Human neural stem cell-derived extracellular vesicles protect against Parkinson’s disease pathologies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-04-25

AUTHORS

Eun Ji Lee, Yoori Choi, Hong J. Lee, Do Won Hwang, Dong Soo Lee

ABSTRACT

BackgroundNeural stem cells (NSCs) have the ability to generate a variety of functional neural cell types and have a high potential for neuronal cell regeneration and recovery. Thus, they been recognized as the best source of cell therapy for neurodegenerative diseases, such as Parkinson’s disease (PD). Owing to the possibility of paracrine effect-based therapeutic mechanisms and easier clinical accessibility, extracellular vesicles (EVs), which possess very similar bio-functional components from their cellular origin, have emerged as potential alternatives in regenerative medicine.Material and methodsEVs were isolated from human fibroblast (HFF) and human NSC (F3 cells). The supernatant of the cells was concentrated by a tangential flow filtration (TFF) system. Then, the final EVs were isolated using a total EV isolation kit.ResultsIn this study, we demonstrate the potential protective effect of human NSC-derived EVs, showing the prevention of PD pathologies in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo mouse models. Human NSC and F3 cell (F3)-derived EVs reduced the intracellular reactive oxygen species (ROS) and associated apoptotic pathways. In addition, F3-derived EVs induced downregulation of pro-inflammatory factors and significantly decreased 6-OHDA-induced dopaminergic neuronal loss in vivo. F3 specific microRNAs (miRNAs) such as hsa-mir-182-5p, hsa-mir-183-5p, hsa-mir-9, and hsa-let-7, which are involved in cell differentiation, neurotrophic function, and immune modulation, were found in F3-derived EVs.ConclusionsWe report that human NSC-derived EVs show an effective neuroprotective property in an in vitro transwell system and in a PD model. The EVs clearly decreased ROS and pro-inflammatory cytokines. Taken together, these results indicate that NSC-derived EVs could potentially help prevent the neuropathology and progression of PD.Graphical Abstract More... »

PAGES

198

References to SciGraph publications

  • 2017-03-23. Parkinson disease in NATURE REVIEWS DISEASE PRIMERS
  • 2015-05-13. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters in NATURE COMMUNICATIONS
  • 2019-03-04. Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention in ARCHIVES OF PHARMACAL RESEARCH
  • 2018-09-28. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs in NATURE REVIEWS DRUG DISCOVERY
  • 2020-10-26. ROS networks: designs, aging, Parkinson’s disease and precision therapies in NPJ SYSTEMS BIOLOGY AND APPLICATIONS
  • 2017-12-28. Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model in TRANSLATIONAL STROKE RESEARCH
  • 2017-07-26. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs in NATURE
  • 2021-04-12. Synucleinopathy-associated pathogenesis in Parkinson’s disease and the potential for brain-derived neurotrophic factor in NPJ PARKINSON'S DISEASE
  • 2018-03-26. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease in NPJ PARKINSON'S DISEASE
  • 2020-04-24. Parkinson disease and the immune system — associations, mechanisms and therapeutics in NATURE REVIEWS NEUROLOGY
  • 2020-05-26. RNA delivery by extracellular vesicles in mammalian cells and its applications in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2015-10-12. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target in TRANSLATIONAL NEURODEGENERATION
  • 2020-01-08. Emerging regenerative medicine and tissue engineering strategies for Parkinson’s disease in NPJ PARKINSON'S DISEASE
  • 2021-01-04. Plasma-borne indicators of inflammasome activity in Parkinson’s disease patients in NPJ PARKINSON'S DISEASE
  • 2013-05-30. CLARITY for mapping the nervous system in NATURE METHODS
  • 2020-11-13. Acquired dysregulation of dopamine homeostasis reproduces features of Parkinson’s disease in NPJ PARKINSON'S DISEASE
  • 2014-05-03. The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons in MOLECULAR NEURODEGENERATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12951-022-01356-2

    DOI

    http://dx.doi.org/10.1186/s12951-022-01356-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147365812

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35468855


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Extracellular Vesicles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidopamine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Parkinson Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reactive Oxygen Species", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Eun Ji", 
            "id": "sg:person.01032224726.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032224726.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Yoori", 
            "id": "sg:person.01332005273.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332005273.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Institute, huMetaCELL Inc., 220, Bugwang-ro, Puchon, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea", 
                "Research Institute, huMetaCELL Inc., 220, Bugwang-ro, Puchon, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Hong J.", 
            "id": "sg:person.0655741726.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655741726.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "THERABEST, Inc., Seocho-daero 40-gil 41, 06656, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "THERABEST, Inc., Seocho-daero 40-gil 41, 06656, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hwang", 
            "givenName": "Do Won", 
            "id": "sg:person.0627125000.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627125000.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
                "Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea", 
                "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dong Soo", 
            "id": "sg:person.015617314175.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s40035-015-0042-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050492278", 
              "https://doi.org/10.1186/s40035-015-0042-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41531-019-0105-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123949005", 
              "https://doi.org/10.1038/s41531-019-0105-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrdp.2017.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129654", 
              "https://doi.org/10.1038/nrdp.2017.13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41540-020-00150-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132038982", 
              "https://doi.org/10.1038/s41540-020-00150-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41531-018-0044-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101761774", 
              "https://doi.org/10.1038/s41531-018-0044-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41580-020-0251-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127864626", 
              "https://doi.org/10.1038/s41580-020-0251-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12272-019-01133-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112514105", 
              "https://doi.org/10.1007/s12272-019-01133-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41582-020-0344-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126915572", 
              "https://doi.org/10.1038/s41582-020-0344-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41531-021-00179-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137140843", 
              "https://doi.org/10.1038/s41531-021-00179-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1750-1326-9-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004969100", 
              "https://doi.org/10.1186/1750-1326-9-17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd.2018.136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107291434", 
              "https://doi.org/10.1038/nrd.2018.136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052828259", 
              "https://doi.org/10.1038/ncomms8029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12975-017-0599-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100091992", 
              "https://doi.org/10.1007/s12975-017-0599-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022403986", 
              "https://doi.org/10.1038/nmeth.2481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41531-020-00134-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132588702", 
              "https://doi.org/10.1038/s41531-020-00134-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090900187", 
              "https://doi.org/10.1038/nature23282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41531-020-00147-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134295384", 
              "https://doi.org/10.1038/s41531-020-00147-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-04-25", 
        "datePublishedReg": "2022-04-25", 
        "description": "BackgroundNeural stem cells (NSCs) have the ability to generate a variety of functional neural cell types and have a high potential for neuronal cell regeneration and recovery. Thus, they been recognized as the best source of cell therapy for neurodegenerative diseases, such as Parkinson\u2019s disease (PD). Owing to the possibility of paracrine effect-based therapeutic mechanisms and easier clinical accessibility, extracellular vesicles (EVs), which possess very similar bio-functional components from their cellular origin, have emerged as potential alternatives in regenerative medicine.Material and methodsEVs were isolated from human fibroblast (HFF) and human NSC (F3 cells). The supernatant of the cells was concentrated by a tangential flow filtration (TFF) system. Then, the final EVs were isolated using a total EV isolation kit.ResultsIn this study, we demonstrate the potential protective effect of human NSC-derived EVs, showing the prevention of PD pathologies in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo mouse models. Human NSC and F3 cell (F3)-derived EVs reduced the intracellular reactive oxygen species (ROS) and associated apoptotic pathways. In addition, F3-derived EVs induced downregulation of pro-inflammatory factors and significantly decreased 6-OHDA-induced dopaminergic neuronal loss in vivo. F3 specific microRNAs (miRNAs) such as hsa-mir-182-5p, hsa-mir-183-5p, hsa-mir-9, and hsa-let-7, which are involved in cell differentiation, neurotrophic function, and immune modulation, were found in F3-derived EVs.ConclusionsWe report that human NSC-derived EVs show an effective neuroprotective property in an in vitro transwell system and in a PD model. The EVs clearly decreased ROS and pro-inflammatory cytokines. Taken together, these results indicate that NSC-derived EVs could potentially help prevent the neuropathology and progression of PD.Graphical Abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12951-022-01356-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1031280", 
            "issn": [
              "1477-3155"
            ], 
            "name": "Journal of Nanobiotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "Parkinson's disease", 
          "human NSCs", 
          "reactive oxygen species", 
          "extracellular vesicles", 
          "disease pathology", 
          "progression of PD", 
          "dopaminergic neuronal loss", 
          "pro-inflammatory factors", 
          "pro-inflammatory cytokines", 
          "stem cell-derived extracellular vesicles", 
          "potential protective effect", 
          "Parkinson's disease pathology", 
          "vivo mouse model", 
          "cell-derived extracellular vesicles", 
          "intracellular reactive oxygen species", 
          "neuronal loss", 
          "neurotrophic function", 
          "neuroprotective properties", 
          "immune modulation", 
          "neural cell types", 
          "PD pathology", 
          "protective effect", 
          "therapeutic mechanism", 
          "mouse model", 
          "transwell system", 
          "PD model", 
          "cell therapy", 
          "neurodegenerative diseases", 
          "cell regeneration", 
          "disease", 
          "cellular origin", 
          "neuronal cell regeneration", 
          "clinical accessibility", 
          "stem cells", 
          "pathology", 
          "specific microRNAs", 
          "apoptotic pathway", 
          "cell types", 
          "F3 cells", 
          "oxygen species", 
          "human fibroblasts", 
          "cell differentiation", 
          "cells", 
          "isolation kit", 
          "MethodsEVs", 
          "cytokines", 
          "neuropathology", 
          "therapy", 
          "ResultsIn", 
          "NSC", 
          "progression", 
          "prevention", 
          "downregulation", 
          "good source", 
          "regenerative medicine", 
          "vivo", 
          "ConclusionsWe", 
          "supernatant", 
          "potential alternative", 
          "fibroblasts", 
          "medicine", 
          "vesicles", 
          "kit", 
          "microRNAs", 
          "pathway", 
          "differentiation", 
          "modulation", 
          "factors", 
          "recovery", 
          "study", 
          "bio-functional components", 
          "regeneration", 
          "HSA", 
          "loss", 
          "effect", 
          "mechanism", 
          "tangential flow filtration system", 
          "function", 
          "ability", 
          "addition", 
          "types", 
          "alternative", 
          "potential", 
          "flow filtration system", 
          "origin", 
          "model", 
          "results", 
          "variety", 
          "accessibility", 
          "possibility", 
          "high potential", 
          "system", 
          "components", 
          "materials", 
          "source", 
          "filtration system", 
          "species", 
          "properties"
        ], 
        "name": "Human neural stem cell-derived extracellular vesicles protect against Parkinson\u2019s disease pathologies", 
        "pagination": "198", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147365812"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12951-022-01356-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35468855"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12951-022-01356-2", 
          "https://app.dimensions.ai/details/publication/pub.1147365812"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_937.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12951-022-01356-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12951-022-01356-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12951-022-01356-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12951-022-01356-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12951-022-01356-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    295 TRIPLES      21 PREDICATES      148 URIs      124 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12951-022-01356-2 schema:about N321934e428714ad28a3e48941b4c36e3
    2 N6a60cb6dae8042bd9a6198e33221eaa3
    3 N735d1a96094a4f278336825c41c78e02
    4 N74be7968f930449bbdca9fc37f6f16be
    5 Na32acb18a5954ebcacfa50cc8314d39e
    6 Na7c2ecb638db41f6b85b7c84d6654340
    7 Naa53a91ff60d439fbaba93ea39851031
    8 Nb2d55a8d4c1c45118438ef4be8dda983
    9 Nd02c6b265aaf4a9dbeaadfd9d1200c9f
    10 anzsrc-for:10
    11 schema:author Ne7a656705c5b4a0c86ade5138d0351b5
    12 schema:citation sg:pub.10.1007/s12272-019-01133-0
    13 sg:pub.10.1007/s12975-017-0599-2
    14 sg:pub.10.1038/nature23282
    15 sg:pub.10.1038/ncomms8029
    16 sg:pub.10.1038/nmeth.2481
    17 sg:pub.10.1038/nrd.2018.136
    18 sg:pub.10.1038/nrdp.2017.13
    19 sg:pub.10.1038/s41531-018-0044-6
    20 sg:pub.10.1038/s41531-019-0105-5
    21 sg:pub.10.1038/s41531-020-00134-x
    22 sg:pub.10.1038/s41531-020-00147-6
    23 sg:pub.10.1038/s41531-021-00179-6
    24 sg:pub.10.1038/s41540-020-00150-w
    25 sg:pub.10.1038/s41580-020-0251-y
    26 sg:pub.10.1038/s41582-020-0344-4
    27 sg:pub.10.1186/1750-1326-9-17
    28 sg:pub.10.1186/s40035-015-0042-0
    29 schema:datePublished 2022-04-25
    30 schema:datePublishedReg 2022-04-25
    31 schema:description BackgroundNeural stem cells (NSCs) have the ability to generate a variety of functional neural cell types and have a high potential for neuronal cell regeneration and recovery. Thus, they been recognized as the best source of cell therapy for neurodegenerative diseases, such as Parkinson’s disease (PD). Owing to the possibility of paracrine effect-based therapeutic mechanisms and easier clinical accessibility, extracellular vesicles (EVs), which possess very similar bio-functional components from their cellular origin, have emerged as potential alternatives in regenerative medicine.Material and methodsEVs were isolated from human fibroblast (HFF) and human NSC (F3 cells). The supernatant of the cells was concentrated by a tangential flow filtration (TFF) system. Then, the final EVs were isolated using a total EV isolation kit.ResultsIn this study, we demonstrate the potential protective effect of human NSC-derived EVs, showing the prevention of PD pathologies in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo mouse models. Human NSC and F3 cell (F3)-derived EVs reduced the intracellular reactive oxygen species (ROS) and associated apoptotic pathways. In addition, F3-derived EVs induced downregulation of pro-inflammatory factors and significantly decreased 6-OHDA-induced dopaminergic neuronal loss in vivo. F3 specific microRNAs (miRNAs) such as hsa-mir-182-5p, hsa-mir-183-5p, hsa-mir-9, and hsa-let-7, which are involved in cell differentiation, neurotrophic function, and immune modulation, were found in F3-derived EVs.ConclusionsWe report that human NSC-derived EVs show an effective neuroprotective property in an in vitro transwell system and in a PD model. The EVs clearly decreased ROS and pro-inflammatory cytokines. Taken together, these results indicate that NSC-derived EVs could potentially help prevent the neuropathology and progression of PD.Graphical Abstract
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N441d48a7b93e49ff8abdabcebf58ecc8
    35 N921089518b2449308263fa86d20de464
    36 sg:journal.1031280
    37 schema:keywords ConclusionsWe
    38 F3 cells
    39 HSA
    40 MethodsEVs
    41 NSC
    42 PD model
    43 PD pathology
    44 Parkinson's disease
    45 Parkinson's disease pathology
    46 ResultsIn
    47 ability
    48 accessibility
    49 addition
    50 alternative
    51 apoptotic pathway
    52 bio-functional components
    53 cell differentiation
    54 cell regeneration
    55 cell therapy
    56 cell types
    57 cell-derived extracellular vesicles
    58 cells
    59 cellular origin
    60 clinical accessibility
    61 components
    62 cytokines
    63 differentiation
    64 disease
    65 disease pathology
    66 dopaminergic neuronal loss
    67 downregulation
    68 effect
    69 extracellular vesicles
    70 factors
    71 fibroblasts
    72 filtration system
    73 flow filtration system
    74 function
    75 good source
    76 high potential
    77 human NSCs
    78 human fibroblasts
    79 immune modulation
    80 intracellular reactive oxygen species
    81 isolation kit
    82 kit
    83 loss
    84 materials
    85 mechanism
    86 medicine
    87 microRNAs
    88 model
    89 modulation
    90 mouse model
    91 neural cell types
    92 neurodegenerative diseases
    93 neuronal cell regeneration
    94 neuronal loss
    95 neuropathology
    96 neuroprotective properties
    97 neurotrophic function
    98 origin
    99 oxygen species
    100 pathology
    101 pathway
    102 possibility
    103 potential
    104 potential alternative
    105 potential protective effect
    106 prevention
    107 pro-inflammatory cytokines
    108 pro-inflammatory factors
    109 progression
    110 progression of PD
    111 properties
    112 protective effect
    113 reactive oxygen species
    114 recovery
    115 regeneration
    116 regenerative medicine
    117 results
    118 source
    119 species
    120 specific microRNAs
    121 stem cell-derived extracellular vesicles
    122 stem cells
    123 study
    124 supernatant
    125 system
    126 tangential flow filtration system
    127 therapeutic mechanism
    128 therapy
    129 transwell system
    130 types
    131 variety
    132 vesicles
    133 vivo
    134 vivo mouse model
    135 schema:name Human neural stem cell-derived extracellular vesicles protect against Parkinson’s disease pathologies
    136 schema:pagination 198
    137 schema:productId N2d98e69386164370839d6b06b3c14770
    138 N3ab0ecdb66de4fe79d9fb6c8346d354c
    139 N76c26b43fdd0491fbc8a13dff06e92dc
    140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147365812
    141 https://doi.org/10.1186/s12951-022-01356-2
    142 schema:sdDatePublished 2022-09-02T16:08
    143 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    144 schema:sdPublisher Nb88a165668da4f0abe091cf3d3894f46
    145 schema:url https://doi.org/10.1186/s12951-022-01356-2
    146 sgo:license sg:explorer/license/
    147 sgo:sdDataset articles
    148 rdf:type schema:ScholarlyArticle
    149 N2d98e69386164370839d6b06b3c14770 schema:name doi
    150 schema:value 10.1186/s12951-022-01356-2
    151 rdf:type schema:PropertyValue
    152 N321934e428714ad28a3e48941b4c36e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name MicroRNAs
    154 rdf:type schema:DefinedTerm
    155 N3ab0ecdb66de4fe79d9fb6c8346d354c schema:name pubmed_id
    156 schema:value 35468855
    157 rdf:type schema:PropertyValue
    158 N441d48a7b93e49ff8abdabcebf58ecc8 schema:issueNumber 1
    159 rdf:type schema:PublicationIssue
    160 N5ebf8fe7c0c343be9e38981b5c57b17a rdf:first sg:person.0655741726.47
    161 rdf:rest Naa3e9a6c6cef4d25adc409620918a8da
    162 N6a60cb6dae8042bd9a6198e33221eaa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Mice
    164 rdf:type schema:DefinedTerm
    165 N735d1a96094a4f278336825c41c78e02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Parkinson Disease
    167 rdf:type schema:DefinedTerm
    168 N74be7968f930449bbdca9fc37f6f16be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Animals
    170 rdf:type schema:DefinedTerm
    171 N76c26b43fdd0491fbc8a13dff06e92dc schema:name dimensions_id
    172 schema:value pub.1147365812
    173 rdf:type schema:PropertyValue
    174 N77aa145bc56c4f0ab155871d1893da54 rdf:first sg:person.015617314175.88
    175 rdf:rest rdf:nil
    176 N921089518b2449308263fa86d20de464 schema:volumeNumber 20
    177 rdf:type schema:PublicationVolume
    178 Na32acb18a5954ebcacfa50cc8314d39e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Extracellular Vesicles
    180 rdf:type schema:DefinedTerm
    181 Na7c2ecb638db41f6b85b7c84d6654340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Reactive Oxygen Species
    183 rdf:type schema:DefinedTerm
    184 Naa3e9a6c6cef4d25adc409620918a8da rdf:first sg:person.0627125000.90
    185 rdf:rest N77aa145bc56c4f0ab155871d1893da54
    186 Naa53a91ff60d439fbaba93ea39851031 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Neural Stem Cells
    188 rdf:type schema:DefinedTerm
    189 Nb2d55a8d4c1c45118438ef4be8dda983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Oxidopamine
    191 rdf:type schema:DefinedTerm
    192 Nb88a165668da4f0abe091cf3d3894f46 schema:name Springer Nature - SN SciGraph project
    193 rdf:type schema:Organization
    194 Nd02c6b265aaf4a9dbeaadfd9d1200c9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Humans
    196 rdf:type schema:DefinedTerm
    197 Ndb41a0393a904b37a9286eda3f22b4cd rdf:first sg:person.01332005273.03
    198 rdf:rest N5ebf8fe7c0c343be9e38981b5c57b17a
    199 Ne7a656705c5b4a0c86ade5138d0351b5 rdf:first sg:person.01032224726.06
    200 rdf:rest Ndb41a0393a904b37a9286eda3f22b4cd
    201 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Technology
    203 rdf:type schema:DefinedTerm
    204 sg:journal.1031280 schema:issn 1477-3155
    205 schema:name Journal of Nanobiotechnology
    206 schema:publisher Springer Nature
    207 rdf:type schema:Periodical
    208 sg:person.01032224726.06 schema:affiliation grid-institutes:grid.31501.36
    209 schema:familyName Lee
    210 schema:givenName Eun Ji
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032224726.06
    212 rdf:type schema:Person
    213 sg:person.01332005273.03 schema:affiliation grid-institutes:grid.31501.36
    214 schema:familyName Choi
    215 schema:givenName Yoori
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332005273.03
    217 rdf:type schema:Person
    218 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
    219 schema:familyName Lee
    220 schema:givenName Dong Soo
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
    222 rdf:type schema:Person
    223 sg:person.0627125000.90 schema:affiliation grid-institutes:None
    224 schema:familyName Hwang
    225 schema:givenName Do Won
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627125000.90
    227 rdf:type schema:Person
    228 sg:person.0655741726.47 schema:affiliation grid-institutes:None
    229 schema:familyName Lee
    230 schema:givenName Hong J.
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655741726.47
    232 rdf:type schema:Person
    233 sg:pub.10.1007/s12272-019-01133-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112514105
    234 https://doi.org/10.1007/s12272-019-01133-0
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s12975-017-0599-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100091992
    237 https://doi.org/10.1007/s12975-017-0599-2
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nature23282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090900187
    240 https://doi.org/10.1038/nature23282
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/ncomms8029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052828259
    243 https://doi.org/10.1038/ncomms8029
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nmeth.2481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022403986
    246 https://doi.org/10.1038/nmeth.2481
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrd.2018.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107291434
    249 https://doi.org/10.1038/nrd.2018.136
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nrdp.2017.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129654
    252 https://doi.org/10.1038/nrdp.2017.13
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/s41531-018-0044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101761774
    255 https://doi.org/10.1038/s41531-018-0044-6
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/s41531-019-0105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123949005
    258 https://doi.org/10.1038/s41531-019-0105-5
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/s41531-020-00134-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1132588702
    261 https://doi.org/10.1038/s41531-020-00134-x
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/s41531-020-00147-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134295384
    264 https://doi.org/10.1038/s41531-020-00147-6
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/s41531-021-00179-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137140843
    267 https://doi.org/10.1038/s41531-021-00179-6
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/s41540-020-00150-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1132038982
    270 https://doi.org/10.1038/s41540-020-00150-w
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/s41580-020-0251-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1127864626
    273 https://doi.org/10.1038/s41580-020-0251-y
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/s41582-020-0344-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126915572
    276 https://doi.org/10.1038/s41582-020-0344-4
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/1750-1326-9-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004969100
    279 https://doi.org/10.1186/1750-1326-9-17
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1186/s40035-015-0042-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050492278
    282 https://doi.org/10.1186/s40035-015-0042-0
    283 rdf:type schema:CreativeWork
    284 grid-institutes:None schema:alternateName Research Institute, huMetaCELL Inc., 220, Bugwang-ro, Puchon, Gyeonggi-do, Republic of Korea
    285 THERABEST, Inc., Seocho-daero 40-gil 41, 06656, Seoul, South Korea
    286 schema:name College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
    287 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
    288 Research Institute, huMetaCELL Inc., 220, Bugwang-ro, Puchon, Gyeonggi-do, Republic of Korea
    289 THERABEST, Inc., Seocho-daero 40-gil 41, 06656, Seoul, South Korea
    290 rdf:type schema:Organization
    291 grid-institutes:grid.31501.36 schema:alternateName Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
    292 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
    293 Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
    294 Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea
    295 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...