The phylogeny of 48 alleles, experimentally verified at 21 kb, and its application to clinical allele detection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kshitij Srivastava, Kurt R. Wollenberg, Willy A. Flegel

ABSTRACT

BACKGROUND: Sequence information generated from next generation sequencing is often computationally phased using haplotype-phasing algorithms. Utilizing experimentally derived allele or haplotype information improves this prediction, as routinely used in HLA typing. We recently established a large dataset of long ERMAP alleles, which code for protein variants in the Scianna blood group system. We propose the phylogeny of this set of 48 alleles and identify evolutionary steps to derive the observed alleles. METHODS: The nucleotide sequence of > 21 kb each was used for all physically confirmed 48 ERMAP alleles that we previously published. Full-length sequences were aligned and variant sites were extracted manually. The Bayesian coalescent algorithm implemented in BEAST v1.8.3 was used to estimate a coalescent phylogeny for these variants and the allelic ancestral states at the internal nodes of the phylogeny. RESULTS: The phylogenetic analysis allowed us to identify the evolutionary relationships among the 48 ERMAP alleles, predict 4243 potential ancestral alleles and calculate a posterior probability for each of these unobserved alleles. Some of them coincide with observed alleles that are extant in the population. CONCLUSIONS: Our proposed strategy places known alleles in a phylogenetic framework, allowing us to describe as-yet-undiscovered alleles. In this new approach, which relies heavily on the accuracy of the alleles used for the phylogenetic analysis, an expanded set of predicted alleles can be used to infer alleles when large genotype data are analyzed, as typically generated by high-throughput sequencing. The alleles identified by studies like ours may be utilized in designing of microarray technologies, imputing of genotypes and mapping of next generation sequencing data. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12967-019-1791-9

DOI

http://dx.doi.org/10.1186/s12967-019-1791-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112071165

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30744658


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Laboratory Services Section, Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivastava", 
        "givenName": "Kshitij", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Allergy and Infectious Diseases", 
          "id": "https://www.grid.ac/institutes/grid.419681.3", 
          "name": [
            "Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wollenberg", 
        "givenName": "Kurt R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "Laboratory Services Section, Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, 20892, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flegel", 
        "givenName": "Willy A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1537-2995.2011.03431.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000276693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1537-2995.2011.03431.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000276693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1537-2995.2011.03431.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000276693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1537-2995.2011.03431.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000276693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1537-2995.2011.03431.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000276693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1001091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003575355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003578016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004015204", 
          "https://doi.org/10.1038/nrg3054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004315232", 
          "https://doi.org/10.1186/1471-2164-15-685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004761148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005817660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2002-07-2064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008008983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010139737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bjh.12061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010725685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.2001.6600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011025499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mss075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013930907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.13801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021321836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.13801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021321836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.13801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021321836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.13801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021321836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.13801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021321836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.12615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.12615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.12615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.12615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/trf.12615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812064", 
          "https://doi.org/10.1038/nature15393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-3148.2001.00320.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028042603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bcmd.2001.0465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028680555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1537-2995.2009.02382.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029138081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1537-2995.2009.02382.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029138081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036057016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037734324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040583712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mst010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045545793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0530-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047513115", 
          "https://doi.org/10.1007/s00439-008-0530-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0530-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047513115", 
          "https://doi.org/10.1007/s00439-008-0530-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-008-0530-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047513115", 
          "https://doi.org/10.1007/s00439-008-0530-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-immunol-041015-055435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047800138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00251-012-0619-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048572582", 
          "https://doi.org/10.1007/s00251-012-0619-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(99)00516-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049502260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/61794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049619300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150701420643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075091356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077066238", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082429635", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082762864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.213611.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084779923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2352-3026(17)30196-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092476738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2352-3026(17)30196-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092476738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2352-3026(17)30196-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092476738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2352-3026(17)30196-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092476738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2352-3026(17)30196-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092476738"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Sequence information generated from next generation sequencing is often computationally phased using haplotype-phasing algorithms. Utilizing experimentally derived allele or haplotype information improves this prediction, as routinely used in HLA typing. We recently established a large dataset of long ERMAP alleles, which code for protein variants in the Scianna blood group system. We propose the phylogeny of this set of 48 alleles and identify evolutionary steps to derive the observed alleles.\nMETHODS: The nucleotide sequence of\u2009>\u200921\u00a0kb each was used for all physically confirmed 48 ERMAP alleles that we previously published. Full-length sequences were aligned and variant sites were extracted manually. The Bayesian coalescent algorithm implemented in BEAST v1.8.3 was used to estimate a coalescent phylogeny for these variants and the allelic ancestral states at the internal nodes of the phylogeny.\nRESULTS: The phylogenetic analysis allowed us to identify the evolutionary relationships among the 48 ERMAP alleles, predict 4243 potential ancestral alleles and calculate a posterior probability for each of these unobserved alleles. Some of them coincide with observed alleles that are extant in the population.\nCONCLUSIONS: Our proposed strategy places known alleles in a phylogenetic framework, allowing us to describe as-yet-undiscovered alleles. In this new approach, which relies heavily on the accuracy of the alleles used for the phylogenetic analysis, an expanded set of predicted alleles can be used to infer alleles when large genotype data are analyzed, as typically generated by high-throughput sequencing. The alleles identified by studies like ours may be utilized in designing of microarray technologies, imputing of genotypes and mapping of next generation sequencing data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12967-019-1791-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032886", 
        "issn": [
          "1479-5876"
        ], 
        "name": "Journal of Translational Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "The phylogeny of 48 alleles, experimentally verified at 21 kb, and its application to clinical allele detection", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cdefade8df8be1e025989797f43f84c0d4b36149525babeeeeaa9925eaf176ae"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30744658"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190741"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12967-019-1791-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112071165"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12967-019-1791-9", 
      "https://app.dimensions.ai/details/publication/pub.1112071165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12967-019-1791-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12967-019-1791-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12967-019-1791-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12967-019-1791-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12967-019-1791-9'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12967-019-1791-9 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N357672cb5b0f4c3f96578a0207a43654
4 schema:citation sg:pub.10.1007/s00251-012-0619-z
5 sg:pub.10.1007/s00439-008-0530-8
6 sg:pub.10.1038/nature15393
7 sg:pub.10.1038/nrg3054
8 sg:pub.10.1186/1471-2164-15-685
9 https://app.dimensions.ai/details/publication/pub.1075091356
10 https://app.dimensions.ai/details/publication/pub.1077066238
11 https://app.dimensions.ai/details/publication/pub.1082429635
12 https://doi.org/10.1006/bcmd.2001.0465
13 https://doi.org/10.1006/geno.2001.6600
14 https://doi.org/10.1016/j.cell.2016.08.030
15 https://doi.org/10.1016/s0378-1119(99)00516-8
16 https://doi.org/10.1016/s2352-3026(17)30196-5
17 https://doi.org/10.1046/j.1365-3148.2001.00320.x
18 https://doi.org/10.1080/10635150701420643
19 https://doi.org/10.1086/302756
20 https://doi.org/10.1093/bioinformatics/btp412
21 https://doi.org/10.1093/molbev/msh018
22 https://doi.org/10.1093/molbev/mss075
23 https://doi.org/10.1093/molbev/mst010
24 https://doi.org/10.1093/nar/29.1.308
25 https://doi.org/10.1093/nar/gku1161
26 https://doi.org/10.1093/oxfordjournals.molbev.a040023
27 https://doi.org/10.1101/gr.107524.110
28 https://doi.org/10.1101/gr.213611.116
29 https://doi.org/10.1111/bjh.12061
30 https://doi.org/10.1111/j.1537-2995.2009.02382.x
31 https://doi.org/10.1111/j.1537-2995.2011.03431.x
32 https://doi.org/10.1111/trf.12615
33 https://doi.org/10.1111/trf.13801
34 https://doi.org/10.1126/science.1069424
35 https://doi.org/10.1146/annurev-immunol-041015-055435
36 https://doi.org/10.1182/blood-2002-07-2064
37 https://doi.org/10.1371/journal.pbio.1001091
38 https://doi.org/10.1371/journal.pcbi.1004041
39 https://doi.org/10.5772/61794
40 schema:datePublished 2019-12
41 schema:datePublishedReg 2019-12-01
42 schema:description BACKGROUND: Sequence information generated from next generation sequencing is often computationally phased using haplotype-phasing algorithms. Utilizing experimentally derived allele or haplotype information improves this prediction, as routinely used in HLA typing. We recently established a large dataset of long ERMAP alleles, which code for protein variants in the Scianna blood group system. We propose the phylogeny of this set of 48 alleles and identify evolutionary steps to derive the observed alleles. METHODS: The nucleotide sequence of > 21 kb each was used for all physically confirmed 48 ERMAP alleles that we previously published. Full-length sequences were aligned and variant sites were extracted manually. The Bayesian coalescent algorithm implemented in BEAST v1.8.3 was used to estimate a coalescent phylogeny for these variants and the allelic ancestral states at the internal nodes of the phylogeny. RESULTS: The phylogenetic analysis allowed us to identify the evolutionary relationships among the 48 ERMAP alleles, predict 4243 potential ancestral alleles and calculate a posterior probability for each of these unobserved alleles. Some of them coincide with observed alleles that are extant in the population. CONCLUSIONS: Our proposed strategy places known alleles in a phylogenetic framework, allowing us to describe as-yet-undiscovered alleles. In this new approach, which relies heavily on the accuracy of the alleles used for the phylogenetic analysis, an expanded set of predicted alleles can be used to infer alleles when large genotype data are analyzed, as typically generated by high-throughput sequencing. The alleles identified by studies like ours may be utilized in designing of microarray technologies, imputing of genotypes and mapping of next generation sequencing data.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N6452282f878345aea605c53aa9acdc7f
47 Nad8e7d1e13e74441a1de473d4654b19a
48 sg:journal.1032886
49 schema:name The phylogeny of 48 alleles, experimentally verified at 21 kb, and its application to clinical allele detection
50 schema:pagination 43
51 schema:productId N5e0a4e0986424975b1c8036c78a6ad39
52 N7789a583f4e54f27bba7d895a9f23ef9
53 Na46aee4924224d2189e843ed5c476c37
54 Naffc856b2c574162b239aae8955e9fca
55 Nef71461649f1492fa5726a241278f62e
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112071165
57 https://doi.org/10.1186/s12967-019-1791-9
58 schema:sdDatePublished 2019-04-11T13:55
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N762bfada76f444b0a1e86ebc09cf7e19
61 schema:url https://link.springer.com/10.1186%2Fs12967-019-1791-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N2d4800724d47495f9fba7ff823ead0ae schema:affiliation https://www.grid.ac/institutes/grid.410305.3
66 schema:familyName Srivastava
67 schema:givenName Kshitij
68 rdf:type schema:Person
69 N357672cb5b0f4c3f96578a0207a43654 rdf:first N2d4800724d47495f9fba7ff823ead0ae
70 rdf:rest Nb0d0db7d94804d299fcbf604bbc7c161
71 N5e0a4e0986424975b1c8036c78a6ad39 schema:name nlm_unique_id
72 schema:value 101190741
73 rdf:type schema:PropertyValue
74 N6452282f878345aea605c53aa9acdc7f schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N762bfada76f444b0a1e86ebc09cf7e19 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N7789a583f4e54f27bba7d895a9f23ef9 schema:name dimensions_id
79 schema:value pub.1112071165
80 rdf:type schema:PropertyValue
81 N804763b1460145fd981d84cf4a10737b rdf:first Nee1823186fb54a6f949b45725518c9f1
82 rdf:rest rdf:nil
83 Na46aee4924224d2189e843ed5c476c37 schema:name pubmed_id
84 schema:value 30744658
85 rdf:type schema:PropertyValue
86 Nad8e7d1e13e74441a1de473d4654b19a schema:volumeNumber 17
87 rdf:type schema:PublicationVolume
88 Naffc856b2c574162b239aae8955e9fca schema:name doi
89 schema:value 10.1186/s12967-019-1791-9
90 rdf:type schema:PropertyValue
91 Nb0d0db7d94804d299fcbf604bbc7c161 rdf:first Neff93a471c9f42689990a38758163041
92 rdf:rest N804763b1460145fd981d84cf4a10737b
93 Nee1823186fb54a6f949b45725518c9f1 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
94 schema:familyName Flegel
95 schema:givenName Willy A.
96 rdf:type schema:Person
97 Nef71461649f1492fa5726a241278f62e schema:name readcube_id
98 schema:value cdefade8df8be1e025989797f43f84c0d4b36149525babeeeeaa9925eaf176ae
99 rdf:type schema:PropertyValue
100 Neff93a471c9f42689990a38758163041 schema:affiliation https://www.grid.ac/institutes/grid.419681.3
101 schema:familyName Wollenberg
102 schema:givenName Kurt R.
103 rdf:type schema:Person
104 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biological Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
108 schema:name Genetics
109 rdf:type schema:DefinedTerm
110 sg:journal.1032886 schema:issn 1479-5876
111 schema:name Journal of Translational Medicine
112 rdf:type schema:Periodical
113 sg:pub.10.1007/s00251-012-0619-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048572582
114 https://doi.org/10.1007/s00251-012-0619-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00439-008-0530-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047513115
117 https://doi.org/10.1007/s00439-008-0530-8
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
120 https://doi.org/10.1038/nature15393
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nrg3054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004015204
123 https://doi.org/10.1038/nrg3054
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/1471-2164-15-685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004315232
126 https://doi.org/10.1186/1471-2164-15-685
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1075091356 schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1077066238 schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1082429635 schema:CreativeWork
131 https://doi.org/10.1006/bcmd.2001.0465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028680555
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1006/geno.2001.6600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011025499
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.cell.2016.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003578016
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0378-1119(99)00516-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049502260
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s2352-3026(17)30196-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092476738
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1046/j.1365-3148.2001.00320.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028042603
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/10635150701420643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369696
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1086/302756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610316
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/btp412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040583712
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1093/molbev/msh018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037734324
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/molbev/mss075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013930907
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/molbev/mst010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045545793
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/nar/29.1.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817660
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/nar/gku1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036057016
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/oxfordjournals.molbev.a040023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082762864
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1101/gr.213611.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084779923
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/bjh.12061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010725685
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/j.1537-2995.2009.02382.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029138081
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1537-2995.2011.03431.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000276693
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1111/trf.12615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021620836
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1111/trf.13801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021321836
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1146/annurev-immunol-041015-055435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047800138
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1182/blood-2002-07-2064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008008983
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1371/journal.pbio.1001091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003575355
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1371/journal.pcbi.1004041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761148
184 rdf:type schema:CreativeWork
185 https://doi.org/10.5772/61794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049619300
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
188 schema:name Laboratory Services Section, Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, 20892, Bethesda, MD, USA
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.419681.3 schema:alternateName National Institute of Allergy and Infectious Diseases
191 schema:name Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...