Comparison of three longitudinal analysis models for the health-related quality of life in oncology: a simulation study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Amélie Anota, Antoine Barbieri, Marion Savina, Alhousseiny Pam, Sophie Gourgou-Bourgade, Franck Bonnetain, Caroline Bascoul-Mollevi

ABSTRACT

BACKGROUND: Health-Related Quality of Life (HRQoL) is an important endpoint in oncology clinical trials aiming to investigate the clinical benefit of new therapeutic strategies for the patient. However, the longitudinal analysis of HRQoL remains complex and unstandardized. There is clearly a need to propose accessible statistical methods and meaningful results for clinicians. The objective of this study was to compare three strategies for longitudinal analyses of HRQoL data in oncology clinical trials through a simulation study. METHODS: The methods proposed were: the score and mixed model (SM); a survival analysis approach based on the time to HRQoL score deterioration (TTD); and the longitudinal partial credit model (LPCM). Simulations compared the methods in terms of type I error and statistical power of the test of an interaction effect between treatment arm and time. Several simulation scenarios were explored based on the EORTC HRQoL questionnaires and varying the number of patients (100, 200 or 300), items (1, 2 or 4) and response categories per item (4 or 7). Five or 10 measurement times were considered, with correlations ranging from low to high between each measure. The impact of informative missing data on these methods was also studied to reflect the reality of most clinical trials. RESULTS: With complete data, the type I error rate was close to the expected value (5%) for all methods, while the SM method was the most powerful method, followed by LPCM. The power of TTD is low for single-item dimensions, because only four possible values exist for the score. When the number of items increases, the power of the SM approach remained stable, those of the TTD method increases while the power of LPCM remained stable. With 10 measurement times, the LPCM was less efficient. With informative missing data, the statistical power of SM and TTD tended to decrease, while that of LPCM tended to increase. CONCLUSIONS: To conclude, the SM model was the most powerful model, irrespective of the scenario considered, and the presence or not of missing data. The TTD method should be avoided for single-item dimensions of the EORTC questionnaire. While the LPCM model was more adapted to this kind of data, it was less efficient than the SM model. These results warrant validation through comparisons on real data. More... »

PAGES

192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12955-014-0192-2

DOI

http://dx.doi.org/10.1186/s12955-014-0192-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044944751

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25551580


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Status", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Status Indicators", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Oncology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Outcome Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality of Life", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Quality of Life in Oncology National Platform, Besan\u00e7on, France", 
            "Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital of Besan\u00e7on, Besan\u00e7on, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anota", 
        "givenName": "Am\u00e9lie", 
        "id": "sg:person.0576124121.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576124121.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "Biostatistic unit, Institut r\u00e9gional du Cancer de Montpellier (ICM) - Val d\u2019Aurelle, Montpellier, France", 
            "Institut de Math\u00e9matiques et de Mod\u00e9lisation de Montpellier, University of Montpellier 2, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barbieri", 
        "givenName": "Antoine", 
        "id": "sg:person.01121340701.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121340701.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "INSERM, Clinical and EpidemiologicalResearch Unit (CIC-EC 7) \u2013 CTD INCa, Institut Bergoni\u00e9, Bordeaux, France", 
            "INSERM CIC-EC7 Axe Cancer, Universit\u00e9 de Bordeaux, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savina", 
        "givenName": "Marion", 
        "id": "sg:person.01167454101.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167454101.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital of Besan\u00e7on, Besan\u00e7on, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pam", 
        "givenName": "Alhousseiny", 
        "id": "sg:person.01235567301.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235567301.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biostatistic unit, Institut r\u00e9gional du Cancer de Montpellier (ICM) - Val d\u2019Aurelle, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gourgou-Bourgade", 
        "givenName": "Sophie", 
        "id": "sg:person.01230332323.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230332323.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Quality of Life in Oncology National Platform, Besan\u00e7on, France", 
            "Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital of Besan\u00e7on, Besan\u00e7on, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnetain", 
        "givenName": "Franck", 
        "id": "sg:person.01252021215.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252021215.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biostatistic unit, Institut r\u00e9gional du Cancer de Montpellier (ICM) - Val d\u2019Aurelle, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bascoul-Mollevi", 
        "givenName": "Caroline", 
        "id": "sg:person.01051045474.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051045474.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19991115)18:21<2917::aid-sim204>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004927672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19991115)18:21<2917::aid-sim204>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004927672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djk091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008884871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2012.02.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011994917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.28010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017864981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.28010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017864981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2010.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017971147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.2008-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020360897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028975897", 
          "https://doi.org/10.1007/bf02296657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028975897", 
          "https://doi.org/10.1007/bf02296657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029055534", 
          "https://doi.org/10.1007/bf02296272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<697::aid-sim815>3.0.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029106238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2013.51.4240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030421657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032217130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033317858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<679::aid-sim814>3.0.co;2-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035957716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1308345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036201464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<653::aid-sim812>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036833851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-014-0648-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879317", 
          "https://doi.org/10.1007/s11136-014-0648-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040306539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.2011-0085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040772976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-013-0583-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043731868", 
          "https://doi.org/10.1007/s11136-013-0583-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-013-0583-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043731868", 
          "https://doi.org/10.1007/s11136-013-0583-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4230-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044073092", 
          "https://doi.org/10.1007/978-1-4612-4230-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4230-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044073092", 
          "https://doi.org/10.1007/978-1-4612-4230-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cct.2008.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047074365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280213515570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280213515570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1308573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048225580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0277-9536(99)00047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048465283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2012.44.4869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052769637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73186-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052833842", 
          "https://doi.org/10.1007/978-0-387-73186-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73186-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052833842", 
          "https://doi.org/10.1007/978-0-387-73186-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11136-009-9564-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053365594", 
          "https://doi.org/10.1007/s11136-009-9564-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1758834010395342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053969103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1758834010395342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053969103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/85.5.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059818446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2533148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069978553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3102/10769986025004391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070972875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3102/10769986025004391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070972875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/0974-7788.76794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072243098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.1998.16.1.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083201628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101983482"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Health-Related Quality of Life (HRQoL) is an important endpoint in oncology clinical trials aiming to investigate the clinical benefit of new therapeutic strategies for the patient. However, the longitudinal analysis of HRQoL remains complex and unstandardized. There is clearly a need to propose accessible statistical methods and meaningful results for clinicians. The objective of this study was to compare three strategies for longitudinal analyses of HRQoL data in oncology clinical trials through a simulation study.\nMETHODS: The methods proposed were: the score and mixed model (SM); a survival analysis approach based on the time to HRQoL score deterioration (TTD); and the longitudinal partial credit model (LPCM). Simulations compared the methods in terms of type I error and statistical power of the test of an interaction effect between treatment arm and time. Several simulation scenarios were explored based on the EORTC HRQoL questionnaires and varying the number of patients (100, 200 or 300), items (1, 2 or 4) and response categories per item (4 or 7). Five or 10 measurement times were considered, with correlations ranging from low to high between each measure. The impact of informative missing data on these methods was also studied to reflect the reality of most clinical trials.\nRESULTS: With complete data, the type I error rate was close to the expected value (5%) for all methods, while the SM method was the most powerful method, followed by LPCM. The power of TTD is low for single-item dimensions, because only four possible values exist for the score. When the number of items increases, the power of the SM approach remained stable, those of the TTD method increases while the power of LPCM remained stable. With 10 measurement times, the LPCM was less efficient. With informative missing data, the statistical power of SM and TTD tended to decrease, while that of LPCM tended to increase.\nCONCLUSIONS: To conclude, the SM model was the most powerful model, irrespective of the scenario considered, and the presence or not of missing data. The TTD method should be avoided for single-item dimensions of the EORTC questionnaire. While the LPCM model was more adapted to this kind of data, it was less efficient than the SM model. These results warrant validation through comparisons on real data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12955-014-0192-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031326", 
        "issn": [
          "1477-7525"
        ], 
        "name": "Health and Quality of Life Outcomes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Comparison of three longitudinal analysis models for the health-related quality of life in oncology: a simulation study", 
    "pagination": "192", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d616349ac1bb5885464d388ba2287959bdb72d44ade535e8c77e0989205bc3a9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25551580"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101153626"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12955-014-0192-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044944751"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12955-014-0192-2", 
      "https://app.dimensions.ai/details/publication/pub.1044944751"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88221_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12955-014-0192-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12955-014-0192-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12955-014-0192-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12955-014-0192-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12955-014-0192-2'


 

This table displays all metadata directly associated to this object as RDF triples.

280 TRIPLES      21 PREDICATES      74 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12955-014-0192-2 schema:about N08da81fdb2a04896a721f3791393c4ce
2 N101e1bad971140daa99e9a2e2feff33e
3 N41453ce32d0d4ba0b7ad7a83baad7dce
4 N5fd2da35a2e94f168ef132227fccd0b0
5 N600a03b661ff486f86c462b7b5035058
6 N7ed56b71c85c4b96865366dfd11701a1
7 N88787eb752db406abe4d31829a66a10c
8 Na07b9d6ae832440789f39d115b24f403
9 Na630a7619df649d79ba4607d3ffbfb7a
10 Nc1c52384b7d241bf9c53de54dcf3c784
11 Nc93373ef6f7443a8b722014d0479f60f
12 anzsrc-for:01
13 anzsrc-for:0104
14 schema:author N2836cbe274d94a7f959259a7c9e2cf52
15 schema:citation sg:pub.10.1007/978-0-387-73186-5_6
16 sg:pub.10.1007/978-1-4612-4230-7
17 sg:pub.10.1007/bf02296272
18 sg:pub.10.1007/bf02296657
19 sg:pub.10.1007/s11136-009-9564-1
20 sg:pub.10.1007/s11136-013-0583-6
21 sg:pub.10.1007/s11136-014-0648-1
22 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<653::aid-sim812>3.0.co;2-m
23 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<679::aid-sim814>3.0.co;2-x
24 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<697::aid-sim815>3.0.co;2-y
25 https://doi.org/10.1002/(sici)1097-0258(19991115)18:21<2917::aid-sim204>3.0.co;2-n
26 https://doi.org/10.1002/cncr.28010
27 https://doi.org/10.1002/sim.1397
28 https://doi.org/10.1002/sim.4153
29 https://doi.org/10.1016/j.cct.2008.12.003
30 https://doi.org/10.1016/j.ejca.2010.07.023
31 https://doi.org/10.1016/j.ejca.2012.02.059
32 https://doi.org/10.1016/s0277-9536(99)00047-7
33 https://doi.org/10.1056/nejmoa1308345
34 https://doi.org/10.1056/nejmoa1308573
35 https://doi.org/10.1093/jnci/85.5.365
36 https://doi.org/10.1093/jnci/djk091
37 https://doi.org/10.1177/0962280213515570
38 https://doi.org/10.1177/1758834010395342
39 https://doi.org/10.1200/jco.1998.16.1.139
40 https://doi.org/10.1200/jco.2012.44.4869
41 https://doi.org/10.1200/jco.2013.51.4240
42 https://doi.org/10.1371/journal.pone.0096848
43 https://doi.org/10.1634/theoncologist.2008-0003
44 https://doi.org/10.1634/theoncologist.2011-0085
45 https://doi.org/10.2307/2533148
46 https://doi.org/10.2307/2986113
47 https://doi.org/10.3102/10769986025004391
48 https://doi.org/10.4103/0974-7788.76794
49 schema:datePublished 2014-12
50 schema:datePublishedReg 2014-12-01
51 schema:description BACKGROUND: Health-Related Quality of Life (HRQoL) is an important endpoint in oncology clinical trials aiming to investigate the clinical benefit of new therapeutic strategies for the patient. However, the longitudinal analysis of HRQoL remains complex and unstandardized. There is clearly a need to propose accessible statistical methods and meaningful results for clinicians. The objective of this study was to compare three strategies for longitudinal analyses of HRQoL data in oncology clinical trials through a simulation study. METHODS: The methods proposed were: the score and mixed model (SM); a survival analysis approach based on the time to HRQoL score deterioration (TTD); and the longitudinal partial credit model (LPCM). Simulations compared the methods in terms of type I error and statistical power of the test of an interaction effect between treatment arm and time. Several simulation scenarios were explored based on the EORTC HRQoL questionnaires and varying the number of patients (100, 200 or 300), items (1, 2 or 4) and response categories per item (4 or 7). Five or 10 measurement times were considered, with correlations ranging from low to high between each measure. The impact of informative missing data on these methods was also studied to reflect the reality of most clinical trials. RESULTS: With complete data, the type I error rate was close to the expected value (5%) for all methods, while the SM method was the most powerful method, followed by LPCM. The power of TTD is low for single-item dimensions, because only four possible values exist for the score. When the number of items increases, the power of the SM approach remained stable, those of the TTD method increases while the power of LPCM remained stable. With 10 measurement times, the LPCM was less efficient. With informative missing data, the statistical power of SM and TTD tended to decrease, while that of LPCM tended to increase. CONCLUSIONS: To conclude, the SM model was the most powerful model, irrespective of the scenario considered, and the presence or not of missing data. The TTD method should be avoided for single-item dimensions of the EORTC questionnaire. While the LPCM model was more adapted to this kind of data, it was less efficient than the SM model. These results warrant validation through comparisons on real data.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N587d4387e67641c28b90c40c8ec8a7dd
56 N5bc5860ec4ee479fb50eefb4cb0dea7d
57 sg:journal.1031326
58 schema:name Comparison of three longitudinal analysis models for the health-related quality of life in oncology: a simulation study
59 schema:pagination 192
60 schema:productId N5c5de3fef542447ab4eb94de60e488a3
61 Naafac459d1ff49ff9188b9ef69de30b6
62 Nb9ef2827ca154525a6633a7b8841ba66
63 Nce99c2ba0f4c4c859f41b3f0998078ff
64 Nf7920eaee30d4da98f81bef3ab01eaba
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044944751
66 https://doi.org/10.1186/s12955-014-0192-2
67 schema:sdDatePublished 2019-04-11T13:07
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N1de718d715f1416797161234c1573b04
70 schema:url http://link.springer.com/10.1186%2Fs12955-014-0192-2
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N08da81fdb2a04896a721f3791393c4ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Male
76 rdf:type schema:DefinedTerm
77 N101e1bad971140daa99e9a2e2feff33e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Longitudinal Studies
79 rdf:type schema:DefinedTerm
80 N1de718d715f1416797161234c1573b04 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N1ec59b1864f94e5fad12a904edb2098f schema:name Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital of Besançon, Besançon, France
83 Quality of Life in Oncology National Platform, Besançon, France
84 rdf:type schema:Organization
85 N23f44e1248c846519b2b0a179d848780 rdf:first sg:person.01051045474.41
86 rdf:rest rdf:nil
87 N2836cbe274d94a7f959259a7c9e2cf52 rdf:first sg:person.0576124121.45
88 rdf:rest N45eef3686b6a4288adf6317336cc5dca
89 N318bfd0167e24e1fb5ddc62504d09ac8 rdf:first sg:person.01230332323.27
90 rdf:rest Nefcbc9f51e524e92b24539a315a789c0
91 N41453ce32d0d4ba0b7ad7a83baad7dce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 N45eef3686b6a4288adf6317336cc5dca rdf:first sg:person.01121340701.16
95 rdf:rest N7c95674ebee74d3c9fdda7cb94fb3233
96 N54008ff4ed3a40d4be5b5104930ce273 rdf:first sg:person.01235567301.35
97 rdf:rest N318bfd0167e24e1fb5ddc62504d09ac8
98 N587d4387e67641c28b90c40c8ec8a7dd schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 N599338043da84c3083fb5aa2ff2d0b99 schema:name Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital of Besançon, Besançon, France
101 rdf:type schema:Organization
102 N5bc5860ec4ee479fb50eefb4cb0dea7d schema:volumeNumber 12
103 rdf:type schema:PublicationVolume
104 N5c5de3fef542447ab4eb94de60e488a3 schema:name nlm_unique_id
105 schema:value 101153626
106 rdf:type schema:PropertyValue
107 N5fd2da35a2e94f168ef132227fccd0b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Patient Outcome Assessment
109 rdf:type schema:DefinedTerm
110 N600a03b661ff486f86c462b7b5035058 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Neoplasms
112 rdf:type schema:DefinedTerm
113 N6fdee2b6a842482690a8b408bde8d84e schema:name Biostatistic unit, Institut régional du Cancer de Montpellier (ICM) - Val d’Aurelle, Montpellier, France
114 rdf:type schema:Organization
115 N7c95674ebee74d3c9fdda7cb94fb3233 rdf:first sg:person.01167454101.19
116 rdf:rest N54008ff4ed3a40d4be5b5104930ce273
117 N7ed56b71c85c4b96865366dfd11701a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Quality of Life
119 rdf:type schema:DefinedTerm
120 N88787eb752db406abe4d31829a66a10c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Health Status
122 rdf:type schema:DefinedTerm
123 Na07b9d6ae832440789f39d115b24f403 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Medical Oncology
125 rdf:type schema:DefinedTerm
126 Na630a7619df649d79ba4607d3ffbfb7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Female
128 rdf:type schema:DefinedTerm
129 Naafac459d1ff49ff9188b9ef69de30b6 schema:name dimensions_id
130 schema:value pub.1044944751
131 rdf:type schema:PropertyValue
132 Nb9ef2827ca154525a6633a7b8841ba66 schema:name pubmed_id
133 schema:value 25551580
134 rdf:type schema:PropertyValue
135 Nbc9f1712ea984a2c82ef55ed823319cb schema:name Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital of Besançon, Besançon, France
136 Quality of Life in Oncology National Platform, Besançon, France
137 rdf:type schema:Organization
138 Nc1c52384b7d241bf9c53de54dcf3c784 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Health Status Indicators
140 rdf:type schema:DefinedTerm
141 Nc93373ef6f7443a8b722014d0479f60f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Models, Theoretical
143 rdf:type schema:DefinedTerm
144 Nce99c2ba0f4c4c859f41b3f0998078ff schema:name readcube_id
145 schema:value d616349ac1bb5885464d388ba2287959bdb72d44ade535e8c77e0989205bc3a9
146 rdf:type schema:PropertyValue
147 Nefcbc9f51e524e92b24539a315a789c0 rdf:first sg:person.01252021215.22
148 rdf:rest N23f44e1248c846519b2b0a179d848780
149 Nf7920eaee30d4da98f81bef3ab01eaba schema:name doi
150 schema:value 10.1186/s12955-014-0192-2
151 rdf:type schema:PropertyValue
152 Nf8508e58e25b41a7b407a96e24f96317 schema:name Biostatistic unit, Institut régional du Cancer de Montpellier (ICM) - Val d’Aurelle, Montpellier, France
153 rdf:type schema:Organization
154 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
155 schema:name Mathematical Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
158 schema:name Statistics
159 rdf:type schema:DefinedTerm
160 sg:journal.1031326 schema:issn 1477-7525
161 schema:name Health and Quality of Life Outcomes
162 rdf:type schema:Periodical
163 sg:person.01051045474.41 schema:affiliation N6fdee2b6a842482690a8b408bde8d84e
164 schema:familyName Bascoul-Mollevi
165 schema:givenName Caroline
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051045474.41
167 rdf:type schema:Person
168 sg:person.01121340701.16 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
169 schema:familyName Barbieri
170 schema:givenName Antoine
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121340701.16
172 rdf:type schema:Person
173 sg:person.01167454101.19 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
174 schema:familyName Savina
175 schema:givenName Marion
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167454101.19
177 rdf:type schema:Person
178 sg:person.01230332323.27 schema:affiliation Nf8508e58e25b41a7b407a96e24f96317
179 schema:familyName Gourgou-Bourgade
180 schema:givenName Sophie
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230332323.27
182 rdf:type schema:Person
183 sg:person.01235567301.35 schema:affiliation N599338043da84c3083fb5aa2ff2d0b99
184 schema:familyName Pam
185 schema:givenName Alhousseiny
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235567301.35
187 rdf:type schema:Person
188 sg:person.01252021215.22 schema:affiliation Nbc9f1712ea984a2c82ef55ed823319cb
189 schema:familyName Bonnetain
190 schema:givenName Franck
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252021215.22
192 rdf:type schema:Person
193 sg:person.0576124121.45 schema:affiliation N1ec59b1864f94e5fad12a904edb2098f
194 schema:familyName Anota
195 schema:givenName Amélie
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576124121.45
197 rdf:type schema:Person
198 sg:pub.10.1007/978-0-387-73186-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052833842
199 https://doi.org/10.1007/978-0-387-73186-5_6
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/978-1-4612-4230-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044073092
202 https://doi.org/10.1007/978-1-4612-4230-7
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/bf02296272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029055534
205 https://doi.org/10.1007/bf02296272
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/bf02296657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028975897
208 https://doi.org/10.1007/bf02296657
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s11136-009-9564-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365594
211 https://doi.org/10.1007/s11136-009-9564-1
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s11136-013-0583-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043731868
214 https://doi.org/10.1007/s11136-013-0583-6
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s11136-014-0648-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038879317
217 https://doi.org/10.1007/s11136-014-0648-1
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<653::aid-sim812>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1036833851
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<679::aid-sim814>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035957716
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1002/(sici)1097-0258(19980315/15)17:5/7<697::aid-sim815>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029106238
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1002/(sici)1097-0258(19991115)18:21<2917::aid-sim204>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1004927672
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1002/cncr.28010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017864981
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1002/sim.1397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040306539
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1002/sim.4153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032217130
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.cct.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047074365
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.ejca.2010.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017971147
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.ejca.2012.02.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011994917
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/s0277-9536(99)00047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048465283
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1056/nejmoa1308345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036201464
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1056/nejmoa1308573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048225580
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/jnci/85.5.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059818446
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/jnci/djk091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008884871
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1177/0962280213515570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187513
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1177/1758834010395342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053969103
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1200/jco.1998.16.1.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083201628
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1200/jco.2012.44.4869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052769637
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1200/jco.2013.51.4240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030421657
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1371/journal.pone.0096848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033317858
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1634/theoncologist.2008-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020360897
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1634/theoncologist.2011-0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040772976
264 rdf:type schema:CreativeWork
265 https://doi.org/10.2307/2533148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978553
266 rdf:type schema:CreativeWork
267 https://doi.org/10.2307/2986113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101983482
268 rdf:type schema:CreativeWork
269 https://doi.org/10.3102/10769986025004391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070972875
270 rdf:type schema:CreativeWork
271 https://doi.org/10.4103/0974-7788.76794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072243098
272 rdf:type schema:CreativeWork
273 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
274 schema:name Biostatistic unit, Institut régional du Cancer de Montpellier (ICM) - Val d’Aurelle, Montpellier, France
275 Institut de Mathématiques et de Modélisation de Montpellier, University of Montpellier 2, Montpellier, France
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
278 schema:name INSERM CIC-EC7 Axe Cancer, Université de Bordeaux, Bordeaux, France
279 INSERM, Clinical and EpidemiologicalResearch Unit (CIC-EC 7) – CTD INCa, Institut Bergonié, Bordeaux, France
280 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...