Gender and active travel: a qualitative data synthesis informed by machine learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12-21

AUTHORS

Emily Haynes, Judith Green, Ruth Garside, Michael P. Kelly, Cornelia Guell

ABSTRACT

BackgroundInnovative approaches are required to move beyond individual approaches to behaviour change and develop more appropriate insights for the complex challenge of increasing population levels of activity. Recent research has drawn on social practice theory to describe the recursive and relational character of active living but to date most evidence is limited to small-scale qualitative research studies. To ‘upscale’ insights from individual contexts, we pooled data from five qualitative studies and used machine learning software to explore gendered patterns in the context of active travel.MethodsWe drew on 280 transcripts from five research projects conducted in the UK, including studies of a range of populations, travel modes and settings, to conduct unsupervised ‘topic modelling analysis’. Text analytics software, Leximancer, was used in the first phase of the analysis to produce inter-topic distance maps to illustrate inter-related ‘concepts’. The outputs from this first phase guided a second researcher-led interpretive analysis of text excerpts to infer meaning from the computer-generated outputs.ResultsGuided by social practice theory, we identified ‘interrelated’ and ‘relating’ practices across the pooled datasets. For this study we particularly focused on respondents’ commutes, travelling to and from work, and on differentiated experiences by gender. Women largely described their commute as multifunctional journeys that included the school run or shopping, whereas men described relatively linear journeys from A to B but highlighted ‘relating’ practices resulting from or due to their choice of commute mode or journey such as showering or relaxing. Secondly, we identify a difference in discourses about practices across the included datasets. Women spoke more about ‘subjective’, internal feelings of safety (‘I feel unsafe’), whereas men spoke more about external conditions (‘it is a dangerous road’).ConclusionThis rare application of machine learning to qualitative social science research has helped to identify potentially important differences in co-occurrence of practices and discourses about practice between men’s and women’s accounts of travel across diverse contexts. These findings can inform future research and policy decisions for promoting travel-related social practices associated with increased physical activity that are appropriate across genders. More... »

PAGES

135

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12966-019-0904-4

DOI

http://dx.doi.org/10.1186/s12966-019-0904-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1123594997

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31864372


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Qualitative Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Travel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haynes", 
        "givenName": "Emily", 
        "id": "sg:person.015061064403.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015061064403.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Population Health & Environmental Sciences, KCL, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "School of Population Health & Environmental Sciences, KCL, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "Judith", 
        "id": "sg:person.01055735377.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055735377.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garside", 
        "givenName": "Ruth", 
        "id": "sg:person.01024532450.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024532450.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelly", 
        "givenName": "Michael P.", 
        "id": "sg:person.0671375531.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671375531.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guell", 
        "givenName": "Cornelia", 
        "id": "sg:person.01072125053.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072125053.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1479-5868-9-109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049929480", 
          "https://doi.org/10.1186/1479-5868-9-109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5868-7-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025906487", 
          "https://doi.org/10.1186/1479-5868-7-36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12966-015-0230-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037707473", 
          "https://doi.org/10.1186/s12966-015-0230-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004945903696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001326334", 
          "https://doi.org/10.1023/a:1004945903696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12889-017-4253-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084969736", 
          "https://doi.org/10.1186/s12889-017-4253-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12-21", 
    "datePublishedReg": "2019-12-21", 
    "description": "BackgroundInnovative approaches are required to move beyond individual approaches to behaviour change and develop more appropriate insights for the complex challenge of increasing population levels of activity. Recent research has drawn on social practice theory to describe the recursive and relational character of active living but to date most evidence is limited to small-scale qualitative research studies. To \u2018upscale\u2019 insights from individual contexts, we pooled data from five qualitative studies and used machine learning software to explore gendered patterns in the context of active travel.MethodsWe drew on 280 transcripts from five research projects conducted in the UK, including studies of a range of populations, travel modes and settings, to conduct unsupervised \u2018topic modelling analysis\u2019. Text analytics software, Leximancer, was used in the first phase of the analysis to produce inter-topic distance maps to illustrate inter-related \u2018concepts\u2019. The outputs from this first phase guided a second researcher-led interpretive analysis of text excerpts to infer meaning from the computer-generated outputs.ResultsGuided by social practice theory, we identified \u2018interrelated\u2019 and \u2018relating\u2019 practices across the pooled datasets. For this study we particularly focused on respondents\u2019 commutes, travelling to and from work, and on differentiated experiences by gender. Women largely described their commute as multifunctional journeys that included the school run or shopping, whereas men described relatively linear journeys from A to B but highlighted \u2018relating\u2019 practices resulting from or due to their choice of commute mode or journey such as showering or relaxing. Secondly, we identify a difference in discourses about practices across the included datasets. Women spoke more about \u2018subjective\u2019, internal feelings of safety (\u2018I feel unsafe\u2019), whereas men spoke more about external conditions (\u2018it is a dangerous road\u2019).ConclusionThis rare application of machine learning to qualitative social science research has helped to identify potentially important differences in co-occurrence of practices and discourses about practice between men\u2019s and women\u2019s accounts of travel across diverse contexts. These findings can inform future research and policy decisions for promoting travel-related social practices associated with increased physical activity that are appropriate across genders.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12966-019-0904-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9713180", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9613935", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2751927", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9554018", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9713202", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9713184", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3560456", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033801", 
        "issn": [
          "1479-5868"
        ], 
        "name": "International Journal of Behavioral Nutrition and Physical Activity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "social practice theory", 
      "practice theory", 
      "small-scale qualitative research study", 
      "social science research", 
      "active travel", 
      "qualitative research study", 
      "topic modelling analysis", 
      "computer-generated output", 
      "text analytics software", 
      "women's accounts", 
      "social practices", 
      "differentiated experiences", 
      "school run", 
      "relational character", 
      "interpretive analysis", 
      "science research", 
      "diverse contexts", 
      "policy decisions", 
      "qualitative study", 
      "analytics software", 
      "complex challenges", 
      "active living", 
      "travel modes", 
      "commute mode", 
      "distance map", 
      "individual context", 
      "discourse", 
      "research project", 
      "text excerpts", 
      "machine", 
      "first phase", 
      "practice", 
      "context", 
      "journey", 
      "software", 
      "dataset", 
      "future research", 
      "gender", 
      "research studies", 
      "travel", 
      "appropriate insight", 
      "rare application", 
      "commute", 
      "internal feelings", 
      "range of populations", 
      "recent research", 
      "research", 
      "Leximancer", 
      "behavior change", 
      "women", 
      "external conditions", 
      "men", 
      "UK", 
      "meaning", 
      "individual approach", 
      "pooled dataset", 
      "important differences", 
      "experience", 
      "theory", 
      "project", 
      "shopping", 
      "insights", 
      "feelings", 
      "living", 
      "account", 
      "respondents", 
      "excerpts", 
      "output", 
      "challenges", 
      "concept", 
      "qualitative data synthesis", 
      "decisions", 
      "applications", 
      "approach", 
      "modelling analysis", 
      "maps", 
      "data synthesis", 
      "findings", 
      "choice", 
      "analysis", 
      "work", 
      "study", 
      "data", 
      "setting", 
      "character", 
      "population", 
      "changes", 
      "run", 
      "differences", 
      "evidence", 
      "most evidence", 
      "physical activity", 
      "activity", 
      "safety", 
      "mode", 
      "relaxing", 
      "patterns", 
      "levels", 
      "population level", 
      "phase", 
      "transcripts", 
      "conditions", 
      "range", 
      "synthesis", 
      "MethodsWe"
    ], 
    "name": "Gender and active travel: a qualitative data synthesis informed by machine learning", 
    "pagination": "135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1123594997"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12966-019-0904-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31864372"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12966-019-0904-4", 
      "https://app.dimensions.ai/details/publication/pub.1123594997"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_807.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12966-019-0904-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12966-019-0904-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12966-019-0904-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12966-019-0904-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12966-019-0904-4'


 

This table displays all metadata directly associated to this object as RDF triples.

289 TRIPLES      21 PREDICATES      149 URIs      136 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12966-019-0904-4 schema:about N0e0a41971fe049009d93faa1be828f49
2 N268dcbe903f6419bb6347a0bdf46d8e4
3 N3e7f35d518c847b9b4a732a49bc53034
4 N52dc4305a53a4a7b902d29b7c3cdd6e5
5 N6f82f2e33747484ea009008fbeca8d70
6 N812cd358255c47fd927b3b18f28f701c
7 Nb194f5407cb7469ab79614680c3bc50e
8 Nb2ac5eb00d1843edbe00d5b5ddb9a145
9 Nbcf81ec2b9954771b43d3ed156b76441
10 Nd6e1919adb244592904031e4cbbcfaed
11 Ne0866d3b889c43cda522f81a55dbfb22
12 Ne3564653eb4047ab9394ade7e742ada4
13 Ne7e5bcaa337748068a376d9d34f7d374
14 Nf106d56f2b37466abada88a9e0023c49
15 anzsrc-for:11
16 anzsrc-for:1117
17 schema:author Nf98b49b4f2444dcdbd88489bf670cd8c
18 schema:citation sg:pub.10.1023/a:1004945903696
19 sg:pub.10.1186/1479-5868-7-36
20 sg:pub.10.1186/1479-5868-9-109
21 sg:pub.10.1186/s12889-017-4253-4
22 sg:pub.10.1186/s12966-015-0230-4
23 schema:datePublished 2019-12-21
24 schema:datePublishedReg 2019-12-21
25 schema:description BackgroundInnovative approaches are required to move beyond individual approaches to behaviour change and develop more appropriate insights for the complex challenge of increasing population levels of activity. Recent research has drawn on social practice theory to describe the recursive and relational character of active living but to date most evidence is limited to small-scale qualitative research studies. To ‘upscale’ insights from individual contexts, we pooled data from five qualitative studies and used machine learning software to explore gendered patterns in the context of active travel.MethodsWe drew on 280 transcripts from five research projects conducted in the UK, including studies of a range of populations, travel modes and settings, to conduct unsupervised ‘topic modelling analysis’. Text analytics software, Leximancer, was used in the first phase of the analysis to produce inter-topic distance maps to illustrate inter-related ‘concepts’. The outputs from this first phase guided a second researcher-led interpretive analysis of text excerpts to infer meaning from the computer-generated outputs.ResultsGuided by social practice theory, we identified ‘interrelated’ and ‘relating’ practices across the pooled datasets. For this study we particularly focused on respondents’ commutes, travelling to and from work, and on differentiated experiences by gender. Women largely described their commute as multifunctional journeys that included the school run or shopping, whereas men described relatively linear journeys from A to B but highlighted ‘relating’ practices resulting from or due to their choice of commute mode or journey such as showering or relaxing. Secondly, we identify a difference in discourses about practices across the included datasets. Women spoke more about ‘subjective’, internal feelings of safety (‘I feel unsafe’), whereas men spoke more about external conditions (‘it is a dangerous road’).ConclusionThis rare application of machine learning to qualitative social science research has helped to identify potentially important differences in co-occurrence of practices and discourses about practice between men’s and women’s accounts of travel across diverse contexts. These findings can inform future research and policy decisions for promoting travel-related social practices associated with increased physical activity that are appropriate across genders.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N87ba5e32bb37403391b56ab04188bff5
29 Na7716dafb1724073870b1bafeef671c6
30 sg:journal.1033801
31 schema:keywords Leximancer
32 MethodsWe
33 UK
34 account
35 active living
36 active travel
37 activity
38 analysis
39 analytics software
40 applications
41 approach
42 appropriate insight
43 behavior change
44 challenges
45 changes
46 character
47 choice
48 commute
49 commute mode
50 complex challenges
51 computer-generated output
52 concept
53 conditions
54 context
55 data
56 data synthesis
57 dataset
58 decisions
59 differences
60 differentiated experiences
61 discourse
62 distance map
63 diverse contexts
64 evidence
65 excerpts
66 experience
67 external conditions
68 feelings
69 findings
70 first phase
71 future research
72 gender
73 important differences
74 individual approach
75 individual context
76 insights
77 internal feelings
78 interpretive analysis
79 journey
80 levels
81 living
82 machine
83 maps
84 meaning
85 men
86 mode
87 modelling analysis
88 most evidence
89 output
90 patterns
91 phase
92 physical activity
93 policy decisions
94 pooled dataset
95 population
96 population level
97 practice
98 practice theory
99 project
100 qualitative data synthesis
101 qualitative research study
102 qualitative study
103 range
104 range of populations
105 rare application
106 recent research
107 relational character
108 relaxing
109 research
110 research project
111 research studies
112 respondents
113 run
114 safety
115 school run
116 science research
117 setting
118 shopping
119 small-scale qualitative research study
120 social practice theory
121 social practices
122 social science research
123 software
124 study
125 synthesis
126 text analytics software
127 text excerpts
128 theory
129 topic modelling analysis
130 transcripts
131 travel
132 travel modes
133 women
134 women's accounts
135 work
136 schema:name Gender and active travel: a qualitative data synthesis informed by machine learning
137 schema:pagination 135
138 schema:productId N11464cd53424448eb9adb1637b063d13
139 N32929139a9e1447cb6b24e33f3312fcb
140 Naa34d1f1d9f2453099fc462ace4ca592
141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123594997
142 https://doi.org/10.1186/s12966-019-0904-4
143 schema:sdDatePublished 2022-09-02T16:04
144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
145 schema:sdPublisher N078145e95d6942f9b2ff69c0a371f0e8
146 schema:url https://doi.org/10.1186/s12966-019-0904-4
147 sgo:license sg:explorer/license/
148 sgo:sdDataset articles
149 rdf:type schema:ScholarlyArticle
150 N078145e95d6942f9b2ff69c0a371f0e8 schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 N0e0a41971fe049009d93faa1be828f49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Male
154 rdf:type schema:DefinedTerm
155 N11464cd53424448eb9adb1637b063d13 schema:name pubmed_id
156 schema:value 31864372
157 rdf:type schema:PropertyValue
158 N17c944ac1aee47de88e8a1709469adb1 rdf:first sg:person.01055735377.31
159 rdf:rest N7a1d7c77b921433ba0aab1b9b920a24b
160 N268dcbe903f6419bb6347a0bdf46d8e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Aged
162 rdf:type schema:DefinedTerm
163 N32929139a9e1447cb6b24e33f3312fcb schema:name dimensions_id
164 schema:value pub.1123594997
165 rdf:type schema:PropertyValue
166 N3e7f35d518c847b9b4a732a49bc53034 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Young Adult
168 rdf:type schema:DefinedTerm
169 N52dc4305a53a4a7b902d29b7c3cdd6e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Machine Learning
171 rdf:type schema:DefinedTerm
172 N6f82f2e33747484ea009008fbeca8d70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Adolescent
174 rdf:type schema:DefinedTerm
175 N7a1d7c77b921433ba0aab1b9b920a24b rdf:first sg:person.01024532450.24
176 rdf:rest Nc4e340d09304467799d740930aa25f96
177 N812cd358255c47fd927b3b18f28f701c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Middle Aged
179 rdf:type schema:DefinedTerm
180 N87ba5e32bb37403391b56ab04188bff5 schema:volumeNumber 16
181 rdf:type schema:PublicationVolume
182 Na7716dafb1724073870b1bafeef671c6 schema:issueNumber 1
183 rdf:type schema:PublicationIssue
184 Na97b0b0b046048c79457fa4eeb11b7a5 rdf:first sg:person.01072125053.43
185 rdf:rest rdf:nil
186 Naa34d1f1d9f2453099fc462ace4ca592 schema:name doi
187 schema:value 10.1186/s12966-019-0904-4
188 rdf:type schema:PropertyValue
189 Nb194f5407cb7469ab79614680c3bc50e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Adult
191 rdf:type schema:DefinedTerm
192 Nb2ac5eb00d1843edbe00d5b5ddb9a145 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Qualitative Research
194 rdf:type schema:DefinedTerm
195 Nbcf81ec2b9954771b43d3ed156b76441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Female
197 rdf:type schema:DefinedTerm
198 Nc4e340d09304467799d740930aa25f96 rdf:first sg:person.0671375531.45
199 rdf:rest Na97b0b0b046048c79457fa4eeb11b7a5
200 Nd6e1919adb244592904031e4cbbcfaed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Sex Distribution
202 rdf:type schema:DefinedTerm
203 Ne0866d3b889c43cda522f81a55dbfb22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Travel
205 rdf:type schema:DefinedTerm
206 Ne3564653eb4047ab9394ade7e742ada4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Humans
208 rdf:type schema:DefinedTerm
209 Ne7e5bcaa337748068a376d9d34f7d374 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Child
211 rdf:type schema:DefinedTerm
212 Nf106d56f2b37466abada88a9e0023c49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name United Kingdom
214 rdf:type schema:DefinedTerm
215 Nf98b49b4f2444dcdbd88489bf670cd8c rdf:first sg:person.015061064403.96
216 rdf:rest N17c944ac1aee47de88e8a1709469adb1
217 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
218 schema:name Medical and Health Sciences
219 rdf:type schema:DefinedTerm
220 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
221 schema:name Public Health and Health Services
222 rdf:type schema:DefinedTerm
223 sg:grant.2751927 http://pending.schema.org/fundedItem sg:pub.10.1186/s12966-019-0904-4
224 rdf:type schema:MonetaryGrant
225 sg:grant.3560456 http://pending.schema.org/fundedItem sg:pub.10.1186/s12966-019-0904-4
226 rdf:type schema:MonetaryGrant
227 sg:grant.9554018 http://pending.schema.org/fundedItem sg:pub.10.1186/s12966-019-0904-4
228 rdf:type schema:MonetaryGrant
229 sg:grant.9613935 http://pending.schema.org/fundedItem sg:pub.10.1186/s12966-019-0904-4
230 rdf:type schema:MonetaryGrant
231 sg:grant.9713180 http://pending.schema.org/fundedItem sg:pub.10.1186/s12966-019-0904-4
232 rdf:type schema:MonetaryGrant
233 sg:grant.9713184 http://pending.schema.org/fundedItem sg:pub.10.1186/s12966-019-0904-4
234 rdf:type schema:MonetaryGrant
235 sg:grant.9713202 http://pending.schema.org/fundedItem sg:pub.10.1186/s12966-019-0904-4
236 rdf:type schema:MonetaryGrant
237 sg:journal.1033801 schema:issn 1479-5868
238 schema:name International Journal of Behavioral Nutrition and Physical Activity
239 schema:publisher Springer Nature
240 rdf:type schema:Periodical
241 sg:person.01024532450.24 schema:affiliation grid-institutes:grid.8391.3
242 schema:familyName Garside
243 schema:givenName Ruth
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024532450.24
245 rdf:type schema:Person
246 sg:person.01055735377.31 schema:affiliation grid-institutes:grid.13097.3c
247 schema:familyName Green
248 schema:givenName Judith
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055735377.31
250 rdf:type schema:Person
251 sg:person.01072125053.43 schema:affiliation grid-institutes:grid.8391.3
252 schema:familyName Guell
253 schema:givenName Cornelia
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072125053.43
255 rdf:type schema:Person
256 sg:person.015061064403.96 schema:affiliation grid-institutes:grid.8391.3
257 schema:familyName Haynes
258 schema:givenName Emily
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015061064403.96
260 rdf:type schema:Person
261 sg:person.0671375531.45 schema:affiliation grid-institutes:grid.5335.0
262 schema:familyName Kelly
263 schema:givenName Michael P.
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671375531.45
265 rdf:type schema:Person
266 sg:pub.10.1023/a:1004945903696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001326334
267 https://doi.org/10.1023/a:1004945903696
268 rdf:type schema:CreativeWork
269 sg:pub.10.1186/1479-5868-7-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025906487
270 https://doi.org/10.1186/1479-5868-7-36
271 rdf:type schema:CreativeWork
272 sg:pub.10.1186/1479-5868-9-109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049929480
273 https://doi.org/10.1186/1479-5868-9-109
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/s12889-017-4253-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084969736
276 https://doi.org/10.1186/s12889-017-4253-4
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/s12966-015-0230-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037707473
279 https://doi.org/10.1186/s12966-015-0230-4
280 rdf:type schema:CreativeWork
281 grid-institutes:grid.13097.3c schema:alternateName School of Population Health & Environmental Sciences, KCL, London, UK
282 schema:name School of Population Health & Environmental Sciences, KCL, London, UK
283 rdf:type schema:Organization
284 grid-institutes:grid.5335.0 schema:alternateName Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
285 schema:name Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
286 rdf:type schema:Organization
287 grid-institutes:grid.8391.3 schema:alternateName European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK
288 schema:name European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK
289 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...