Unraveling the regulation of mTORC2 using logical modeling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Kirsten Thobe, Christine Sers, Heike Siebert

ABSTRACT

BACKGROUND: The mammalian target of rapamycin (mTOR) is a regulator of cell proliferation, cell growth and apoptosis working through two distinct complexes: mTORC1 and mTORC2. Although much is known about the activation and inactivation of mTORC1, the processes controlling mTORC2 remain poorly characterized. Experimental and modeling studies have attempted to explain the regulation of mTORC2 but have yielded several conflicting hypotheses. More specifically, the Phosphoinositide 3-kinase (PI3K) pathway was shown to be involved in this process, but the identity of the kinase interacting with and regulating mTORC2 remains to be determined (Cybulski and Hall, Trends Biochem Sci 34:620-7, 2009). METHOD: We performed a literature search and identified 5 published hypotheses describing mTORC2 regulation. Based on these hypotheses, we built logical models, not only for each single hypothesis but also for all combinations and possible mechanisms among them. Based on data provided by the original studies, a systematic analysis of all models was performed. RESULTS: We were able to find models that account for experimental observations from every original study, but do not require all 5 hypotheses to be implemented. Surprisingly, all hypotheses were in agreement with all tested data gathered from the different studies and PI3K was identified as an essential regulator of mTORC2. CONCLUSION: The results and additional data suggest that more than one regulator is necessary to explain the behavior of mTORC2. Finally, this study proposes a new experiment to validate mTORC1 as second essential regulator. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12964-016-0159-5

DOI

http://dx.doi.org/10.1186/s12964-016-0159-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027612420

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28103956


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanistic Target of Rapamycin Complex 1", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanistic Target of Rapamycin Complex 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiprotein Complexes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphatidylinositol 3-Kinases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "TOR Serine-Threonine Kinases", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Genetics", 
          "id": "https://www.grid.ac/institutes/grid.419538.2", 
          "name": [
            "Group for Discrete Biomathematics, Department for Mathematics and Computer Science, Freie Universitaet Berlin, Arnimallee 7, 14195, Berlin, Germany", 
            "International Research School for Scientific Computing and Computational Biology, Max-Plank Institute for Molecular Genetics, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thobe", 
        "givenName": "Kirsten", 
        "id": "sg:person.011474147011.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474147011.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charit\u00e9 Universit\u00e4tsmedizin Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sers", 
        "givenName": "Christine", 
        "id": "sg:person.0665247717.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665247717.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Genetics", 
          "id": "https://www.grid.ac/institutes/grid.419538.2", 
          "name": [
            "Group for Discrete Biomathematics, Department for Mathematics and Computer Science, Freie Universitaet Berlin, Arnimallee 7, 14195, Berlin, Germany", 
            "International Research School for Scientific Computing and Computational Biology, Max-Plank Institute for Molecular Genetics, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siebert", 
        "givenName": "Heike", 
        "id": "sg:person.01333461253.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333461253.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tcs.2014.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000799997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2013.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002598671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12982-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004520721", 
          "https://doi.org/10.1007/978-3-319-12982-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.25.3641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005635097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5193(05)80350-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006266449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2005.02.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006389530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.00289-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010582620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-08-3014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011584965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015264574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m109.096222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017049886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2006.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021624235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2012.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.195016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023787278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025226207", 
          "https://doi.org/10.1038/nrm3025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025226207", 
          "https://doi.org/10.1038/nrm3025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33636-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025438943", 
          "https://doi.org/10.1007/978-3-642-33636-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-23401-4_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027004567", 
          "https://doi.org/10.1007/978-3-319-23401-4_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbapap.2009.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028875134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-11-0085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028907775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2012.08582.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029598055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031482635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031482635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2016.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031936851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2004.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032114178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-6-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036388272", 
          "https://doi.org/10.1186/1752-0509-6-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-13-0611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038637948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-6-133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038933649", 
          "https://doi.org/10.1186/1752-0509-6-133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039728501", 
          "https://doi.org/10.1038/ncb2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039728501", 
          "https://doi.org/10.1038/ncb2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039728501", 
          "https://doi.org/10.1038/ncb2860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2009.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043150853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scisignal.2003250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044155515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-15-0460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046253128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/9/5/055001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048270157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trecan.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048440018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051361789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.8279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052948655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2014.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053516326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2008.0023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scisignal.2002469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062682428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scisignal.2003224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062682690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-15-1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063281021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/trla.28174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072311113"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "BACKGROUND: The mammalian target of rapamycin (mTOR) is a regulator of cell proliferation, cell growth and apoptosis working through two distinct complexes: mTORC1 and mTORC2. Although much is known about the activation and inactivation of mTORC1, the processes controlling mTORC2 remain poorly characterized. Experimental and modeling studies have attempted to explain the regulation of mTORC2 but have yielded several conflicting hypotheses. More specifically, the Phosphoinositide 3-kinase (PI3K) pathway was shown to be involved in this process, but the identity of the kinase interacting with and regulating mTORC2 remains to be determined (Cybulski and Hall, Trends Biochem Sci 34:620-7, 2009).\nMETHOD: We performed a literature search and identified 5 published hypotheses describing mTORC2 regulation. Based on these hypotheses, we built logical models, not only for each single hypothesis but also for all combinations and possible mechanisms among them. Based on data provided by the original studies, a systematic analysis of all models was performed.\nRESULTS: We were able to find models that account for experimental observations from every original study, but do not require all 5 hypotheses to be implemented. Surprisingly, all hypotheses were in agreement with all tested data gathered from the different studies and PI3K was identified as an essential regulator of mTORC2.\nCONCLUSION: The results and additional data suggest that more than one regulator is necessary to explain the behavior of mTORC2. Finally, this study proposes a new experiment to validate mTORC1 as second essential regulator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12964-016-0159-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032046", 
        "issn": [
          "1478-811X"
        ], 
        "name": "Cell Communication and Signaling", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Unraveling the regulation of mTORC2 using logical modeling", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "838a1ae617babdc31c84de4c99dc9876a3da69a87cbffefa7132d3fe98b6e068"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28103956"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101170464"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12964-016-0159-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027612420"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12964-016-0159-5", 
      "https://app.dimensions.ai/details/publication/pub.1027612420"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12964-016-0159-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12964-016-0159-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12964-016-0159-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12964-016-0159-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12964-016-0159-5'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      78 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12964-016-0159-5 schema:about N45c48274303e47bca4ba3eadda88f289
2 N4c59cf41107941379e053cf3e5efe825
3 N4d1753d112d8458c9528862b4046142e
4 N754378833cd24347beb0a0665eb1b544
5 N7b210125dec2469089e067728a15fc85
6 N7f98167624df4a37b69147d3b9611e03
7 N9d8460f078b24ef1ab4014e14655a309
8 Nacfe001d654045bbb927da7a855f1b38
9 Nd0f64934208a49ad9e2370af6fa854d2
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author Nc35affcb770d4f62befad042b0b44c97
13 schema:citation sg:pub.10.1007/978-3-319-12982-2_3
14 sg:pub.10.1007/978-3-319-23401-4_22
15 sg:pub.10.1007/978-3-642-33636-2_13
16 sg:pub.10.1038/ncb2860
17 sg:pub.10.1038/nrm3025
18 sg:pub.10.1186/1752-0509-6-1
19 sg:pub.10.1186/1752-0509-6-133
20 https://doi.org/10.1016/j.bbapap.2009.12.001
21 https://doi.org/10.1016/j.biochi.2004.10.019
22 https://doi.org/10.1016/j.cell.2012.03.017
23 https://doi.org/10.1016/j.celrep.2015.07.016
24 https://doi.org/10.1016/j.cmet.2013.04.010
25 https://doi.org/10.1016/j.cub.2005.02.053
26 https://doi.org/10.1016/j.devcel.2006.10.007
27 https://doi.org/10.1016/j.semcdb.2014.09.011
28 https://doi.org/10.1016/j.tcs.2014.06.022
29 https://doi.org/10.1016/j.tibs.2009.09.004
30 https://doi.org/10.1016/j.tibs.2016.04.001
31 https://doi.org/10.1016/j.trecan.2016.03.008
32 https://doi.org/10.1016/s0022-5193(05)80350-9
33 https://doi.org/10.1074/jbc.m109.096222
34 https://doi.org/10.1074/jbc.m110.195016
35 https://doi.org/10.1088/1478-3975/9/5/055001
36 https://doi.org/10.1089/cmb.2008.0023
37 https://doi.org/10.1111/j.1742-4658.2012.08582.x
38 https://doi.org/10.1126/scisignal.2002469
39 https://doi.org/10.1126/scisignal.2003224
40 https://doi.org/10.1126/scisignal.2003250
41 https://doi.org/10.1128/mcb.00289-08
42 https://doi.org/10.1158/0008-5472.can-08-3014
43 https://doi.org/10.1158/2159-8290.cd-11-0085
44 https://doi.org/10.1158/2159-8290.cd-13-0611
45 https://doi.org/10.1158/2159-8290.cd-15-0460
46 https://doi.org/10.1158/2159-8290.cd-15-1125
47 https://doi.org/10.1200/jco.2009.25.3641
48 https://doi.org/10.1371/journal.pcbi.1000438
49 https://doi.org/10.1371/journal.pcbi.1003286
50 https://doi.org/10.1371/journal.pone.0154415
51 https://doi.org/10.18632/oncotarget.8279
52 https://doi.org/10.4161/trla.28174
53 schema:datePublished 2017-12
54 schema:datePublishedReg 2017-12-01
55 schema:description BACKGROUND: The mammalian target of rapamycin (mTOR) is a regulator of cell proliferation, cell growth and apoptosis working through two distinct complexes: mTORC1 and mTORC2. Although much is known about the activation and inactivation of mTORC1, the processes controlling mTORC2 remain poorly characterized. Experimental and modeling studies have attempted to explain the regulation of mTORC2 but have yielded several conflicting hypotheses. More specifically, the Phosphoinositide 3-kinase (PI3K) pathway was shown to be involved in this process, but the identity of the kinase interacting with and regulating mTORC2 remains to be determined (Cybulski and Hall, Trends Biochem Sci 34:620-7, 2009). METHOD: We performed a literature search and identified 5 published hypotheses describing mTORC2 regulation. Based on these hypotheses, we built logical models, not only for each single hypothesis but also for all combinations and possible mechanisms among them. Based on data provided by the original studies, a systematic analysis of all models was performed. RESULTS: We were able to find models that account for experimental observations from every original study, but do not require all 5 hypotheses to be implemented. Surprisingly, all hypotheses were in agreement with all tested data gathered from the different studies and PI3K was identified as an essential regulator of mTORC2. CONCLUSION: The results and additional data suggest that more than one regulator is necessary to explain the behavior of mTORC2. Finally, this study proposes a new experiment to validate mTORC1 as second essential regulator.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N0f583fa335304f2ea8ceff1c63a28862
60 Nba395137f78946a0b758e1a243f591cf
61 sg:journal.1032046
62 schema:name Unraveling the regulation of mTORC2 using logical modeling
63 schema:pagination 6
64 schema:productId N346b8184ad6b41e2a003c6b35a276f6d
65 N7dc4c32f1c83412296081ad0b41d0b5a
66 N97f8114c8a9c4a22a3683a427700fe0c
67 Nca070d2b98104b14b36d13b8feda7136
68 Nf93ebc90680844dc9e091e8bdb8af6a9
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027612420
70 https://doi.org/10.1186/s12964-016-0159-5
71 schema:sdDatePublished 2019-04-11T10:21
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nac6a44e52d6d4d1bbae579bec4b0f849
74 schema:url https://link.springer.com/10.1186%2Fs12964-016-0159-5
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0f583fa335304f2ea8ceff1c63a28862 schema:volumeNumber 15
79 rdf:type schema:PublicationVolume
80 N346b8184ad6b41e2a003c6b35a276f6d schema:name pubmed_id
81 schema:value 28103956
82 rdf:type schema:PropertyValue
83 N45c48274303e47bca4ba3eadda88f289 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Signal Transduction
85 rdf:type schema:DefinedTerm
86 N4c59cf41107941379e053cf3e5efe825 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name TOR Serine-Threonine Kinases
88 rdf:type schema:DefinedTerm
89 N4d1753d112d8458c9528862b4046142e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Multiprotein Complexes
91 rdf:type schema:DefinedTerm
92 N57419db2a39e4d69893194d86104016f rdf:first sg:person.01333461253.12
93 rdf:rest rdf:nil
94 N754378833cd24347beb0a0665eb1b544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Mechanistic Target of Rapamycin Complex 1
96 rdf:type schema:DefinedTerm
97 N7b210125dec2469089e067728a15fc85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Phosphatidylinositol 3-Kinases
99 rdf:type schema:DefinedTerm
100 N7dc4c32f1c83412296081ad0b41d0b5a schema:name doi
101 schema:value 10.1186/s12964-016-0159-5
102 rdf:type schema:PropertyValue
103 N7f98167624df4a37b69147d3b9611e03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N97f8114c8a9c4a22a3683a427700fe0c schema:name dimensions_id
107 schema:value pub.1027612420
108 rdf:type schema:PropertyValue
109 N9d8460f078b24ef1ab4014e14655a309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Animals
111 rdf:type schema:DefinedTerm
112 Nac6a44e52d6d4d1bbae579bec4b0f849 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nacfe001d654045bbb927da7a855f1b38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Models, Biological
116 rdf:type schema:DefinedTerm
117 Nba395137f78946a0b758e1a243f591cf schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Nc35affcb770d4f62befad042b0b44c97 rdf:first sg:person.011474147011.03
120 rdf:rest Nd5233aa575fe4856b67797ebb76dc816
121 Nca070d2b98104b14b36d13b8feda7136 schema:name readcube_id
122 schema:value 838a1ae617babdc31c84de4c99dc9876a3da69a87cbffefa7132d3fe98b6e068
123 rdf:type schema:PropertyValue
124 Nd0f64934208a49ad9e2370af6fa854d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Mechanistic Target of Rapamycin Complex 2
126 rdf:type schema:DefinedTerm
127 Nd5233aa575fe4856b67797ebb76dc816 rdf:first sg:person.0665247717.59
128 rdf:rest N57419db2a39e4d69893194d86104016f
129 Nf93ebc90680844dc9e091e8bdb8af6a9 schema:name nlm_unique_id
130 schema:value 101170464
131 rdf:type schema:PropertyValue
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biochemistry and Cell Biology
137 rdf:type schema:DefinedTerm
138 sg:journal.1032046 schema:issn 1478-811X
139 schema:name Cell Communication and Signaling
140 rdf:type schema:Periodical
141 sg:person.011474147011.03 schema:affiliation https://www.grid.ac/institutes/grid.419538.2
142 schema:familyName Thobe
143 schema:givenName Kirsten
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474147011.03
145 rdf:type schema:Person
146 sg:person.01333461253.12 schema:affiliation https://www.grid.ac/institutes/grid.419538.2
147 schema:familyName Siebert
148 schema:givenName Heike
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333461253.12
150 rdf:type schema:Person
151 sg:person.0665247717.59 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
152 schema:familyName Sers
153 schema:givenName Christine
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665247717.59
155 rdf:type schema:Person
156 sg:pub.10.1007/978-3-319-12982-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004520721
157 https://doi.org/10.1007/978-3-319-12982-2_3
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-3-319-23401-4_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027004567
160 https://doi.org/10.1007/978-3-319-23401-4_22
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-3-642-33636-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025438943
163 https://doi.org/10.1007/978-3-642-33636-2_13
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/ncb2860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039728501
166 https://doi.org/10.1038/ncb2860
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nrm3025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025226207
169 https://doi.org/10.1038/nrm3025
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1752-0509-6-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036388272
172 https://doi.org/10.1186/1752-0509-6-1
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/1752-0509-6-133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038933649
175 https://doi.org/10.1186/1752-0509-6-133
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.bbapap.2009.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028875134
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.biochi.2004.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032114178
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.cell.2012.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080500
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.celrep.2015.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051361789
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.cmet.2013.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002598671
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cub.2005.02.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006389530
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.devcel.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021624235
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.semcdb.2014.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053516326
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.tcs.2014.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000799997
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.tibs.2009.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043150853
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.tibs.2016.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031936851
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.trecan.2016.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048440018
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0022-5193(05)80350-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006266449
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1074/jbc.m109.096222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017049886
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1074/jbc.m110.195016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023787278
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1088/1478-3975/9/5/055001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048270157
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1089/cmb.2008.0023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245666
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/j.1742-4658.2012.08582.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029598055
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/scisignal.2002469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062682428
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/scisignal.2003224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062682690
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/scisignal.2003250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044155515
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1128/mcb.00289-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010582620
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1158/0008-5472.can-08-3014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011584965
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1158/2159-8290.cd-11-0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028907775
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1158/2159-8290.cd-13-0611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038637948
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1158/2159-8290.cd-15-0460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046253128
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1158/2159-8290.cd-15-1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063281021
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1200/jco.2009.25.3641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005635097
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pcbi.1000438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533572
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pcbi.1003286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015264574
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1371/journal.pone.0154415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031482635
238 rdf:type schema:CreativeWork
239 https://doi.org/10.18632/oncotarget.8279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052948655
240 rdf:type schema:CreativeWork
241 https://doi.org/10.4161/trla.28174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072311113
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.419538.2 schema:alternateName Max Planck Institute for Molecular Genetics
244 schema:name Group for Discrete Biomathematics, Department for Mathematics and Computer Science, Freie Universitaet Berlin, Arnimallee 7, 14195, Berlin, Germany
245 International Research School for Scientific Computing and Computational Biology, Max-Plank Institute for Molecular Genetics, Berlin, Germany
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.6363.0 schema:alternateName Charité
248 schema:name Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...