Lessons from the pandemic on the value of research infrastructure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-04-01

AUTHORS

Laurence S. J. Roope, Paolo Candio, Vasiliki Kiparoglou, Helen McShane, Raymond Duch, Philip M. Clarke

ABSTRACT

The COVID-19 pandemic has shed a spotlight on the resilience of healthcare systems, and their ability to cope efficiently and effectively with unexpected crises. If we are to learn one economic lesson from the pandemic, arguably it is the perils of an overfocus on short-term allocative efficiency at the price of lack of capacity to deal with uncertain future challenges. In normal times, building spare capacity with ‘option value’ into health systems may seem inefficient, the costs potentially exceeding the benefits. Yet the fatal weakness of not doing so is that this can leave health systems highly constrained when dealing with unexpected, but ultimately inevitable, shocks—such as the COVID-19 pandemic. In this article, we argue that the pandemic has highlighted the potentially enormous option value of biomedical research infrastructure. We illustrate this with reference to COVID-19 response work supported by the United Kingdom National Institute for Health Research Oxford Biomedical Research Centre. As the world deals with the fallout from the most serious economic crisis since the Great Depression, pressure will soon come to review government expenditure, including research funding. Developing a framework to fully account for option value, and understanding the public appetite to pay for it, should allow us to be better prepared for the next emerging problem. More... »

PAGES

54

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12961-021-00704-2

DOI

http://dx.doi.org/10.1186/s12961-021-00704-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136840975

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33794906


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Policy and Administration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Support as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "State Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Health Research Oxford Biomedical Research Centre\u2013John Radcliffe Hospital, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.8348.7", 
          "name": [
            "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Oxford, UK", 
            "National Institute for Health Research Oxford Biomedical Research Centre\u2013John Radcliffe Hospital, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roope", 
        "givenName": "Laurence S. J.", 
        "id": "sg:person.011523647557.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523647557.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Health Research Oxford Biomedical Research Centre\u2013John Radcliffe Hospital, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.8348.7", 
          "name": [
            "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Oxford, UK", 
            "National Institute for Health Research Oxford Biomedical Research Centre\u2013John Radcliffe Hospital, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Candio", 
        "givenName": "Paolo", 
        "id": "sg:person.016331653263.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016331653263.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "National Institute for Health Research Oxford Biomedical Research Centre\u2013John Radcliffe Hospital, Oxford, UK", 
            "Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiparoglou", 
        "givenName": "Vasiliki", 
        "id": "sg:person.01302707706.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302707706.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuffield Department of Medicine, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "National Institute for Health Research Oxford Biomedical Research Centre\u2013John Radcliffe Hospital, Oxford, UK", 
            "Nuffield Department of Medicine, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McShane", 
        "givenName": "Helen", 
        "id": "sg:person.01334755643.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334755643.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuffield College, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Nuffield College, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duch", 
        "givenName": "Raymond", 
        "id": "sg:person.012371157111.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371157111.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Oxford, UK", 
            "National Institute for Health Research Oxford Biomedical Research Centre\u2013John Radcliffe Hospital, Oxford, UK", 
            "Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clarke", 
        "givenName": "Philip M.", 
        "id": "sg:person.0734456474.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/d41586-020-01824-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128530700", 
          "https://doi.org/10.1038/d41586-020-01824-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-04-01", 
    "datePublishedReg": "2021-04-01", 
    "description": "The COVID-19 pandemic has shed a spotlight on the resilience of healthcare systems, and their ability to cope efficiently and effectively with unexpected crises. If we are to learn one economic lesson from the pandemic, arguably it is the perils of an overfocus on short-term allocative efficiency at the price of lack of capacity to deal with uncertain future challenges. In normal times, building spare capacity with \u2018option value\u2019 into health systems may seem inefficient, the costs potentially exceeding the benefits. Yet the fatal weakness of not doing so is that this can leave health systems highly constrained when dealing with unexpected, but ultimately inevitable, shocks\u2014such as the COVID-19 pandemic. In this article, we argue that the pandemic has highlighted the potentially enormous option value of biomedical research infrastructure. We illustrate this with reference to COVID-19 response work supported by the United Kingdom National Institute for Health Research Oxford Biomedical Research Centre. As the world deals with the fallout from the most serious economic crisis since the Great Depression, pressure will soon come to review government expenditure, including research funding. Developing a framework to fully account for option value, and understanding the public appetite to pay for it, should allow us to be better prepared for the next emerging problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12961-021-00704-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9250297", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1032049", 
        "issn": [
          "1478-4505"
        ], 
        "name": "Health Research Policy and Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "option value", 
      "serious economic crisis", 
      "allocative efficiency", 
      "government expenditure", 
      "economic crisis", 
      "economics lessons", 
      "Great Depression", 
      "normal times", 
      "COVID-19 pandemic", 
      "unexpected crises", 
      "spare capacity", 
      "crisis", 
      "health system", 
      "United Kingdom's National Institute", 
      "research funding", 
      "prices", 
      "expenditure", 
      "infrastructure", 
      "funding", 
      "public appetite", 
      "lessons", 
      "research infrastructure", 
      "pandemic", 
      "cost", 
      "fatal weakness", 
      "healthcare system", 
      "benefits", 
      "framework", 
      "values", 
      "perils", 
      "world", 
      "article", 
      "future challenges", 
      "resilience", 
      "fallout", 
      "efficiency", 
      "weakness", 
      "spotlight", 
      "capacity", 
      "lack", 
      "appetite", 
      "problem", 
      "system", 
      "challenges", 
      "National Institute", 
      "Research Center", 
      "reference", 
      "Institute", 
      "time", 
      "ability", 
      "work", 
      "Biomedical Research Centre", 
      "pressure", 
      "center", 
      "depression", 
      "biomedical research infrastructure", 
      "overfocus", 
      "response work", 
      "Health Research Oxford Biomedical Research Centre"
    ], 
    "name": "Lessons from the pandemic on the value of research infrastructure", 
    "pagination": "54", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136840975"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12961-021-00704-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33794906"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12961-021-00704-2", 
      "https://app.dimensions.ai/details/publication/pub.1136840975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_896.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12961-021-00704-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12961-021-00704-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12961-021-00704-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12961-021-00704-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12961-021-00704-2'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      22 PREDICATES      94 URIs      83 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12961-021-00704-2 schema:about N11bcc36924f4437db2edb28beebaaa6b
2 N6d23c53e408b44fe9cda3432fbf1482b
3 N71362eb7205a4717a88de0f5291580e7
4 N8096f383d9a44cd08bf78a1e94655162
5 N8de56c9119ef4a649efa4b1d99d2d14d
6 N98e161c08adc4426b0b38c64b83e6f42
7 Ncab7b80627f44824a83132687aa1a68e
8 anzsrc-for:11
9 anzsrc-for:1117
10 anzsrc-for:16
11 anzsrc-for:1605
12 schema:author Nea71b3669af64560a2ec1094e6092f97
13 schema:citation sg:pub.10.1038/d41586-020-01824-5
14 schema:datePublished 2021-04-01
15 schema:datePublishedReg 2021-04-01
16 schema:description The COVID-19 pandemic has shed a spotlight on the resilience of healthcare systems, and their ability to cope efficiently and effectively with unexpected crises. If we are to learn one economic lesson from the pandemic, arguably it is the perils of an overfocus on short-term allocative efficiency at the price of lack of capacity to deal with uncertain future challenges. In normal times, building spare capacity with ‘option value’ into health systems may seem inefficient, the costs potentially exceeding the benefits. Yet the fatal weakness of not doing so is that this can leave health systems highly constrained when dealing with unexpected, but ultimately inevitable, shocks—such as the COVID-19 pandemic. In this article, we argue that the pandemic has highlighted the potentially enormous option value of biomedical research infrastructure. We illustrate this with reference to COVID-19 response work supported by the United Kingdom National Institute for Health Research Oxford Biomedical Research Centre. As the world deals with the fallout from the most serious economic crisis since the Great Depression, pressure will soon come to review government expenditure, including research funding. Developing a framework to fully account for option value, and understanding the public appetite to pay for it, should allow us to be better prepared for the next emerging problem.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N69a993423da14f8a8e5f3cacc5817405
21 Nfed1413793ae40d7b6fad519d0e4193c
22 sg:journal.1032049
23 schema:keywords Biomedical Research Centre
24 COVID-19 pandemic
25 Great Depression
26 Health Research Oxford Biomedical Research Centre
27 Institute
28 National Institute
29 Research Center
30 United Kingdom's National Institute
31 ability
32 allocative efficiency
33 appetite
34 article
35 benefits
36 biomedical research infrastructure
37 capacity
38 center
39 challenges
40 cost
41 crisis
42 depression
43 economic crisis
44 economics lessons
45 efficiency
46 expenditure
47 fallout
48 fatal weakness
49 framework
50 funding
51 future challenges
52 government expenditure
53 health system
54 healthcare system
55 infrastructure
56 lack
57 lessons
58 normal times
59 option value
60 overfocus
61 pandemic
62 perils
63 pressure
64 prices
65 problem
66 public appetite
67 reference
68 research funding
69 research infrastructure
70 resilience
71 response work
72 serious economic crisis
73 spare capacity
74 spotlight
75 system
76 time
77 unexpected crises
78 values
79 weakness
80 work
81 world
82 schema:name Lessons from the pandemic on the value of research infrastructure
83 schema:pagination 54
84 schema:productId N10440a7995104daf9b1268b342738edd
85 N9003667ffa804f16b4ccce1ad15ef0f0
86 Nb1a9559288a04490b411e88e24a2c15c
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136840975
88 https://doi.org/10.1186/s12961-021-00704-2
89 schema:sdDatePublished 2022-05-10T10:31
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Ndc853ab2b575427fa45a3096ea2afe8c
92 schema:url https://doi.org/10.1186/s12961-021-00704-2
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N10440a7995104daf9b1268b342738edd schema:name doi
97 schema:value 10.1186/s12961-021-00704-2
98 rdf:type schema:PropertyValue
99 N11bcc36924f4437db2edb28beebaaa6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name United Kingdom
101 rdf:type schema:DefinedTerm
102 N35dd43fe761a4a98bf121962864aa504 rdf:first sg:person.012371157111.51
103 rdf:rest Nd501945285874a2b93ea5af7477110ad
104 N4809f7dabda24409b650bfa09c8a5444 rdf:first sg:person.016331653263.56
105 rdf:rest Nb983481d427645b78d44ad599ecede68
106 N69a993423da14f8a8e5f3cacc5817405 schema:volumeNumber 19
107 rdf:type schema:PublicationVolume
108 N6d23c53e408b44fe9cda3432fbf1482b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name COVID-19
110 rdf:type schema:DefinedTerm
111 N71362eb7205a4717a88de0f5291580e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Humans
113 rdf:type schema:DefinedTerm
114 N8096f383d9a44cd08bf78a1e94655162 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name State Medicine
116 rdf:type schema:DefinedTerm
117 N8de56c9119ef4a649efa4b1d99d2d14d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Research Support as Topic
119 rdf:type schema:DefinedTerm
120 N9003667ffa804f16b4ccce1ad15ef0f0 schema:name pubmed_id
121 schema:value 33794906
122 rdf:type schema:PropertyValue
123 N98e161c08adc4426b0b38c64b83e6f42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Biomedical Research
125 rdf:type schema:DefinedTerm
126 Nb1a9559288a04490b411e88e24a2c15c schema:name dimensions_id
127 schema:value pub.1136840975
128 rdf:type schema:PropertyValue
129 Nb983481d427645b78d44ad599ecede68 rdf:first sg:person.01302707706.05
130 rdf:rest Nd46e5edf64a540f287c87a47c5139dac
131 Ncab7b80627f44824a83132687aa1a68e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name SARS-CoV-2
133 rdf:type schema:DefinedTerm
134 Nd46e5edf64a540f287c87a47c5139dac rdf:first sg:person.01334755643.19
135 rdf:rest N35dd43fe761a4a98bf121962864aa504
136 Nd501945285874a2b93ea5af7477110ad rdf:first sg:person.0734456474.38
137 rdf:rest rdf:nil
138 Ndc853ab2b575427fa45a3096ea2afe8c schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Nea71b3669af64560a2ec1094e6092f97 rdf:first sg:person.011523647557.28
141 rdf:rest N4809f7dabda24409b650bfa09c8a5444
142 Nfed1413793ae40d7b6fad519d0e4193c schema:issueNumber 1
143 rdf:type schema:PublicationIssue
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
148 schema:name Public Health and Health Services
149 rdf:type schema:DefinedTerm
150 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
151 schema:name Studies in Human Society
152 rdf:type schema:DefinedTerm
153 anzsrc-for:1605 schema:inDefinedTermSet anzsrc-for:
154 schema:name Policy and Administration
155 rdf:type schema:DefinedTerm
156 sg:grant.9250297 http://pending.schema.org/fundedItem sg:pub.10.1186/s12961-021-00704-2
157 rdf:type schema:MonetaryGrant
158 sg:journal.1032049 schema:issn 1478-4505
159 schema:name Health Research Policy and Systems
160 schema:publisher Springer Nature
161 rdf:type schema:Periodical
162 sg:person.011523647557.28 schema:affiliation grid-institutes:grid.8348.7
163 schema:familyName Roope
164 schema:givenName Laurence S. J.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523647557.28
166 rdf:type schema:Person
167 sg:person.012371157111.51 schema:affiliation grid-institutes:grid.4991.5
168 schema:familyName Duch
169 schema:givenName Raymond
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371157111.51
171 rdf:type schema:Person
172 sg:person.01302707706.05 schema:affiliation grid-institutes:grid.4991.5
173 schema:familyName Kiparoglou
174 schema:givenName Vasiliki
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302707706.05
176 rdf:type schema:Person
177 sg:person.01334755643.19 schema:affiliation grid-institutes:grid.4991.5
178 schema:familyName McShane
179 schema:givenName Helen
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334755643.19
181 rdf:type schema:Person
182 sg:person.016331653263.56 schema:affiliation grid-institutes:grid.8348.7
183 schema:familyName Candio
184 schema:givenName Paolo
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016331653263.56
186 rdf:type schema:Person
187 sg:person.0734456474.38 schema:affiliation grid-institutes:grid.1008.9
188 schema:familyName Clarke
189 schema:givenName Philip M.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734456474.38
191 rdf:type schema:Person
192 sg:pub.10.1038/d41586-020-01824-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128530700
193 https://doi.org/10.1038/d41586-020-01824-5
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.1008.9 schema:alternateName Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
196 schema:name Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
197 Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Oxford, UK
198 National Institute for Health Research Oxford Biomedical Research Centre–John Radcliffe Hospital, Oxford, UK
199 rdf:type schema:Organization
200 grid-institutes:grid.4991.5 schema:alternateName Nuffield College, University of Oxford, Oxford, UK
201 Nuffield Department of Medicine, University of Oxford, Oxford, UK
202 Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK
203 schema:name National Institute for Health Research Oxford Biomedical Research Centre–John Radcliffe Hospital, Oxford, UK
204 Nuffield College, University of Oxford, Oxford, UK
205 Nuffield Department of Medicine, University of Oxford, Oxford, UK
206 Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK
207 rdf:type schema:Organization
208 grid-institutes:grid.8348.7 schema:alternateName National Institute for Health Research Oxford Biomedical Research Centre–John Radcliffe Hospital, Oxford, UK
209 schema:name Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Oxford, UK
210 National Institute for Health Research Oxford Biomedical Research Centre–John Radcliffe Hospital, Oxford, UK
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...