgo:license sg:explorer/license/
159 sgo:sdDataset articles
160 rdf:type schema:ScholarlyArticle
161 N041457b2904d438390cd990a063937f0 schema:volumeNumber 19
162 rdf:type schema:PublicationVolume
163 N1f3e19541fcd4b35a609c3666d8c4c15 rdf:first sg:person.0755160366.91
164 rdf:rest N2c75d63a020646c19ffbba50da9b1443
165 N2865e1fbfb274dd6975a495c5b288782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 N2b051984b65a42be921b7c77107e7712 rdf:first sg:person.0710457221.03
169 rdf:rest N89e4e5115da9480f9dd966233d5ddbbd
170 N2c75d63a020646c19ffbba50da9b1443 rdf:first sg:person.0650313551.19
171 rdf:rest Nefe59d5661644bbd80ec2d233f984530
172 N41759882dc7f4d40910055a9cb626b84 rdf:first sg:person.01214412542.39
173 rdf:rest Nec2821eda01d452497329faf5c8784d7
174 N55ad2783bf3b4ebf93203603c6846205 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name SARS-CoV-2
176 rdf:type schema:DefinedTerm
177 N5ca8a9be218842b898f2cbe7fc5531b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name RNA, Viral
179 rdf:type schema:DefinedTerm
180 N664e19684fc640909d32cd4b0c362c74 schema:issueNumber 1
181 rdf:type schema:PublicationIssue
182 N7fc6b8e99d4342e6b813a06fea535d8f schema:name Springer Nature - SN SciGraph project
183 rdf:type schema:Organization
184 N8967023a5c5a43d1aefbb45aaa0d3c04 schema:name dimensions_id
185 schema:value pub.1139178510
186 rdf:type schema:PropertyValue
187 N89e4e5115da9480f9dd966233d5ddbbd rdf:first sg:person.01200446072.99
188 rdf:rest rdf:nil
189 N923a5cec283a46f092f52a36c7e6e1ea rdf:first sg:person.0655031534.49
190 rdf:rest N2b051984b65a42be921b7c77107e7712
191 N96d37b988dcb493e87f77bfa157ebdc3 rdf:first sg:person.015377351025.96
192 rdf:rest Na276654c66164959abc97994630fe277
193 N9b19ca5b50294cfdaaf32a124c98350c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name COVID-19
195 rdf:type schema:DefinedTerm
196 Na276654c66164959abc97994630fe277 rdf:first sg:person.01240170055.32
197 rdf:rest N1f3e19541fcd4b35a609c3666d8c4c15
198 Na8454da0a311474d9ba2e61135a215ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Biomarkers
200 rdf:type schema:DefinedTerm
201 Nc78d3d48e41644148598e6489d487eb3 rdf:first sg:person.01316222666.31
202 rdf:rest N96d37b988dcb493e87f77bfa157ebdc3
203 Nc997507957604b4290be8dded5973f4c rdf:first sg:person.01175731375.82
204 rdf:rest Nf39f42ac6287483e9a21c8057b0d965d
205 Ncee232fcc2124f85a44b6edcffc4046e schema:name doi
206 schema:value 10.1186/s12967-021-02938-8
207 rdf:type schema:PropertyValue
208 Ne8696a45037d405c8cdff54e406083a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name COVID-19 Vaccines
210 rdf:type schema:DefinedTerm
211 Nec2821eda01d452497329faf5c8784d7 rdf:first sg:person.01160152235.27
212 rdf:rest N923a5cec283a46f092f52a36c7e6e1ea
213 Nefe59d5661644bbd80ec2d233f984530 rdf:first sg:person.0604346205.97
214 rdf:rest Nc997507957604b4290be8dded5973f4c
215 Nf39f42ac6287483e9a21c8057b0d965d rdf:first sg:person.01234033320.86
216 rdf:rest N41759882dc7f4d40910055a9cb626b84
217 Nf6163029af1b43d48cf1b7fd6732ae33 schema:name pubmed_id
218 schema:value 34174875
219 rdf:type schema:PropertyValue
220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
221 schema:name Medical and Health Sciences
222 rdf:type schema:DefinedTerm
223 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
224 schema:name Clinical Sciences
225 rdf:type schema:DefinedTerm
226 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
227 schema:name Immunology
228 rdf:type schema:DefinedTerm
229 sg:journal.1032886 schema:issn 1479-5876
230 schema:name Journal of Translational Medicine
231 schema:publisher Springer Nature
232 rdf:type schema:Periodical
233 sg:person.01160152235.27 schema:affiliation grid-institutes:grid.419423.9
234 schema:familyName Nicastri
235 schema:givenName Emanuele
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160152235.27
237 rdf:type schema:Person
238 sg:person.01175731375.82 schema:affiliation grid-institutes:grid.419423.9
239 schema:familyName Gualano
240 schema:givenName Gina
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175731375.82
242 rdf:type schema:Person
243 sg:person.01200446072.99 schema:affiliation grid-institutes:grid.419423.9
244 schema:familyName Goletti
245 schema:givenName Delia
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200446072.99
247 rdf:type schema:Person
248 sg:person.01214412542.39 schema:affiliation grid-institutes:grid.428397.3
249 schema:familyName Bertoletti
250 schema:givenName Antonio
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214412542.39
252 rdf:type schema:Person
253 sg:person.01234033320.86 schema:affiliation grid-institutes:grid.416308.8
254 schema:familyName Pierelli
255 schema:givenName Luca
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234033320.86
257 rdf:type schema:Person
258 sg:person.01240170055.32 schema:affiliation grid-institutes:grid.414603.4
259 schema:familyName Navarra
260 schema:givenName Assunta
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240170055.32
262 rdf:type schema:Person
263 sg:person.01316222666.31 schema:affiliation grid-institutes:grid.419423.9
264 schema:familyName Petruccioli
265 schema:givenName Elisa
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316222666.31
267 rdf:type schema:Person
268 sg:person.015377351025.96 schema:affiliation grid-institutes:grid.419423.9
269 schema:familyName Najafi Fard
270 schema:givenName Saeid
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377351025.96
272 rdf:type schema:Person
273 sg:person.0604346205.97 schema:affiliation grid-institutes:grid.419423.9
274 schema:familyName Cuzzi
275 schema:givenName Gilda
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604346205.97
277 rdf:type schema:Person
278 sg:person.0650313551.19 schema:affiliation grid-institutes:grid.419423.9
279 schema:familyName Vanini
280 schema:givenName Valentina
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650313551.19
282 rdf:type schema:Person
283 sg:person.0655031534.49 schema:affiliation grid-institutes:grid.419423.9
284 schema:familyName Palmieri
285 schema:givenName Fabrizio
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655031534.49
287 rdf:type schema:Person
288 sg:person.0710457221.03 schema:affiliation grid-institutes:grid.414603.4
289 schema:familyName Ippolito
290 schema:givenName Giuseppe
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710457221.03
292 rdf:type schema:Person
293 sg:person.0755160366.91 schema:affiliation grid-institutes:grid.419423.9
294 schema:familyName Petrone
295 schema:givenName Linda
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755160366.91
297 rdf:type schema:Person
298 sg:pub.10.1007/s40265-020-01421-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1131847400
299 https://doi.org/10.1007/s40265-020-01421-w
300 rdf:type schema:CreativeWork
301 sg:pub.10.1038/s41392-020-0148-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126709525
302 https://doi.org/10.1038/s41392-020-0148-4
303 rdf:type schema:CreativeWork
304 sg:pub.10.1038/s41467-020-17292-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129010410
305 https://doi.org/10.1038/s41467-020-17292-4
306 rdf:type schema:CreativeWork
307 sg:pub.10.1038/s41586-020-2550-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1129347263
308 https://doi.org/10.1038/s41586-020-2550-z
309 rdf:type schema:CreativeWork
310 sg:pub.10.1038/s41586-020-2588-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1129667300
311 https://doi.org/10.1038/s41586-020-2588-y
312 rdf:type schema:CreativeWork
313 sg:pub.10.1038/s41591-020-1038-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130146709
314 https://doi.org/10.1038/s41591-020-1038-6
315 rdf:type schema:CreativeWork
316 sg:pub.10.1038/s41591-020-1051-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130292831
317 https://doi.org/10.1038/s41591-020-1051-9
318 rdf:type schema:CreativeWork
319 sg:pub.10.1186/s12967-015-0513-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004856024
320 https://doi.org/10.1186/s12967-015-0513-1
321 rdf:type schema:CreativeWork
322 grid-institutes:grid.414603.4 schema:alternateName Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, Rome, Italy
323 Scientific Direction, National Institute for Infectious Disease “Lazzaro Spallanzani”-IRCCS, Rome, Italy
324 schema:name Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-IRCCS, Rome, Italy
325 Scientific Direction, National Institute for Infectious Disease “Lazzaro Spallanzani”-IRCCS, Rome, Italy
326 rdf:type schema:Organization
327 grid-institutes:grid.416308.8 schema:alternateName UOC Transfusion Medicine and Stem Cell Unit, San Camillo Forlanini Hospital, Rome, Italy
328 schema:name UOC Transfusion Medicine and Stem Cell Unit, San Camillo Forlanini Hospital, Rome, Italy
329 rdf:type schema:Organization
330 grid-institutes:grid.419423.9 schema:alternateName Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
331 Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
332 UOS Professioni Sanitarie Tecniche National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
333 schema:name Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
334 Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
335 UOS Professioni Sanitarie Tecniche National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
336 rdf:type schema:Organization
337 grid-institutes:grid.428397.3 schema:alternateName Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
338 schema:name Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
339 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...