Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Raúl F. Pérez, Pablo Santamarina, Juan Ramón Tejedor, Rocío G. Urdinguio, Julio Álvarez-Pitti, Pau Redon, Agustín F. Fernández, Mario F. Fraga, Empar Lurbe

ABSTRACT

BACKGROUND: Early life is a period of drastic epigenetic remodeling in which the epigenome is especially sensitive to extrinsic and intrinsic influence. However, the epigenome-wide dynamics of the DNA methylation changes that occur during this period have not been sufficiently characterized in longitudinal studies. METHODS: To this end, we studied the DNA methylation status of more than 750,000 CpG sites using Illumina MethylationEPIC arrays on 33 paired blood samples from 11 subjects at birth and at 5 and 10 years of age, then characterized the chromatin context associated with these loci by integrating our data with histone, chromatin-state and enhancer-element external datasets, and, finally, validated our results through bisulfite pyrosequencing in two independent longitudinal cohorts of 18 additional subjects. RESULTS: We found abundant DNA methylation changes (110,726 CpG sites) during the first lustrum of life, while far fewer alterations were observed in the subsequent 5 years (460 CpG sites). However, our analysis revealed persistent DNA methylation changes at 240 CpG sites, indicating that there are genomic locations of considerable epigenetic change beyond immediate birth. The chromatin context of hypermethylation changes was associated with repressive genomic locations and genes with developmental and cell signaling functions, while hypomethylation changes were linked to enhancer regions and genes with immunological and mRNA and protein metabolism functions. Significantly, our results show that genes that suffer simultaneous hyper- and hypomethylation are functionally distinct from exclusively hyper- or hypomethylated genes, and that enhancer-associated methylation is different in hyper- and hypomethylation scenarios, with hypomethylation being more associated to epigenetic changes at blood tissue-specific enhancer elements. CONCLUSIONS: These data show that epigenetic remodeling is dramatically reduced after the first 5 years of life. However, there are certain loci which continue to manifest DNA methylation changes, pointing towards a possible functionality beyond early development. Furthermore, our results deepen the understanding of the genomic context associated to hyper- or hypomethylation alterations during time, suggesting that hypomethylation of blood tissue-specific enhancer elements could be of importance in the establishment of functional states in blood tissue during early-life. More... »

PAGES

15

References to SciGraph publications

  • 2017-08-14. The interplay of epigenetic marks during stem cell differentiation and development in NATURE REVIEWS GENETICS
  • 2013-05. Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance in GENOME BIOLOGY
  • 2015-12. Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes in CLINICAL EPIGENETICS
  • 2018-06. DNA methylation-based biomarkers and the epigenetic clock theory of ageing in NATURE REVIEWS GENETICS
  • 2015-10. Epigenetic regulation of ageing: linking environmental inputs to genomic stability in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2012-12. DNA methylation arrays as surrogate measures of cell mixture distribution in BMC BIOINFORMATICS
  • 2016-12. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling in GENOME BIOLOGY
  • 2016-10. Specification and epigenetic programming of the human germ line in NATURE REVIEWS GENETICS
  • 2016-12. Longitudinal study of DNA methylation during the first 5 years of life in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2013-09. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape in GENOME BIOLOGY
  • 2010-10. Epigenetic modifications and human disease in NATURE BIOTECHNOLOGY
  • 2016-06-27. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications in NATURE BIOTECHNOLOGY
  • 2012-07. Functions of DNA methylation: islands, start sites, gene bodies and beyond in NATURE REVIEWS GENETICS
  • 2013-03. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes in GENOME BIOLOGY
  • 2010-12. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis in BMC BIOINFORMATICS
  • 2012-09. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2002-10. The role of retinoids and retinoic acid receptors in normal hematopoiesis in LEUKEMIA
  • 2012-02. Epigenetics and the environment: emerging patterns and implications in NATURE REVIEWS GENETICS
  • 2013-12. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy in GENOME MEDICINE
  • 2010-10. The NIH Roadmap Epigenomics Mapping Consortium in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12967-018-1751-9

    DOI

    http://dx.doi.org/10.1186/s12967-018-1751-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111309805

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30626398


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA)-Instituto de Investigaci\u00f3n Sanitaria del Principado de Asturias (ISPA)-Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Asturias, Spain", 
                "Nanomedicine Group, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, 33940, Oviedo, Asturias, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e9rez", 
            "givenName": "Ra\u00fal F.", 
            "id": "sg:person.010263557317.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010263557317.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA)-Instituto de Investigaci\u00f3n Sanitaria del Principado de Asturias (ISPA)-Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Asturias, Spain", 
                "Nanomedicine Group, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, 33940, Oviedo, Asturias, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santamarina", 
            "givenName": "Pablo", 
            "id": "sg:person.015760017162.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760017162.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central University Hospital of Asturias", 
              "id": "https://www.grid.ac/institutes/grid.411052.3", 
              "name": [
                "Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA)-Instituto de Investigaci\u00f3n Sanitaria del Principado de Asturias (ISPA)-Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Asturias, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tejedor", 
            "givenName": "Juan Ram\u00f3n", 
            "id": "sg:person.01114653345.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114653345.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central University Hospital of Asturias", 
              "id": "https://www.grid.ac/institutes/grid.411052.3", 
              "name": [
                "Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA)-Instituto de Investigaci\u00f3n Sanitaria del Principado de Asturias (ISPA)-Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Asturias, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Urdinguio", 
            "givenName": "Roc\u00edo G.", 
            "id": "sg:person.01240503237.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240503237.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Salud Carlos III", 
              "id": "https://www.grid.ac/institutes/grid.413448.e", 
              "name": [
                "Servicio de Pediatr\u00eda, Consorcio Hospital General Universitario de Valencia, 46014, Valencia, Spain", 
                "Centros de Investigaci\u00f3n Biom\u00e9dica en Red de Fisiopatolog\u00eda Obesidad y Nutrici\u00f3n (CB06/03), Instituto de Salud Carlos III, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00c1lvarez-Pitti", 
            "givenName": "Julio", 
            "id": "sg:person.0742005202.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742005202.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Salud Carlos III", 
              "id": "https://www.grid.ac/institutes/grid.413448.e", 
              "name": [
                "Servicio de Pediatr\u00eda, Consorcio Hospital General Universitario de Valencia, 46014, Valencia, Spain", 
                "Centros de Investigaci\u00f3n Biom\u00e9dica en Red de Fisiopatolog\u00eda Obesidad y Nutrici\u00f3n (CB06/03), Instituto de Salud Carlos III, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Redon", 
            "givenName": "Pau", 
            "id": "sg:person.01065336504.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065336504.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Central University Hospital of Asturias", 
              "id": "https://www.grid.ac/institutes/grid.411052.3", 
              "name": [
                "Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA)-Instituto de Investigaci\u00f3n Sanitaria del Principado de Asturias (ISPA)-Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Asturias, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fern\u00e1ndez", 
            "givenName": "Agust\u00edn F.", 
            "id": "sg:person.011265671100.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265671100.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oviedo", 
              "id": "https://www.grid.ac/institutes/grid.10863.3c", 
              "name": [
                "Nanomedicine Group, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, 33940, Oviedo, Asturias, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fraga", 
            "givenName": "Mario F.", 
            "id": "sg:person.01071503364.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071503364.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Salud Carlos III", 
              "id": "https://www.grid.ac/institutes/grid.413448.e", 
              "name": [
                "Servicio de Pediatr\u00eda, Consorcio Hospital General Universitario de Valencia, 46014, Valencia, Spain", 
                "Centros de Investigaci\u00f3n Biom\u00e9dica en Red de Fisiopatolog\u00eda Obesidad y Nutrici\u00f3n (CB06/03), Instituto de Salud Carlos III, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lurbe", 
            "givenName": "Empar", 
            "id": "sg:person.01010610630.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010610630.66"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1101/gr.125187.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001433925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004833700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.semcdb.2004.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007609082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008455760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009545802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0030161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009683731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011479792", 
              "https://doi.org/10.1038/nbt.1685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mam.2012.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012210990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.numecd.2008.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013343500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014058643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016098431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3476(79)80734-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016809619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddt531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017853267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-9-r102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018215878", 
              "https://doi.org/10.1186/gb-2013-14-9-r102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021659447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021766380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.leu.2402718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882484", 
              "https://doi.org/10.1038/sj.leu.2402718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.leu.2402718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882484", 
              "https://doi.org/10.1038/sj.leu.2402718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/epi.23470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023015244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1066-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023719393", 
              "https://doi.org/10.1186/s13059-016-1066-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1066-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023719393", 
              "https://doi.org/10.1186/s13059-016-1066-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025078414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025448148", 
              "https://doi.org/10.1186/1471-2105-11-587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-5-r42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025778419", 
              "https://doi.org/10.1186/gb-2013-14-5-r42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2013.01.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027313497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027336196", 
              "https://doi.org/10.1038/nrg3142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13148-015-0064-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027754800", 
              "https://doi.org/10.1186/s13148-015-0064-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13148-015-0064-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027754800", 
              "https://doi.org/10.1186/s13148-015-0064-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028089604", 
              "https://doi.org/10.1038/nbt.3605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028089604", 
              "https://doi.org/10.1038/nbt.3605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028633739", 
              "https://doi.org/10.1038/nrg3230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2008.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028639931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/gbb.12085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033732487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033908936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0021800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034510199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034923242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036279354", 
              "https://doi.org/10.1186/gm500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036696259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.06.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037445404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.169011.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038312468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.169011.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038312468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039236267", 
              "https://doi.org/10.1038/nrg.2016.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1172/jci69735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039376149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-800100-4.00005-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039986952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042068352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042068352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-3-r21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044614468", 
              "https://doi.org/10.1186/gb-2013-14-3-r21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12967-016-0913-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045314772", 
              "https://doi.org/10.1186/s12967-016-0913-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12967-016-0913-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045314772", 
              "https://doi.org/10.1186/s12967-016-0913-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddv119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046815836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047392734", 
              "https://doi.org/10.1186/1471-2105-13-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047392734", 
              "https://doi.org/10.1186/1471-2105-13-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1010-1045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048301228", 
              "https://doi.org/10.1038/nbt1010-1045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3476(67)80066-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050430765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm4048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052427701", 
              "https://doi.org/10.1038/nrm4048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btw549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/epi.20117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072302512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4161/epi.6.9.16401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072303212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/epi-2016-0153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084395909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bies.201700055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085910578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2017.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091217910", 
              "https://doi.org/10.1038/nrg.2017.57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/acel.12744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101335649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/acel.12744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101335649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41576-018-0004-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103208961", 
              "https://doi.org/10.1038/s41576-018-0004-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Early life is a period of drastic epigenetic remodeling in which the epigenome is especially sensitive to extrinsic and intrinsic influence. However, the epigenome-wide dynamics of the DNA methylation changes that occur during this period have not been sufficiently characterized in longitudinal studies.\nMETHODS: To this end, we studied the DNA methylation status of more than 750,000\u00a0CpG sites using Illumina MethylationEPIC arrays on 33 paired blood samples from 11 subjects at birth and at 5 and 10\u00a0years of age, then characterized the chromatin context associated with these loci by integrating our data with histone, chromatin-state and enhancer-element external datasets, and, finally, validated our results through bisulfite pyrosequencing in two independent longitudinal cohorts of 18 additional subjects.\nRESULTS: We found abundant DNA methylation changes (110,726\u00a0CpG sites) during the first lustrum of life, while far fewer alterations were observed in the subsequent 5\u00a0years (460\u00a0CpG sites). However, our analysis revealed persistent DNA methylation changes at 240 CpG sites, indicating that there are genomic locations of considerable epigenetic change beyond immediate birth. The chromatin context of hypermethylation changes was associated with repressive genomic locations and genes with developmental and cell signaling functions, while hypomethylation changes were linked to enhancer regions and genes with immunological and mRNA and protein metabolism functions. Significantly, our results show that genes that suffer simultaneous hyper- and hypomethylation are functionally distinct from exclusively hyper- or hypomethylated genes, and that enhancer-associated methylation is different in hyper- and hypomethylation scenarios, with hypomethylation being more associated to epigenetic changes at blood tissue-specific enhancer elements.\nCONCLUSIONS: These data show that epigenetic remodeling is dramatically reduced after the first 5\u00a0years of life. However, there are certain loci which continue to manifest DNA methylation changes, pointing towards a possible functionality beyond early development. Furthermore, our results deepen the understanding of the genomic context associated to hyper- or hypomethylation alterations during time, suggesting that hypomethylation of blood tissue-specific enhancer elements could be of importance in the establishment of functional states in blood tissue during early-life.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12967-018-1751-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3713359", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3714986", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032886", 
            "issn": [
              "1479-5876"
            ], 
            "name": "Journal of Translational Medicine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes", 
        "pagination": "15", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4a44feac7c0826e629fb8af6baf8dd71b5cc480bafd06a3268b7a5bf53012f63"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30626398"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101190741"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12967-018-1751-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111309805"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12967-018-1751-9", 
          "https://app.dimensions.ai/details/publication/pub.1111309805"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000320_0000000320/records_101375_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12967-018-1751-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12967-018-1751-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12967-018-1751-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12967-018-1751-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12967-018-1751-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    327 TRIPLES      21 PREDICATES      86 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12967-018-1751-9 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N863d3adaff3a4e8fb0e22a1add77d450
    4 schema:citation sg:pub.10.1038/nature11247
    5 sg:pub.10.1038/nbt.1685
    6 sg:pub.10.1038/nbt.3605
    7 sg:pub.10.1038/nbt1010-1045
    8 sg:pub.10.1038/nrg.2016.88
    9 sg:pub.10.1038/nrg.2017.57
    10 sg:pub.10.1038/nrg3142
    11 sg:pub.10.1038/nrg3230
    12 sg:pub.10.1038/nrm4048
    13 sg:pub.10.1038/s41576-018-0004-3
    14 sg:pub.10.1038/sj.leu.2402718
    15 sg:pub.10.1186/1471-2105-11-587
    16 sg:pub.10.1186/1471-2105-13-86
    17 sg:pub.10.1186/gb-2013-14-3-r21
    18 sg:pub.10.1186/gb-2013-14-5-r42
    19 sg:pub.10.1186/gb-2013-14-9-r102
    20 sg:pub.10.1186/gm500
    21 sg:pub.10.1186/s12967-016-0913-x
    22 sg:pub.10.1186/s13059-016-1066-1
    23 sg:pub.10.1186/s13148-015-0064-6
    24 https://doi.org/10.1002/bies.201700055
    25 https://doi.org/10.1016/b978-0-12-800100-4.00005-2
    26 https://doi.org/10.1016/j.cell.2008.09.002
    27 https://doi.org/10.1016/j.cell.2013.06.018
    28 https://doi.org/10.1016/j.mam.2012.06.006
    29 https://doi.org/10.1016/j.molcel.2013.01.038
    30 https://doi.org/10.1016/j.numecd.2008.08.001
    31 https://doi.org/10.1016/j.semcdb.2004.10.006
    32 https://doi.org/10.1016/s0022-3476(67)80066-0
    33 https://doi.org/10.1016/s0022-3476(79)80734-9
    34 https://doi.org/10.1093/bioinformatics/btn224
    35 https://doi.org/10.1093/bioinformatics/bts034
    36 https://doi.org/10.1093/bioinformatics/bts680
    37 https://doi.org/10.1093/bioinformatics/btt684
    38 https://doi.org/10.1093/bioinformatics/btu049
    39 https://doi.org/10.1093/bioinformatics/btv145
    40 https://doi.org/10.1093/bioinformatics/btv560
    41 https://doi.org/10.1093/bioinformatics/btv612
    42 https://doi.org/10.1093/bioinformatics/btw549
    43 https://doi.org/10.1093/hmg/ddt531
    44 https://doi.org/10.1093/hmg/ddv119
    45 https://doi.org/10.1093/nar/gkt090
    46 https://doi.org/10.1093/nar/gkv007
    47 https://doi.org/10.1093/nar/gkv907
    48 https://doi.org/10.1101/gr.125187.111
    49 https://doi.org/10.1101/gr.169011.113
    50 https://doi.org/10.1111/acel.12744
    51 https://doi.org/10.1111/gbb.12085
    52 https://doi.org/10.1172/jci69735
    53 https://doi.org/10.1371/journal.pgen.0030161
    54 https://doi.org/10.1371/journal.pgen.1004958
    55 https://doi.org/10.1371/journal.pgen.1004996
    56 https://doi.org/10.1371/journal.pone.0021800
    57 https://doi.org/10.2217/epi-2016-0153
    58 https://doi.org/10.4161/epi.20117
    59 https://doi.org/10.4161/epi.23470
    60 https://doi.org/10.4161/epi.6.9.16401
    61 schema:datePublished 2019-12
    62 schema:datePublishedReg 2019-12-01
    63 schema:description BACKGROUND: Early life is a period of drastic epigenetic remodeling in which the epigenome is especially sensitive to extrinsic and intrinsic influence. However, the epigenome-wide dynamics of the DNA methylation changes that occur during this period have not been sufficiently characterized in longitudinal studies. METHODS: To this end, we studied the DNA methylation status of more than 750,000 CpG sites using Illumina MethylationEPIC arrays on 33 paired blood samples from 11 subjects at birth and at 5 and 10 years of age, then characterized the chromatin context associated with these loci by integrating our data with histone, chromatin-state and enhancer-element external datasets, and, finally, validated our results through bisulfite pyrosequencing in two independent longitudinal cohorts of 18 additional subjects. RESULTS: We found abundant DNA methylation changes (110,726 CpG sites) during the first lustrum of life, while far fewer alterations were observed in the subsequent 5 years (460 CpG sites). However, our analysis revealed persistent DNA methylation changes at 240 CpG sites, indicating that there are genomic locations of considerable epigenetic change beyond immediate birth. The chromatin context of hypermethylation changes was associated with repressive genomic locations and genes with developmental and cell signaling functions, while hypomethylation changes were linked to enhancer regions and genes with immunological and mRNA and protein metabolism functions. Significantly, our results show that genes that suffer simultaneous hyper- and hypomethylation are functionally distinct from exclusively hyper- or hypomethylated genes, and that enhancer-associated methylation is different in hyper- and hypomethylation scenarios, with hypomethylation being more associated to epigenetic changes at blood tissue-specific enhancer elements. CONCLUSIONS: These data show that epigenetic remodeling is dramatically reduced after the first 5 years of life. However, there are certain loci which continue to manifest DNA methylation changes, pointing towards a possible functionality beyond early development. Furthermore, our results deepen the understanding of the genomic context associated to hyper- or hypomethylation alterations during time, suggesting that hypomethylation of blood tissue-specific enhancer elements could be of importance in the establishment of functional states in blood tissue during early-life.
    64 schema:genre research_article
    65 schema:inLanguage en
    66 schema:isAccessibleForFree true
    67 schema:isPartOf N693f0f89a9d64e75947324ab0add6c6d
    68 Nb2329006e0fb41999edd8720bfe857c2
    69 sg:journal.1032886
    70 schema:name Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes
    71 schema:pagination 15
    72 schema:productId N185f6130716b42d4ac172c4167742384
    73 N6de4622da8bc445d9b24ec8eda0706cf
    74 N77fa89d0db08498fb4185d833be8c4b8
    75 Na13623151bf44c01bdef90e0c9d8d37b
    76 Nb29f28e89cdd4e69ba5556ae9661aa15
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111309805
    78 https://doi.org/10.1186/s12967-018-1751-9
    79 schema:sdDatePublished 2019-04-11T08:41
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N0ab4bfb801de4edab528edc98059bcc2
    82 schema:url https://link.springer.com/10.1186%2Fs12967-018-1751-9
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N0ab4bfb801de4edab528edc98059bcc2 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N185f6130716b42d4ac172c4167742384 schema:name doi
    89 schema:value 10.1186/s12967-018-1751-9
    90 rdf:type schema:PropertyValue
    91 N219ee023700949de8a83fceb23353702 rdf:first sg:person.01071503364.28
    92 rdf:rest Nee57d568341c479e8fd5d60b558aa86d
    93 N51980794247d43fc9c8ba831ac582ad7 rdf:first sg:person.01065336504.26
    94 rdf:rest N89fdf3b2874d46f49816d8555f052903
    95 N693f0f89a9d64e75947324ab0add6c6d schema:volumeNumber 17
    96 rdf:type schema:PublicationVolume
    97 N6de4622da8bc445d9b24ec8eda0706cf schema:name nlm_unique_id
    98 schema:value 101190741
    99 rdf:type schema:PropertyValue
    100 N77fa89d0db08498fb4185d833be8c4b8 schema:name dimensions_id
    101 schema:value pub.1111309805
    102 rdf:type schema:PropertyValue
    103 N7c9e753d01cf4cbfb01d718d4819bda2 rdf:first sg:person.01240503237.03
    104 rdf:rest Nf006c6b419ab4bd3be83d90decae6f26
    105 N863d3adaff3a4e8fb0e22a1add77d450 rdf:first sg:person.010263557317.44
    106 rdf:rest Nc8a53b739f3446ee92b4fbc1511c8ebe
    107 N89fdf3b2874d46f49816d8555f052903 rdf:first sg:person.011265671100.75
    108 rdf:rest N219ee023700949de8a83fceb23353702
    109 Na13623151bf44c01bdef90e0c9d8d37b schema:name pubmed_id
    110 schema:value 30626398
    111 rdf:type schema:PropertyValue
    112 Nb2329006e0fb41999edd8720bfe857c2 schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 Nb29f28e89cdd4e69ba5556ae9661aa15 schema:name readcube_id
    115 schema:value 4a44feac7c0826e629fb8af6baf8dd71b5cc480bafd06a3268b7a5bf53012f63
    116 rdf:type schema:PropertyValue
    117 Nbeee4f7b3ee0451e80a71570c3f2e3c4 rdf:first sg:person.01114653345.33
    118 rdf:rest N7c9e753d01cf4cbfb01d718d4819bda2
    119 Nc8a53b739f3446ee92b4fbc1511c8ebe rdf:first sg:person.015760017162.93
    120 rdf:rest Nbeee4f7b3ee0451e80a71570c3f2e3c4
    121 Nee57d568341c479e8fd5d60b558aa86d rdf:first sg:person.01010610630.66
    122 rdf:rest rdf:nil
    123 Nf006c6b419ab4bd3be83d90decae6f26 rdf:first sg:person.0742005202.09
    124 rdf:rest N51980794247d43fc9c8ba831ac582ad7
    125 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Biological Sciences
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Genetics
    130 rdf:type schema:DefinedTerm
    131 sg:grant.3713359 http://pending.schema.org/fundedItem sg:pub.10.1186/s12967-018-1751-9
    132 rdf:type schema:MonetaryGrant
    133 sg:grant.3714986 http://pending.schema.org/fundedItem sg:pub.10.1186/s12967-018-1751-9
    134 rdf:type schema:MonetaryGrant
    135 sg:journal.1032886 schema:issn 1479-5876
    136 schema:name Journal of Translational Medicine
    137 rdf:type schema:Periodical
    138 sg:person.01010610630.66 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
    139 schema:familyName Lurbe
    140 schema:givenName Empar
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010610630.66
    142 rdf:type schema:Person
    143 sg:person.010263557317.44 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    144 schema:familyName Pérez
    145 schema:givenName Raúl F.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010263557317.44
    147 rdf:type schema:Person
    148 sg:person.01065336504.26 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
    149 schema:familyName Redon
    150 schema:givenName Pau
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065336504.26
    152 rdf:type schema:Person
    153 sg:person.01071503364.28 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    154 schema:familyName Fraga
    155 schema:givenName Mario F.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071503364.28
    157 rdf:type schema:Person
    158 sg:person.01114653345.33 schema:affiliation https://www.grid.ac/institutes/grid.411052.3
    159 schema:familyName Tejedor
    160 schema:givenName Juan Ramón
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114653345.33
    162 rdf:type schema:Person
    163 sg:person.011265671100.75 schema:affiliation https://www.grid.ac/institutes/grid.411052.3
    164 schema:familyName Fernández
    165 schema:givenName Agustín F.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265671100.75
    167 rdf:type schema:Person
    168 sg:person.01240503237.03 schema:affiliation https://www.grid.ac/institutes/grid.411052.3
    169 schema:familyName Urdinguio
    170 schema:givenName Rocío G.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240503237.03
    172 rdf:type schema:Person
    173 sg:person.015760017162.93 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
    174 schema:familyName Santamarina
    175 schema:givenName Pablo
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015760017162.93
    177 rdf:type schema:Person
    178 sg:person.0742005202.09 schema:affiliation https://www.grid.ac/institutes/grid.413448.e
    179 schema:familyName Álvarez-Pitti
    180 schema:givenName Julio
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742005202.09
    182 rdf:type schema:Person
    183 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    184 https://doi.org/10.1038/nature11247
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nbt.1685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011479792
    187 https://doi.org/10.1038/nbt.1685
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nbt.3605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028089604
    190 https://doi.org/10.1038/nbt.3605
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nbt1010-1045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048301228
    193 https://doi.org/10.1038/nbt1010-1045
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nrg.2016.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039236267
    196 https://doi.org/10.1038/nrg.2016.88
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nrg.2017.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091217910
    199 https://doi.org/10.1038/nrg.2017.57
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nrg3142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027336196
    202 https://doi.org/10.1038/nrg3142
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nrg3230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028633739
    205 https://doi.org/10.1038/nrg3230
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nrm4048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052427701
    208 https://doi.org/10.1038/nrm4048
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/s41576-018-0004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103208961
    211 https://doi.org/10.1038/s41576-018-0004-3
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/sj.leu.2402718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882484
    214 https://doi.org/10.1038/sj.leu.2402718
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/1471-2105-11-587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025448148
    217 https://doi.org/10.1186/1471-2105-11-587
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1186/1471-2105-13-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047392734
    220 https://doi.org/10.1186/1471-2105-13-86
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/gb-2013-14-3-r21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044614468
    223 https://doi.org/10.1186/gb-2013-14-3-r21
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/gb-2013-14-5-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025778419
    226 https://doi.org/10.1186/gb-2013-14-5-r42
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/gb-2013-14-9-r102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018215878
    229 https://doi.org/10.1186/gb-2013-14-9-r102
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/gm500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036279354
    232 https://doi.org/10.1186/gm500
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/s12967-016-0913-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045314772
    235 https://doi.org/10.1186/s12967-016-0913-x
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/s13059-016-1066-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023719393
    238 https://doi.org/10.1186/s13059-016-1066-1
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/s13148-015-0064-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027754800
    241 https://doi.org/10.1186/s13148-015-0064-6
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1002/bies.201700055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085910578
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/b978-0-12-800100-4.00005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039986952
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/j.cell.2008.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028639931
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/j.cell.2013.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037445404
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/j.mam.2012.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012210990
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/j.molcel.2013.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027313497
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/j.numecd.2008.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013343500
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/j.semcdb.2004.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007609082
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/s0022-3476(67)80066-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050430765
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/s0022-3476(79)80734-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016809619
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1093/bioinformatics/btn224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021766380
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1093/bioinformatics/bts034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025078414
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1093/bioinformatics/bts680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034923242
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1093/bioinformatics/btt684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042068352
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1093/bioinformatics/btu049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036696259
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/bioinformatics/btv145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014058643
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btv560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414501
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/bioinformatics/btv612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008455760
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/bioinformatics/btw549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414929
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1093/hmg/ddt531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017853267
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/hmg/ddv119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046815836
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/nar/gkt090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004833700
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/nar/gkv007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016098431
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/nar/gkv907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033908936
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1101/gr.125187.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001433925
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1101/gr.169011.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038312468
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1111/acel.12744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101335649
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1111/gbb.12085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033732487
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1172/jci69735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039376149
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1371/journal.pgen.0030161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009683731
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1371/journal.pgen.1004958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009545802
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1371/journal.pgen.1004996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021659447
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1371/journal.pone.0021800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034510199
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.2217/epi-2016-0153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084395909
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.4161/epi.20117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072302512
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.4161/epi.23470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023015244
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.4161/epi.6.9.16401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072303212
    316 rdf:type schema:CreativeWork
    317 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
    318 schema:name Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA)-Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)-Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Asturias, Spain
    319 Nanomedicine Group, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, 33940, Oviedo, Asturias, Spain
    320 rdf:type schema:Organization
    321 https://www.grid.ac/institutes/grid.411052.3 schema:alternateName Central University Hospital of Asturias
    322 schema:name Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA)-Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)-Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Asturias, Spain
    323 rdf:type schema:Organization
    324 https://www.grid.ac/institutes/grid.413448.e schema:alternateName Instituto de Salud Carlos III
    325 schema:name Centros de Investigación Biomédica en Red de Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain
    326 Servicio de Pediatría, Consorcio Hospital General Universitario de Valencia, 46014, Valencia, Spain
    327 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...