Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-16

AUTHORS

Wei Cao, Mengyao Jin, Kang Yang, Bo Chen, Maoming Xiong, Xiang Li, Guodong Cao

ABSTRACT

Chemodynamic therapy (CDT) catalyzed by transition metal and starvation therapy catalyzed by intracellular metabolite oxidases are both classic tumor treatments based on nanocatalysts. CDT monotherapy has limitations including low catalytic efficiency of metal ions and insufficient endogenous hydrogen peroxide (H2O2). Also, single starvation therapy shows limited ability on resisting tumors. The "metal-oxidase" cascade catalytic system is to introduce intracellular metabolite oxidases into the metal-based nanoplatform, which perfectly solves the shortcomings of the above-mentioned monotherapiesIn this system, oxidases can not only consume tumor nutrients to produce a "starvation effect", but also provide CDT with sufficient H2O2 and a suitable acidic environment, which further promote synergy between CDT and starvation therapy, leading to enhanced antitumor effects. More importantly, the "metal-oxidase" system can be combined with other antitumor therapies (such as photothermal therapy, hypoxia-activated drug therapy, chemotherapy, and immunotherapy) to maximize their antitumor effects. In addition, both metal-based nanoparticles and oxidases can activate tumor immunity through multiple pathways, so the combination of the "metal-oxidase" system with immunotherapy has a powerful synergistic effect. This article firstly introduced the metals which induce CDT and the oxidases which induce starvation therapy and then described the "metal-oxidase" cascade catalytic system in detail. Moreover, we highlight the application of the "metal-oxidase" system in combination with numerous antitumor therapies, especially in combination with immunotherapy, expecting to provide new ideas for tumor treatment. More... »

PAGES

325

References to SciGraph publications

  • 2016-09-20. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing in NATURE IMMUNOLOGY
  • 2017-08-25. Tumor-selective catalytic nanomedicine by nanocatalyst delivery in NATURE COMMUNICATIONS
  • 2019-01-28. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness in NATURE NANOTECHNOLOGY
  • 2019-05-02. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice in NATURE COMMUNICATIONS
  • 2018-11-09. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression in BRITISH JOURNAL OF CANCER
  • 2020-01-13. The entry of nanoparticles into solid tumours in NATURE MATERIALS
  • 2020-08-24. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy in CELL RESEARCH
  • 2016-10-21. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy in NATURE COMMUNICATIONS
  • 2019-05-17. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion in NATURE REVIEWS CANCER
  • 2021-06-09. Antimicrobial properties of L-amino acid oxidase: biochemical features and biomedical applications in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2013-04-09. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin in NATURE COMMUNICATIONS
  • 2020-05-18. Molecular mechanisms and cellular functions of cGAS–STING signalling in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2016-10-27. Fever-range hyperthermia improves the anti-apoptotic effect induced by low pH on human neutrophils promoting a proangiogenic profile in CELL DEATH & DISEASE
  • 2010-01-25. Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting in CANCER NANOTECHNOLOGY
  • 2014-07-13. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid in NATURE
  • 2021-05-26. Overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma in JOURNAL OF NANOBIOTECHNOLOGY
  • 2008-03-11. Glucose oxidase: natural occurrence, function, properties and industrial applications in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2017-12-01. More lactate, please in NATURE REVIEWS CANCER
  • 2011-04-14. Otto Warburg's contributions to current concepts of cancer metabolism in NATURE REVIEWS CANCER
  • 2019-04-01. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy in JOURNAL OF HEMATOLOGY & ONCOLOGY
  • 2016-01-22. Ferroptosis: process and function in CELL DEATH & DIFFERENTIATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12951-021-01074-1

    DOI

    http://dx.doi.org/10.1186/s12951-021-01074-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141943095

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34656118


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412679.f", 
              "name": [
                "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Wei", 
            "id": "sg:person.016550322501.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550322501.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412679.f", 
              "name": [
                "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jin", 
            "givenName": "Mengyao", 
            "id": "sg:person.013057755455.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057755455.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.452799.4", 
              "name": [
                "Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Kang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412679.f", 
              "name": [
                "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Bo", 
            "id": "sg:person.010042014737.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042014737.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412679.f", 
              "name": [
                "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiong", 
            "givenName": "Maoming", 
            "id": "sg:person.015063573365.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063573365.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xiang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.412679.f", 
              "name": [
                "Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Guodong", 
            "id": "sg:person.013374142703.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374142703.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41568-019-0149-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114527773", 
              "https://doi.org/10.1038/s41568-019-0149-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004417217", 
              "https://doi.org/10.1038/ncomms13193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41580-020-0244-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127685319", 
              "https://doi.org/10.1038/s41580-020-0244-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008995827", 
              "https://doi.org/10.1038/nrc3038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.3558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007500673", 
              "https://doi.org/10.1038/ni.3558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13045-019-0721-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113177509", 
              "https://doi.org/10.1186/s13045-019-0721-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cdd.2015.158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018177351", 
              "https://doi.org/10.1038/cdd.2015.158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12951-021-00901-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138374484", 
              "https://doi.org/10.1186/s12951-021-00901-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1407-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042359487", 
              "https://doi.org/10.1007/s00253-008-1407-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41416-018-0333-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109798944", 
              "https://doi.org/10.1038/s41416-018-0333-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-018-0356-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111670104", 
              "https://doi.org/10.1038/s41565-018-0356-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2016.337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032571093", 
              "https://doi.org/10.1038/cddis.2016.337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2017.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092404480", 
              "https://doi.org/10.1038/nrc.2017.101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-021-11381-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138721065", 
              "https://doi.org/10.1007/s00253-021-11381-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41422-020-00395-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130292681", 
              "https://doi.org/10.1038/s41422-020-00395-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41563-019-0566-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124047591", 
              "https://doi.org/10.1038/s41563-019-0566-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013292343", 
              "https://doi.org/10.1038/nature13490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-60761-609-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012494118", 
              "https://doi.org/10.1007/978-1-60761-609-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00424-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091298606", 
              "https://doi.org/10.1038/s41467-017-00424-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001267654", 
              "https://doi.org/10.1038/ncomms2655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-09760-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113874969", 
              "https://doi.org/10.1038/s41467-019-09760-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-16", 
        "datePublishedReg": "2021-10-16", 
        "description": "Chemodynamic therapy (CDT) catalyzed by transition metal and starvation therapy catalyzed by intracellular metabolite oxidases are both classic tumor treatments based on nanocatalysts. CDT monotherapy has limitations including low catalytic efficiency of metal ions and insufficient endogenous hydrogen peroxide (H2O2). Also, single starvation therapy shows limited ability on resisting tumors. The \"metal-oxidase\" cascade catalytic system is to introduce intracellular metabolite oxidases into the metal-based nanoplatform, which perfectly solves the shortcomings of the above-mentioned monotherapiesIn this system, oxidases can not only consume tumor nutrients to produce a \"starvation effect\", but also provide CDT with sufficient H2O2 and a suitable acidic environment, which further promote synergy between CDT and starvation therapy, leading to enhanced antitumor effects. More importantly, the \"metal-oxidase\" system can be combined with other antitumor therapies (such as photothermal therapy, hypoxia-activated drug therapy, chemotherapy, and immunotherapy) to maximize their antitumor effects. In addition, both metal-based nanoparticles and oxidases can activate tumor immunity through multiple pathways, so the combination of the \"metal-oxidase\" system with immunotherapy has a powerful synergistic effect. This article firstly introduced the metals which induce CDT and the oxidases which induce starvation therapy and then described the \"metal-oxidase\" cascade catalytic system in detail. Moreover, we highlight the application of the \"metal-oxidase\" system in combination with numerous antitumor therapies, especially in combination with immunotherapy, expecting to provide new ideas for tumor treatment.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12951-021-01074-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8355410", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031280", 
            "issn": [
              "1477-3155"
            ], 
            "name": "Journal of Nanobiotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "antitumor effects", 
          "antitumor therapy", 
          "tumor treatment", 
          "enhanced antitumor effect", 
          "tumor immunity", 
          "therapy", 
          "powerful synergistic effect", 
          "immunotherapy", 
          "tumor therapy", 
          "multiple pathways", 
          "treatment", 
          "starvation therapy", 
          "monotherapy", 
          "tumors", 
          "limited ability", 
          "immunity", 
          "oxidase", 
          "effect", 
          "synergistic effect", 
          "combination", 
          "endogenous hydrogen peroxide", 
          "pathway", 
          "hydrogen peroxide", 
          "synergistic tumor therapy", 
          "chemodynamic therapy", 
          "acidic environment", 
          "ability", 
          "starvation effects", 
          "addition", 
          "synergy", 
          "nanoplatform", 
          "system", 
          "limitations", 
          "peroxide", 
          "nutrients", 
          "article", 
          "metal-based nanoparticles", 
          "detail", 
          "low catalytic efficiency", 
          "new ideas", 
          "catalytic system", 
          "shortcomings", 
          "metal-based nanomaterials", 
          "environment", 
          "applications", 
          "metal ions", 
          "transition metals", 
          "catalytic efficiency", 
          "nanoparticles", 
          "metals", 
          "idea", 
          "efficiency", 
          "nanocatalyst", 
          "nanomaterials", 
          "ions", 
          "intracellular metabolite oxidases", 
          "metabolite oxidases", 
          "classic tumor treatments", 
          "CDT monotherapy", 
          "insufficient endogenous hydrogen peroxide", 
          "single starvation therapy", 
          "metal-based nanoplatform", 
          "monotherapiesIn", 
          "tumor nutrients", 
          "suitable acidic environment", 
          "numerous antitumor therapies", 
          "Fenton/Fenton-like metal-based nanomaterials", 
          "Fenton-like metal-based nanomaterials"
        ], 
        "name": "Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy", 
        "pagination": "325", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141943095"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12951-021-01074-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34656118"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12951-021-01074-1", 
          "https://app.dimensions.ai/details/publication/pub.1141943095"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12951-021-01074-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01074-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01074-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01074-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01074-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      22 PREDICATES      113 URIs      85 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12951-021-01074-1 schema:about anzsrc-for:10
    2 schema:author Ne7199e9df98a4fce8c5a9ee6a874c26c
    3 schema:citation sg:pub.10.1007/978-1-60761-609-2_3
    4 sg:pub.10.1007/s00253-008-1407-4
    5 sg:pub.10.1007/s00253-021-11381-0
    6 sg:pub.10.1038/cdd.2015.158
    7 sg:pub.10.1038/cddis.2016.337
    8 sg:pub.10.1038/nature13490
    9 sg:pub.10.1038/ncomms13193
    10 sg:pub.10.1038/ncomms2655
    11 sg:pub.10.1038/ni.3558
    12 sg:pub.10.1038/nrc.2017.101
    13 sg:pub.10.1038/nrc3038
    14 sg:pub.10.1038/s41416-018-0333-1
    15 sg:pub.10.1038/s41422-020-00395-4
    16 sg:pub.10.1038/s41467-017-00424-8
    17 sg:pub.10.1038/s41467-019-09760-3
    18 sg:pub.10.1038/s41563-019-0566-2
    19 sg:pub.10.1038/s41565-018-0356-z
    20 sg:pub.10.1038/s41568-019-0149-1
    21 sg:pub.10.1038/s41580-020-0244-x
    22 sg:pub.10.1186/s12951-021-00901-9
    23 sg:pub.10.1186/s13045-019-0721-x
    24 schema:datePublished 2021-10-16
    25 schema:datePublishedReg 2021-10-16
    26 schema:description Chemodynamic therapy (CDT) catalyzed by transition metal and starvation therapy catalyzed by intracellular metabolite oxidases are both classic tumor treatments based on nanocatalysts. CDT monotherapy has limitations including low catalytic efficiency of metal ions and insufficient endogenous hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Also, single starvation therapy shows limited ability on resisting tumors. The "metal-oxidase" cascade catalytic system is to introduce intracellular metabolite oxidases into the metal-based nanoplatform, which perfectly solves the shortcomings of the above-mentioned monotherapiesIn this system, oxidases can not only consume tumor nutrients to produce a "starvation effect", but also provide CDT with sufficient H<sub>2</sub>O<sub>2</sub> and a suitable acidic environment, which further promote synergy between CDT and starvation therapy, leading to enhanced antitumor effects. More importantly, the "metal-oxidase" system can be combined with other antitumor therapies (such as photothermal therapy, hypoxia-activated drug therapy, chemotherapy, and immunotherapy) to maximize their antitumor effects. In addition, both metal-based nanoparticles and oxidases can activate tumor immunity through multiple pathways, so the combination of the "metal-oxidase" system with immunotherapy has a powerful synergistic effect. This article firstly introduced the metals which induce CDT and the oxidases which induce starvation therapy and then described the "metal-oxidase" cascade catalytic system in detail. Moreover, we highlight the application of the "metal-oxidase" system in combination with numerous antitumor therapies, especially in combination with immunotherapy, expecting to provide new ideas for tumor treatment.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N01229565876048f3baaa0ce7e1015ffa
    31 Nce41745c9b33408d8c52c1ae96db6350
    32 sg:journal.1031280
    33 schema:keywords CDT monotherapy
    34 Fenton-like metal-based nanomaterials
    35 Fenton/Fenton-like metal-based nanomaterials
    36 ability
    37 acidic environment
    38 addition
    39 antitumor effects
    40 antitumor therapy
    41 applications
    42 article
    43 catalytic efficiency
    44 catalytic system
    45 chemodynamic therapy
    46 classic tumor treatments
    47 combination
    48 detail
    49 effect
    50 efficiency
    51 endogenous hydrogen peroxide
    52 enhanced antitumor effect
    53 environment
    54 hydrogen peroxide
    55 idea
    56 immunity
    57 immunotherapy
    58 insufficient endogenous hydrogen peroxide
    59 intracellular metabolite oxidases
    60 ions
    61 limitations
    62 limited ability
    63 low catalytic efficiency
    64 metabolite oxidases
    65 metal ions
    66 metal-based nanomaterials
    67 metal-based nanoparticles
    68 metal-based nanoplatform
    69 metals
    70 monotherapiesIn
    71 monotherapy
    72 multiple pathways
    73 nanocatalyst
    74 nanomaterials
    75 nanoparticles
    76 nanoplatform
    77 new ideas
    78 numerous antitumor therapies
    79 nutrients
    80 oxidase
    81 pathway
    82 peroxide
    83 powerful synergistic effect
    84 shortcomings
    85 single starvation therapy
    86 starvation effects
    87 starvation therapy
    88 suitable acidic environment
    89 synergistic effect
    90 synergistic tumor therapy
    91 synergy
    92 system
    93 therapy
    94 transition metals
    95 treatment
    96 tumor immunity
    97 tumor nutrients
    98 tumor therapy
    99 tumor treatment
    100 tumors
    101 schema:name Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy
    102 schema:pagination 325
    103 schema:productId N0e8ad7c5036b45f3a9e2d4cdc2317bfc
    104 N138c555c6ea64b00ba772bf7fe5fef21
    105 Ncdd5fb0c8feb4a2aaa81fd3c85b9b33c
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141943095
    107 https://doi.org/10.1186/s12951-021-01074-1
    108 schema:sdDatePublished 2022-01-01T18:59
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher Nb807648639aa40f9ad291584086039b0
    111 schema:url https://doi.org/10.1186/s12951-021-01074-1
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N01229565876048f3baaa0ce7e1015ffa schema:volumeNumber 19
    116 rdf:type schema:PublicationVolume
    117 N0e8ad7c5036b45f3a9e2d4cdc2317bfc schema:name pubmed_id
    118 schema:value 34656118
    119 rdf:type schema:PropertyValue
    120 N138c555c6ea64b00ba772bf7fe5fef21 schema:name dimensions_id
    121 schema:value pub.1141943095
    122 rdf:type schema:PropertyValue
    123 N44fbd246533a40c6937c6e7fee8850fd schema:affiliation grid-institutes:grid.13402.34
    124 schema:familyName Li
    125 schema:givenName Xiang
    126 rdf:type schema:Person
    127 N81f33c929e294ee28332ba9464cee043 schema:affiliation grid-institutes:grid.452799.4
    128 schema:familyName Yang
    129 schema:givenName Kang
    130 rdf:type schema:Person
    131 N959c066494ab4768ae88a694c7a968ae rdf:first sg:person.013057755455.77
    132 rdf:rest N9d7add0d4abb4b21a4ef9dcb1ebdf240
    133 N9cd947d3e4f949a9ac877f4262c6ee2f rdf:first sg:person.013374142703.31
    134 rdf:rest rdf:nil
    135 N9d7add0d4abb4b21a4ef9dcb1ebdf240 rdf:first N81f33c929e294ee28332ba9464cee043
    136 rdf:rest Nf0727993dc024e9e8347fd38b73a61da
    137 Nb807648639aa40f9ad291584086039b0 schema:name Springer Nature - SN SciGraph project
    138 rdf:type schema:Organization
    139 Ncdd5fb0c8feb4a2aaa81fd3c85b9b33c schema:name doi
    140 schema:value 10.1186/s12951-021-01074-1
    141 rdf:type schema:PropertyValue
    142 Nce41745c9b33408d8c52c1ae96db6350 schema:issueNumber 1
    143 rdf:type schema:PublicationIssue
    144 Nd5e386af465143e99b4e2ce834136549 rdf:first N44fbd246533a40c6937c6e7fee8850fd
    145 rdf:rest N9cd947d3e4f949a9ac877f4262c6ee2f
    146 Ne7199e9df98a4fce8c5a9ee6a874c26c rdf:first sg:person.016550322501.40
    147 rdf:rest N959c066494ab4768ae88a694c7a968ae
    148 Nf0727993dc024e9e8347fd38b73a61da rdf:first sg:person.010042014737.08
    149 rdf:rest Nf77419c534fc4a768a8750dfd256db0d
    150 Nf77419c534fc4a768a8750dfd256db0d rdf:first sg:person.015063573365.48
    151 rdf:rest Nd5e386af465143e99b4e2ce834136549
    152 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Technology
    154 rdf:type schema:DefinedTerm
    155 sg:grant.8355410 http://pending.schema.org/fundedItem sg:pub.10.1186/s12951-021-01074-1
    156 rdf:type schema:MonetaryGrant
    157 sg:journal.1031280 schema:issn 1477-3155
    158 schema:name Journal of Nanobiotechnology
    159 schema:publisher Springer Nature
    160 rdf:type schema:Periodical
    161 sg:person.010042014737.08 schema:affiliation grid-institutes:grid.412679.f
    162 schema:familyName Chen
    163 schema:givenName Bo
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042014737.08
    165 rdf:type schema:Person
    166 sg:person.013057755455.77 schema:affiliation grid-institutes:grid.412679.f
    167 schema:familyName Jin
    168 schema:givenName Mengyao
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013057755455.77
    170 rdf:type schema:Person
    171 sg:person.013374142703.31 schema:affiliation grid-institutes:grid.412679.f
    172 schema:familyName Cao
    173 schema:givenName Guodong
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374142703.31
    175 rdf:type schema:Person
    176 sg:person.015063573365.48 schema:affiliation grid-institutes:grid.412679.f
    177 schema:familyName Xiong
    178 schema:givenName Maoming
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063573365.48
    180 rdf:type schema:Person
    181 sg:person.016550322501.40 schema:affiliation grid-institutes:grid.412679.f
    182 schema:familyName Cao
    183 schema:givenName Wei
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550322501.40
    185 rdf:type schema:Person
    186 sg:pub.10.1007/978-1-60761-609-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012494118
    187 https://doi.org/10.1007/978-1-60761-609-2_3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00253-008-1407-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042359487
    190 https://doi.org/10.1007/s00253-008-1407-4
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00253-021-11381-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138721065
    193 https://doi.org/10.1007/s00253-021-11381-0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/cdd.2015.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018177351
    196 https://doi.org/10.1038/cdd.2015.158
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/cddis.2016.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032571093
    199 https://doi.org/10.1038/cddis.2016.337
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature13490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013292343
    202 https://doi.org/10.1038/nature13490
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/ncomms13193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004417217
    205 https://doi.org/10.1038/ncomms13193
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/ncomms2655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001267654
    208 https://doi.org/10.1038/ncomms2655
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/ni.3558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007500673
    211 https://doi.org/10.1038/ni.3558
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nrc.2017.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092404480
    214 https://doi.org/10.1038/nrc.2017.101
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nrc3038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008995827
    217 https://doi.org/10.1038/nrc3038
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/s41416-018-0333-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109798944
    220 https://doi.org/10.1038/s41416-018-0333-1
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41422-020-00395-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130292681
    223 https://doi.org/10.1038/s41422-020-00395-4
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/s41467-017-00424-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091298606
    226 https://doi.org/10.1038/s41467-017-00424-8
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/s41467-019-09760-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113874969
    229 https://doi.org/10.1038/s41467-019-09760-3
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/s41563-019-0566-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124047591
    232 https://doi.org/10.1038/s41563-019-0566-2
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s41565-018-0356-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1111670104
    235 https://doi.org/10.1038/s41565-018-0356-z
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/s41568-019-0149-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114527773
    238 https://doi.org/10.1038/s41568-019-0149-1
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/s41580-020-0244-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1127685319
    241 https://doi.org/10.1038/s41580-020-0244-x
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1186/s12951-021-00901-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138374484
    244 https://doi.org/10.1186/s12951-021-00901-9
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/s13045-019-0721-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1113177509
    247 https://doi.org/10.1186/s13045-019-0721-x
    248 rdf:type schema:CreativeWork
    249 grid-institutes:grid.13402.34 schema:alternateName State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 People’s Republic of China
    250 schema:name State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 People’s Republic of China
    251 rdf:type schema:Organization
    252 grid-institutes:grid.412679.f schema:alternateName Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People’s Republic of China
    253 schema:name Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 People’s Republic of China
    254 rdf:type schema:Organization
    255 grid-institutes:grid.452799.4 schema:alternateName Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022 People’s Republic of China
    256 schema:name Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022 People’s Republic of China
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...