MRI radiomics for early prediction of response to vaccine therapy in a transgenic mouse model of pancreatic ductal adenocarcinoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-02-10

AUTHORS

Aydin Eresen, Jia Yang, Junjie Shangguan, Yu Li, Su Hu, Chong Sun, Yury Velichko, Vahid Yaghmai, Al B. Benson, Zhuoli Zhang

ABSTRACT

BackgroundThere is a lack of well-established clinical tools for predicting dendritic cell (DC) vaccination response of pancreatic ductal adenocarcinoma (PDAC). DC vaccine treatment efficiency was demonstrated using histological analysis in pre-clinical studies; however, its usage was limited due to invasiveness. In this study, we aimed to investigate the potential of MRI texture features for detection of early immunotherapeutic response as well as overall survival (OS) of PDAC subjects following dendritic cell (DC) vaccine treatment in LSL-KrasG12D;LSL-Trp53R172H;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC).Materials and methodsKPC mice were treated with DC vaccines, and tumor growth was dynamically monitored. A total of a hundred and fifty-two image features of T2-weighted MRI images were analyzed using a kernel-based support vector machine model to detect treatment effects following the first and third weeks of the treatment. Moreover, univariate analysis was performed to describe the association between MRI texture and survival of KPC mice as well as histological tumor biomarkers.ResultsOS for mice in the treatment group was 54.8 ± 22.54 days while the control group had 35.39 ± 17.17 days. A subset of three MRI features distinguished treatment effects starting from the first week with increasing accuracy throughout the treatment (75% to 94%). Besides, we observed that short-run emphasis of approximate wavelet coefficients had a positive correlation with the survival of the KPC mice (r = 0.78, p < 0.001). Additionally, tissue-specific MRI texture features showed positive association with fibrosis percentage (r = 0.84, p < 0.002), CK19 positive percentage (r = − 0.97, p < 0.001), and Ki67 positive cells (r = 0.81, p < 0.02) as histological disease biomarkers.ConclusionOur results demonstrate that MRI texture features can be used as imaging biomarkers for early detection of therapeutic response following DC vaccination in the KPC mouse model of PDAC. Besides, MRI texture can be utilized to characterize tumor microenvironment reflected with histology analysis. More... »

PAGES

61

References to SciGraph publications

  • 2018-01-29. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis in ANNALS OF SURGICAL ONCOLOGY
  • 2015-03-31. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2017-01-23. CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib in CANCER IMAGING
  • 2017-06-19. CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma – a quantitative analysis in BMC MEDICAL IMAGING
  • 2012-06-28. NIH Image to ImageJ: 25 years of image analysis in NATURE METHODS
  • 2018-02-23. Multiparametric PET/MR imaging biomarkers are associated with overall survival in patients with pancreatic cancer in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2019-02-04. The beginning of the end for conventional RECIST — novel therapies require novel imaging approaches in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2017-11-24. Can physician gestalt predict survival in patients with resectable pancreatic adenocarcinoma? in ABDOMINAL RADIOLOGY
  • 2017-01-03. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy in JOURNAL OF HEMATOLOGY & ONCOLOGY
  • 2018-07-06. MRI of pancreatic ductal adenocarcinoma: texture analysis of T2-weighted images for predicting long-term outcome in ABDOMINAL RADIOLOGY
  • 1998-03. Dendritic cells and the control of immunity in NATURE
  • 2018-06-21. CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture analysis in EUROPEAN RADIOLOGY
  • 2017-04-07. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer in JOURNAL OF HEMATOLOGY & ONCOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12967-020-02246-7

    DOI

    http://dx.doi.org/10.1186/s12967-020-02246-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1124777619

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32039734


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Pancreatic Ductal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunotherapy, Active", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Transgenic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pancreatic Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Microenvironment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vaccines", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eresen", 
            "givenName": "Aydin", 
            "id": "sg:person.0673022574.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673022574.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Jia", 
            "id": "sg:person.013172121233.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172121233.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shangguan", 
            "givenName": "Junjie", 
            "id": "sg:person.01035705477.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035705477.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China", 
              "id": "http://www.grid.ac/institutes/grid.412521.1", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
                "Dept. of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yu", 
            "id": "sg:person.0757632010.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757632010.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Radiology, First Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China", 
              "id": "http://www.grid.ac/institutes/grid.429222.d", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
                "Dept. of Radiology, First Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Su", 
            "id": "sg:person.01063447435.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063447435.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China", 
              "id": "http://www.grid.ac/institutes/grid.412521.1", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
                "Dept. of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Chong", 
            "id": "sg:person.011726423263.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726423263.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676\u00a0N. St. Clair, Suite 850, 60611, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
                "Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676\u00a0N. St. Clair, Suite 850, 60611, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Velichko", 
            "givenName": "Yury", 
            "id": "sg:person.012737315246.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737315246.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Radiological Sciences, School of Medicine, University of California, Irvine, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
                "Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676\u00a0N. St. Clair, Suite 850, 60611, Chicago, IL, USA", 
                "Dept. of Radiological Sciences, School of Medicine, University of California, Irvine, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yaghmai", 
            "givenName": "Vahid", 
            "id": "sg:person.01134174205.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134174205.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676\u00a0N. St. Clair, Suite 850, 60611, Chicago, IL, USA", 
                "Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benson", 
            "givenName": "Al B.", 
            "id": "sg:person.013621452577.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621452577.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676\u00a0N. St. Clair, Suite 850, 60611, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
                "Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676\u00a0N. St. Clair, Suite 850, 60611, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Zhuoli", 
            "id": "sg:person.013232656557.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1245/s10434-017-6323-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100693156", 
              "https://doi.org/10.1245/s10434-017-6323-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/32588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048341608", 
              "https://doi.org/10.1038/32588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035817137", 
              "https://doi.org/10.1038/nmeth.2089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13045-017-0459-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084612564", 
              "https://doi.org/10.1186/s13045-017-0459-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40644-017-0106-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074193810", 
              "https://doi.org/10.1186/s40644-017-0106-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2015.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010834474", 
              "https://doi.org/10.1038/nrclinonc.2015.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-017-1407-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092975203", 
              "https://doi.org/10.1007/s00261-017-1407-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13045-016-0379-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050253730", 
              "https://doi.org/10.1186/s13045-016-0379-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-3960-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101199063", 
              "https://doi.org/10.1007/s00259-018-3960-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-018-1681-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105338564", 
              "https://doi.org/10.1007/s00261-018-1681-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41571-019-0169-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111904889", 
              "https://doi.org/10.1038/s41571-019-0169-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5574-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105052211", 
              "https://doi.org/10.1007/s00330-018-5574-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12880-017-0209-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086106187", 
              "https://doi.org/10.1186/s12880-017-0209-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-02-10", 
        "datePublishedReg": "2020-02-10", 
        "description": "BackgroundThere is a lack of well-established clinical tools for predicting dendritic cell (DC) vaccination response of pancreatic ductal adenocarcinoma (PDAC). DC vaccine treatment efficiency was demonstrated using histological analysis in pre-clinical studies; however, its usage was limited due to invasiveness. In this study, we aimed to investigate the potential of MRI texture features for detection of early immunotherapeutic response as well as overall survival (OS) of PDAC subjects following dendritic cell (DC) vaccine treatment in LSL-KrasG12D;LSL-Trp53R172H;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC).Materials and methodsKPC mice were treated with DC vaccines, and tumor growth was dynamically monitored. A total of a hundred and fifty-two image features of T2-weighted MRI images were analyzed using a kernel-based support vector machine model to detect treatment effects following the first and third weeks of the treatment. Moreover, univariate analysis was performed to describe the association between MRI texture and survival of KPC mice as well as histological tumor biomarkers.ResultsOS for mice in the treatment group was 54.8\u2009\u00b1\u200922.54\u00a0days while the control group had 35.39\u2009\u00b1\u200917.17\u00a0days. A subset of three MRI features distinguished treatment effects starting from the first week with increasing accuracy throughout the treatment (75% to 94%). Besides, we observed that short-run emphasis of approximate wavelet coefficients had a positive correlation with the survival of the KPC mice (r\u2009=\u20090.78, p\u2009<\u20090.001). Additionally, tissue-specific MRI texture features showed positive association with fibrosis percentage (r\u2009=\u20090.84, p\u2009<\u20090.002), CK19 positive percentage (r\u2009=\u2009\u2212\u20090.97, p\u2009<\u20090.001), and Ki67 positive cells (r\u2009=\u20090.81, p\u2009<\u20090.02) as histological disease biomarkers.ConclusionOur results demonstrate that MRI texture features can be used as imaging biomarkers for early detection of therapeutic response following DC vaccination in the KPC mouse model of PDAC. Besides, MRI texture can be utilized to characterize tumor microenvironment reflected with histology analysis.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12967-020-02246-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5504653", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4104005", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032886", 
            "issn": [
              "1479-5876"
            ], 
            "name": "Journal of Translational Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "pancreatic ductal adenocarcinoma", 
          "MRI texture features", 
          "transgenic mouse model", 
          "ductal adenocarcinoma", 
          "mouse model", 
          "overall survival", 
          "KPC mice", 
          "Cre transgenic mouse model", 
          "MRI texture", 
          "KPC mouse model", 
          "pre-clinical studies", 
          "treatment effects", 
          "T2-weighted MRI images", 
          "PDAC subjects", 
          "DC vaccines", 
          "DC vaccination", 
          "immunotherapeutic response", 
          "vaccination response", 
          "vaccine therapy", 
          "univariate analysis", 
          "therapeutic response", 
          "vaccine treatment", 
          "fibrosis percentage", 
          "treatment groups", 
          "positive cells", 
          "control group", 
          "tumor growth", 
          "Short Run Emphasis", 
          "ConclusionOur results", 
          "clinical tool", 
          "tumor microenvironment", 
          "adenocarcinoma", 
          "histological analysis", 
          "first week", 
          "tumor biomarkers", 
          "mice", 
          "early detection", 
          "histology analysis", 
          "third week", 
          "positive percentage", 
          "biomarkers", 
          "positive association", 
          "survival", 
          "disease biomarkers", 
          "treatment", 
          "MRI", 
          "weeks", 
          "early prediction", 
          "positive correlation", 
          "MRI images", 
          "association", 
          "days", 
          "response", 
          "vaccination", 
          "group", 
          "ResultsOS", 
          "vaccine", 
          "therapy", 
          "BackgroundThere", 
          "percentage", 
          "invasiveness", 
          "total", 
          "study", 
          "microenvironment", 
          "subjects", 
          "effect", 
          "cells", 
          "LSL", 
          "subset", 
          "features", 
          "analysis", 
          "detection", 
          "lack", 
          "correlation", 
          "texture features", 
          "treatment efficiency", 
          "model", 
          "potential", 
          "results", 
          "growth", 
          "emphasis", 
          "tool", 
          "support vector machine model", 
          "usage", 
          "materials", 
          "vector machine model", 
          "images", 
          "accuracy", 
          "prediction", 
          "image features", 
          "coefficient", 
          "texture", 
          "efficiency", 
          "approximate wavelet coefficients", 
          "machine model", 
          "wavelet coefficients"
        ], 
        "name": "MRI radiomics for early prediction of response to vaccine therapy in a transgenic mouse model of pancreatic ductal adenocarcinoma", 
        "pagination": "61", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1124777619"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12967-020-02246-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32039734"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12967-020-02246-7", 
          "https://app.dimensions.ai/details/publication/pub.1124777619"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_872.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12967-020-02246-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12967-020-02246-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12967-020-02246-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12967-020-02246-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12967-020-02246-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    330 TRIPLES      21 PREDICATES      143 URIs      122 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12967-020-02246-7 schema:about N0a5abe0a1d874b958f21539a53df2a57
    2 N2879869a706f4c74bff679f9e7ee8678
    3 N2a6ab30d6d7747fc858bfb48702c70f7
    4 N7aafe790b5bd4eedb26a4138b5df3198
    5 N8d579a1443ab4d998680eb0da3d9e34c
    6 N8e7d2c51b68245e3a67b2e9f87d86905
    7 Nbe03dc4905834a1191414b1891026815
    8 Nd1c90816578e4303a5dd368917e2b136
    9 Nd5971cda5f5a4d4cadc4d688ab18ab47
    10 anzsrc-for:11
    11 anzsrc-for:1103
    12 schema:author Nff963cddc49045e2bd9633aa7dccedea
    13 schema:citation sg:pub.10.1007/s00259-018-3960-0
    14 sg:pub.10.1007/s00261-017-1407-x
    15 sg:pub.10.1007/s00261-018-1681-2
    16 sg:pub.10.1007/s00330-018-5574-0
    17 sg:pub.10.1038/32588
    18 sg:pub.10.1038/nmeth.2089
    19 sg:pub.10.1038/nrclinonc.2015.53
    20 sg:pub.10.1038/s41571-019-0169-5
    21 sg:pub.10.1186/s12880-017-0209-5
    22 sg:pub.10.1186/s13045-016-0379-6
    23 sg:pub.10.1186/s13045-017-0459-2
    24 sg:pub.10.1186/s40644-017-0106-8
    25 sg:pub.10.1245/s10434-017-6323-3
    26 schema:datePublished 2020-02-10
    27 schema:datePublishedReg 2020-02-10
    28 schema:description BackgroundThere is a lack of well-established clinical tools for predicting dendritic cell (DC) vaccination response of pancreatic ductal adenocarcinoma (PDAC). DC vaccine treatment efficiency was demonstrated using histological analysis in pre-clinical studies; however, its usage was limited due to invasiveness. In this study, we aimed to investigate the potential of MRI texture features for detection of early immunotherapeutic response as well as overall survival (OS) of PDAC subjects following dendritic cell (DC) vaccine treatment in LSL-KrasG12D;LSL-Trp53R172H;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic ductal adenocarcinoma (PDAC).Materials and methodsKPC mice were treated with DC vaccines, and tumor growth was dynamically monitored. A total of a hundred and fifty-two image features of T2-weighted MRI images were analyzed using a kernel-based support vector machine model to detect treatment effects following the first and third weeks of the treatment. Moreover, univariate analysis was performed to describe the association between MRI texture and survival of KPC mice as well as histological tumor biomarkers.ResultsOS for mice in the treatment group was 54.8 ± 22.54 days while the control group had 35.39 ± 17.17 days. A subset of three MRI features distinguished treatment effects starting from the first week with increasing accuracy throughout the treatment (75% to 94%). Besides, we observed that short-run emphasis of approximate wavelet coefficients had a positive correlation with the survival of the KPC mice (r = 0.78, p < 0.001). Additionally, tissue-specific MRI texture features showed positive association with fibrosis percentage (r = 0.84, p < 0.002), CK19 positive percentage (r = − 0.97, p < 0.001), and Ki67 positive cells (r = 0.81, p < 0.02) as histological disease biomarkers.ConclusionOur results demonstrate that MRI texture features can be used as imaging biomarkers for early detection of therapeutic response following DC vaccination in the KPC mouse model of PDAC. Besides, MRI texture can be utilized to characterize tumor microenvironment reflected with histology analysis.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N3df4968085af4cf2891c1b9e18f15ac2
    32 Nc7f0d716b21145598a6727f64bd78898
    33 sg:journal.1032886
    34 schema:keywords BackgroundThere
    35 ConclusionOur results
    36 Cre transgenic mouse model
    37 DC vaccination
    38 DC vaccines
    39 KPC mice
    40 KPC mouse model
    41 LSL
    42 MRI
    43 MRI images
    44 MRI texture
    45 MRI texture features
    46 PDAC subjects
    47 ResultsOS
    48 Short Run Emphasis
    49 T2-weighted MRI images
    50 accuracy
    51 adenocarcinoma
    52 analysis
    53 approximate wavelet coefficients
    54 association
    55 biomarkers
    56 cells
    57 clinical tool
    58 coefficient
    59 control group
    60 correlation
    61 days
    62 detection
    63 disease biomarkers
    64 ductal adenocarcinoma
    65 early detection
    66 early prediction
    67 effect
    68 efficiency
    69 emphasis
    70 features
    71 fibrosis percentage
    72 first week
    73 group
    74 growth
    75 histological analysis
    76 histology analysis
    77 image features
    78 images
    79 immunotherapeutic response
    80 invasiveness
    81 lack
    82 machine model
    83 materials
    84 mice
    85 microenvironment
    86 model
    87 mouse model
    88 overall survival
    89 pancreatic ductal adenocarcinoma
    90 percentage
    91 positive association
    92 positive cells
    93 positive correlation
    94 positive percentage
    95 potential
    96 pre-clinical studies
    97 prediction
    98 response
    99 results
    100 study
    101 subjects
    102 subset
    103 support vector machine model
    104 survival
    105 texture
    106 texture features
    107 therapeutic response
    108 therapy
    109 third week
    110 tool
    111 total
    112 transgenic mouse model
    113 treatment
    114 treatment effects
    115 treatment efficiency
    116 treatment groups
    117 tumor biomarkers
    118 tumor growth
    119 tumor microenvironment
    120 univariate analysis
    121 usage
    122 vaccination
    123 vaccination response
    124 vaccine
    125 vaccine therapy
    126 vaccine treatment
    127 vector machine model
    128 wavelet coefficients
    129 weeks
    130 schema:name MRI radiomics for early prediction of response to vaccine therapy in a transgenic mouse model of pancreatic ductal adenocarcinoma
    131 schema:pagination 61
    132 schema:productId N424775233e44484ebe35957ba1004c4e
    133 N7a19a2d3bbef465a8b3cf77ebf569e33
    134 N9fc2478b7b254e2d8c80c28e2211f1a6
    135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124777619
    136 https://doi.org/10.1186/s12967-020-02246-7
    137 schema:sdDatePublished 2022-10-01T06:48
    138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    139 schema:sdPublisher Nf0742503bece4e56aca4ecc40316c281
    140 schema:url https://doi.org/10.1186/s12967-020-02246-7
    141 sgo:license sg:explorer/license/
    142 sgo:sdDataset articles
    143 rdf:type schema:ScholarlyArticle
    144 N0315eb934f9f4315987a3e607ff1e27c rdf:first sg:person.012737315246.18
    145 rdf:rest Nd669de0a0592424a9bb603364d8d3d01
    146 N08e49831648d46dbbc6c148af83b3518 rdf:first sg:person.013172121233.61
    147 rdf:rest Nd004fea509b544ac995dac3e35b3b6d9
    148 N0a5abe0a1d874b958f21539a53df2a57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Immunotherapy, Active
    150 rdf:type schema:DefinedTerm
    151 N1472225e02264c4f8c4063f220065c13 rdf:first sg:person.011726423263.76
    152 rdf:rest N0315eb934f9f4315987a3e607ff1e27c
    153 N2879869a706f4c74bff679f9e7ee8678 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Tumor Microenvironment
    155 rdf:type schema:DefinedTerm
    156 N2a6ab30d6d7747fc858bfb48702c70f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Pancreatic Neoplasms
    158 rdf:type schema:DefinedTerm
    159 N3df4968085af4cf2891c1b9e18f15ac2 schema:volumeNumber 18
    160 rdf:type schema:PublicationVolume
    161 N424775233e44484ebe35957ba1004c4e schema:name pubmed_id
    162 schema:value 32039734
    163 rdf:type schema:PropertyValue
    164 N55dca0ff69f64ca196a7c968e0a104eb rdf:first sg:person.0757632010.58
    165 rdf:rest Ne43eb108894248658cb3322c69ad9ed6
    166 N6921d5c8d5aa46ddbe1a587121df609c rdf:first sg:person.013232656557.16
    167 rdf:rest rdf:nil
    168 N7a19a2d3bbef465a8b3cf77ebf569e33 schema:name dimensions_id
    169 schema:value pub.1124777619
    170 rdf:type schema:PropertyValue
    171 N7aafe790b5bd4eedb26a4138b5df3198 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Mice, Transgenic
    173 rdf:type schema:DefinedTerm
    174 N8d579a1443ab4d998680eb0da3d9e34c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Carcinoma, Pancreatic Ductal
    176 rdf:type schema:DefinedTerm
    177 N8e7d2c51b68245e3a67b2e9f87d86905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Magnetic Resonance Imaging
    179 rdf:type schema:DefinedTerm
    180 N9fc2478b7b254e2d8c80c28e2211f1a6 schema:name doi
    181 schema:value 10.1186/s12967-020-02246-7
    182 rdf:type schema:PropertyValue
    183 Na4626c4e42fd4f9db03aeb562a8f73b4 rdf:first sg:person.013621452577.37
    184 rdf:rest N6921d5c8d5aa46ddbe1a587121df609c
    185 Nbe03dc4905834a1191414b1891026815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Mice
    187 rdf:type schema:DefinedTerm
    188 Nc7f0d716b21145598a6727f64bd78898 schema:issueNumber 1
    189 rdf:type schema:PublicationIssue
    190 Nd004fea509b544ac995dac3e35b3b6d9 rdf:first sg:person.01035705477.86
    191 rdf:rest N55dca0ff69f64ca196a7c968e0a104eb
    192 Nd1c90816578e4303a5dd368917e2b136 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Vaccines
    194 rdf:type schema:DefinedTerm
    195 Nd5971cda5f5a4d4cadc4d688ab18ab47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Animals
    197 rdf:type schema:DefinedTerm
    198 Nd669de0a0592424a9bb603364d8d3d01 rdf:first sg:person.01134174205.19
    199 rdf:rest Na4626c4e42fd4f9db03aeb562a8f73b4
    200 Ne43eb108894248658cb3322c69ad9ed6 rdf:first sg:person.01063447435.08
    201 rdf:rest N1472225e02264c4f8c4063f220065c13
    202 Nf0742503bece4e56aca4ecc40316c281 schema:name Springer Nature - SN SciGraph project
    203 rdf:type schema:Organization
    204 Nff963cddc49045e2bd9633aa7dccedea rdf:first sg:person.0673022574.02
    205 rdf:rest N08e49831648d46dbbc6c148af83b3518
    206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Medical and Health Sciences
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Clinical Sciences
    211 rdf:type schema:DefinedTerm
    212 sg:grant.4104005 http://pending.schema.org/fundedItem sg:pub.10.1186/s12967-020-02246-7
    213 rdf:type schema:MonetaryGrant
    214 sg:grant.5504653 http://pending.schema.org/fundedItem sg:pub.10.1186/s12967-020-02246-7
    215 rdf:type schema:MonetaryGrant
    216 sg:journal.1032886 schema:issn 1479-5876
    217 schema:name Journal of Translational Medicine
    218 schema:publisher Springer Nature
    219 rdf:type schema:Periodical
    220 sg:person.01035705477.86 schema:affiliation grid-institutes:grid.16753.36
    221 schema:familyName Shangguan
    222 schema:givenName Junjie
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035705477.86
    224 rdf:type schema:Person
    225 sg:person.01063447435.08 schema:affiliation grid-institutes:grid.429222.d
    226 schema:familyName Hu
    227 schema:givenName Su
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063447435.08
    229 rdf:type schema:Person
    230 sg:person.01134174205.19 schema:affiliation grid-institutes:grid.266093.8
    231 schema:familyName Yaghmai
    232 schema:givenName Vahid
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134174205.19
    234 rdf:type schema:Person
    235 sg:person.011726423263.76 schema:affiliation grid-institutes:grid.412521.1
    236 schema:familyName Sun
    237 schema:givenName Chong
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726423263.76
    239 rdf:type schema:Person
    240 sg:person.012737315246.18 schema:affiliation grid-institutes:grid.16753.36
    241 schema:familyName Velichko
    242 schema:givenName Yury
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737315246.18
    244 rdf:type schema:Person
    245 sg:person.013172121233.61 schema:affiliation grid-institutes:grid.16753.36
    246 schema:familyName Yang
    247 schema:givenName Jia
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172121233.61
    249 rdf:type schema:Person
    250 sg:person.013232656557.16 schema:affiliation grid-institutes:grid.16753.36
    251 schema:familyName Zhang
    252 schema:givenName Zhuoli
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013232656557.16
    254 rdf:type schema:Person
    255 sg:person.013621452577.37 schema:affiliation grid-institutes:grid.16753.36
    256 schema:familyName Benson
    257 schema:givenName Al B.
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013621452577.37
    259 rdf:type schema:Person
    260 sg:person.0673022574.02 schema:affiliation grid-institutes:grid.16753.36
    261 schema:familyName Eresen
    262 schema:givenName Aydin
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673022574.02
    264 rdf:type schema:Person
    265 sg:person.0757632010.58 schema:affiliation grid-institutes:grid.412521.1
    266 schema:familyName Li
    267 schema:givenName Yu
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757632010.58
    269 rdf:type schema:Person
    270 sg:pub.10.1007/s00259-018-3960-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101199063
    271 https://doi.org/10.1007/s00259-018-3960-0
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s00261-017-1407-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092975203
    274 https://doi.org/10.1007/s00261-017-1407-x
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s00261-018-1681-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105338564
    277 https://doi.org/10.1007/s00261-018-1681-2
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s00330-018-5574-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105052211
    280 https://doi.org/10.1007/s00330-018-5574-0
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/32588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048341608
    283 https://doi.org/10.1038/32588
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
    286 https://doi.org/10.1038/nmeth.2089
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nrclinonc.2015.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010834474
    289 https://doi.org/10.1038/nrclinonc.2015.53
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/s41571-019-0169-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111904889
    292 https://doi.org/10.1038/s41571-019-0169-5
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1186/s12880-017-0209-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086106187
    295 https://doi.org/10.1186/s12880-017-0209-5
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1186/s13045-016-0379-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050253730
    298 https://doi.org/10.1186/s13045-016-0379-6
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1186/s13045-017-0459-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084612564
    301 https://doi.org/10.1186/s13045-017-0459-2
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/s40644-017-0106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074193810
    304 https://doi.org/10.1186/s40644-017-0106-8
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1245/s10434-017-6323-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100693156
    307 https://doi.org/10.1245/s10434-017-6323-3
    308 rdf:type schema:CreativeWork
    309 grid-institutes:grid.16753.36 schema:alternateName Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA
    310 Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
    311 Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N. St. Clair, Suite 850, 60611, Chicago, IL, USA
    312 schema:name Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA
    313 Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
    314 Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N. St. Clair, Suite 850, 60611, Chicago, IL, USA
    315 rdf:type schema:Organization
    316 grid-institutes:grid.266093.8 schema:alternateName Dept. of Radiological Sciences, School of Medicine, University of California, Irvine, CA, USA
    317 schema:name Dept. of Radiological Sciences, School of Medicine, University of California, Irvine, CA, USA
    318 Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA
    319 Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N. St. Clair, Suite 850, 60611, Chicago, IL, USA
    320 rdf:type schema:Organization
    321 grid-institutes:grid.412521.1 schema:alternateName Dept. of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
    322 Dept. of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
    323 schema:name Dept. of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
    324 Dept. of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
    325 Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA
    326 rdf:type schema:Organization
    327 grid-institutes:grid.429222.d schema:alternateName Dept. of Radiology, First Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
    328 schema:name Dept. of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA
    329 Dept. of Radiology, First Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
    330 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...