Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H2S therapy of cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-14

AUTHORS

Xiaoyang Guo, Jia Liu, Lingdong Jiang, Wanjun Gong, Huixia Wu, Qianjun He

ABSTRACT

BACKGROUND: Photothermal therapy (PTT) frequently cause thermal resistance in tumor cells by inducing the heat shock response, limiting its therapeutic effect. Hydrogen sulfide (H2S) with appropriate concentration can reverse the Warburg effect in cancer cells. The combination of PTT with H2S gas therapy is expected to achieve synergistic tumor treatment. METHODS: Here, sulourea (Su) is developed as a thermosensitive/hydrolysable H2S donor to be loaded into Pd nanocubes through in-depth coordination for construction of the Pd-Su nanomedicine for the first time to achieve photo-controlled H2S release, realizing the effective combination of photothermal therapy and H2S gas therapy. RESULTS: The Pd-Su nanomedicine shows a high Su loading capacity (85 mg g-1), a high near-infrared (NIR) photothermal conversion efficiency (69.4%), and NIR-controlled H2S release by the photothermal-triggered hydrolysis of Su. The combination of photothermal heating and H2S produces a strong synergetic effect by H2S-induced inhibition of heat shock response, thereby effectively inhibiting tumor growth. Moreover, high intratumoral accumulation of the Pd-Su nanomedicine after intravenous injection also enables photothermal/photoacoustic dual-mode imaging-guided tumor treatment. CONCLUSIONS: The proposed NIR-responsive heat/H2S release strategy provides a new approach for effective cancer therapy. More... »

PAGES

321

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12951-021-01042-9

DOI

http://dx.doi.org/10.1186/s12951-021-01042-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141888368

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34649589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234 China", 
          "id": "http://www.grid.ac/institutes/grid.412531.0", 
          "name": [
            "The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Xiaoyang", 
        "id": "sg:person.010503070271.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010503070271.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Laboratory, Longgang District People\u2019s Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong China", 
          "id": "http://www.grid.ac/institutes/grid.10784.3a", 
          "name": [
            "Central Laboratory, Longgang District People\u2019s Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jia", 
        "id": "sg:person.014651330114.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651330114.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Lingdong", 
        "id": "sg:person.015446710514.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015446710514.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Wanjun", 
        "id": "sg:person.015635237343.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015635237343.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234 China", 
          "id": "http://www.grid.ac/institutes/grid.412531.0", 
          "name": [
            "The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Huixia", 
        "id": "sg:person.0724663612.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724663612.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China", 
          "id": "http://www.grid.ac/institutes/grid.263488.3", 
          "name": [
            "Central Laboratory, Longgang District People\u2019s Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong China", 
            "Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Qianjun", 
        "id": "sg:person.0751012046.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751012046.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-016-1349-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023476494", 
          "https://doi.org/10.1007/s12274-016-1349-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:rugc.0000045862.69442.aa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038373206", 
          "https://doi.org/10.1023/b:rugc.0000045862.69442.aa"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06630-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107503760", 
          "https://doi.org/10.1038/s41467-018-06630-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd2425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017010462", 
          "https://doi.org/10.1038/nrd2425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-014-0605-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009078481", 
          "https://doi.org/10.1007/s12274-014-0605-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-14", 
    "datePublishedReg": "2021-10-14", 
    "description": "BACKGROUND: Photothermal therapy (PTT) frequently cause thermal resistance in tumor cells by inducing the heat shock response, limiting its therapeutic effect. Hydrogen sulfide (H2S) with appropriate concentration can reverse the Warburg effect in cancer cells. The combination of PTT with H2S gas therapy is expected to achieve synergistic tumor treatment.\nMETHODS: Here, sulourea (Su) is developed as a thermosensitive/hydrolysable H2S donor to be loaded into Pd nanocubes through in-depth coordination for construction of the Pd-Su nanomedicine for the first time to achieve photo-controlled H2S release, realizing the effective combination of photothermal therapy and H2S gas therapy.\nRESULTS: The Pd-Su nanomedicine shows a high Su loading capacity (85\u00a0mg\u00a0g-1), a high near-infrared (NIR) photothermal conversion efficiency (69.4%), and NIR-controlled H2S release by the photothermal-triggered hydrolysis of Su. The combination of photothermal heating and H2S produces a strong synergetic effect by H2S-induced inhibition of heat shock response, thereby effectively inhibiting tumor growth. Moreover, high intratumoral accumulation of the Pd-Su nanomedicine after intravenous injection also enables photothermal/photoacoustic dual-mode imaging-guided tumor treatment.\nCONCLUSIONS: The proposed NIR-responsive heat/H2S release strategy provides a new approach for effective cancer therapy.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12951-021-01042-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8931551", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031280", 
        "issn": [
          "1477-3155"
        ], 
        "name": "Journal of Nanobiotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "gas therapy", 
      "tumor treatment", 
      "higher intratumoral accumulation", 
      "H2S therapy", 
      "heat shock response", 
      "therapeutic effect", 
      "intravenous injection", 
      "effective cancer therapy", 
      "tumor growth", 
      "therapy", 
      "intratumoral accumulation", 
      "tumor cells", 
      "cancer cells", 
      "cancer therapy", 
      "Warburg effect", 
      "shock response", 
      "treatment", 
      "photothermal therapy", 
      "cells", 
      "combination of PTT", 
      "cancer", 
      "release", 
      "response", 
      "appropriate concentration", 
      "injection", 
      "effective combination", 
      "effect", 
      "inhibition", 
      "synergistic tumor treatment", 
      "combination", 
      "nanomedicine", 
      "donors", 
      "accumulation", 
      "resistance", 
      "hydrogen sulfide", 
      "first time", 
      "concentration", 
      "strategies", 
      "time", 
      "capacity", 
      "growth", 
      "SU", 
      "loading capacity", 
      "new approach", 
      "coordination", 
      "thermal resistance", 
      "release strategies", 
      "hydrolysis", 
      "conversion efficiency", 
      "strong synergetic effect", 
      "approach", 
      "synergetic effect", 
      "photothermal conversion efficiency", 
      "photothermal heating", 
      "nanocubes", 
      "Pd nanocubes", 
      "heating", 
      "efficiency", 
      "NIR", 
      "sulfide", 
      "construction", 
      "infrared (NIR) photothermal conversion efficiency", 
      "sulourea", 
      "depth coordination", 
      "Pd-Su nanomedicine", 
      "high Su loading capacity", 
      "Su loading capacity", 
      "photothermal-triggered hydrolysis", 
      "photoacoustic dual-mode imaging-guided tumor treatment", 
      "dual-mode imaging-guided tumor treatment", 
      "imaging-guided tumor treatment", 
      "NIR-responsive heat/H", 
      "heat/H", 
      "Sulourea-coordinated Pd nanocubes"
    ], 
    "name": "Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H2S therapy of cancer", 
    "pagination": "321", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1141888368"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12951-021-01042-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34649589"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12951-021-01042-9", 
      "https://app.dimensions.ai/details/publication/pub.1141888368"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_917.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12951-021-01042-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01042-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01042-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01042-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12951-021-01042-9'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      22 PREDICATES      104 URIs      92 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12951-021-01042-9 schema:about anzsrc-for:10
2 schema:author Ndd52e0c06e68448c8ab1b04722a21334
3 schema:citation sg:pub.10.1007/s12274-014-0605-x
4 sg:pub.10.1007/s12274-016-1349-6
5 sg:pub.10.1023/b:rugc.0000045862.69442.aa
6 sg:pub.10.1038/nrd2425
7 sg:pub.10.1038/s41467-018-06630-2
8 schema:datePublished 2021-10-14
9 schema:datePublishedReg 2021-10-14
10 schema:description BACKGROUND: Photothermal therapy (PTT) frequently cause thermal resistance in tumor cells by inducing the heat shock response, limiting its therapeutic effect. Hydrogen sulfide (H<sub>2</sub>S) with appropriate concentration can reverse the Warburg effect in cancer cells. The combination of PTT with H<sub>2</sub>S gas therapy is expected to achieve synergistic tumor treatment. METHODS: Here, sulourea (Su) is developed as a thermosensitive/hydrolysable H<sub>2</sub>S donor to be loaded into Pd nanocubes through in-depth coordination for construction of the Pd-Su nanomedicine for the first time to achieve photo-controlled H<sub>2</sub>S release, realizing the effective combination of photothermal therapy and H<sub>2</sub>S gas therapy. RESULTS: The Pd-Su nanomedicine shows a high Su loading capacity (85 mg g<sup>-1</sup>), a high near-infrared (NIR) photothermal conversion efficiency (69.4%), and NIR-controlled H<sub>2</sub>S release by the photothermal-triggered hydrolysis of Su. The combination of photothermal heating and H<sub>2</sub>S produces a strong synergetic effect by H<sub>2</sub>S-induced inhibition of heat shock response, thereby effectively inhibiting tumor growth. Moreover, high intratumoral accumulation of the Pd-Su nanomedicine after intravenous injection also enables photothermal/photoacoustic dual-mode imaging-guided tumor treatment. CONCLUSIONS: The proposed NIR-responsive heat/H<sub>2</sub>S release strategy provides a new approach for effective cancer therapy.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N1bd37911aeec4b55a4cb902930843c8e
15 Nbf0001cafca64522861f0d540813097e
16 sg:journal.1031280
17 schema:keywords H2S therapy
18 NIR
19 NIR-responsive heat/H
20 Pd nanocubes
21 Pd-Su nanomedicine
22 SU
23 Su loading capacity
24 Sulourea-coordinated Pd nanocubes
25 Warburg effect
26 accumulation
27 approach
28 appropriate concentration
29 cancer
30 cancer cells
31 cancer therapy
32 capacity
33 cells
34 combination
35 combination of PTT
36 concentration
37 construction
38 conversion efficiency
39 coordination
40 depth coordination
41 donors
42 dual-mode imaging-guided tumor treatment
43 effect
44 effective cancer therapy
45 effective combination
46 efficiency
47 first time
48 gas therapy
49 growth
50 heat shock response
51 heat/H
52 heating
53 high Su loading capacity
54 higher intratumoral accumulation
55 hydrogen sulfide
56 hydrolysis
57 imaging-guided tumor treatment
58 infrared (NIR) photothermal conversion efficiency
59 inhibition
60 injection
61 intratumoral accumulation
62 intravenous injection
63 loading capacity
64 nanocubes
65 nanomedicine
66 new approach
67 photoacoustic dual-mode imaging-guided tumor treatment
68 photothermal conversion efficiency
69 photothermal heating
70 photothermal therapy
71 photothermal-triggered hydrolysis
72 release
73 release strategies
74 resistance
75 response
76 shock response
77 strategies
78 strong synergetic effect
79 sulfide
80 sulourea
81 synergetic effect
82 synergistic tumor treatment
83 therapeutic effect
84 therapy
85 thermal resistance
86 time
87 treatment
88 tumor cells
89 tumor growth
90 tumor treatment
91 schema:name Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H2S therapy of cancer
92 schema:pagination 321
93 schema:productId N2223757bd78843d99fbdcee41ccb731c
94 N8e8f69a1074a40e48731b7396ae1dd4d
95 Na7006ddbc02c4c5c8dc7813011b7f016
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141888368
97 https://doi.org/10.1186/s12951-021-01042-9
98 schema:sdDatePublished 2022-01-01T19:03
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N113f91b94e144b6b9b3ed0e075c606ac
101 schema:url https://doi.org/10.1186/s12951-021-01042-9
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N113f91b94e144b6b9b3ed0e075c606ac schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N1a167b445aac4dbb8492d7ad8fb15db7 rdf:first sg:person.015446710514.28
108 rdf:rest N7c71ed6a3cf94e1da514396234425737
109 N1bd37911aeec4b55a4cb902930843c8e schema:volumeNumber 19
110 rdf:type schema:PublicationVolume
111 N2223757bd78843d99fbdcee41ccb731c schema:name pubmed_id
112 schema:value 34649589
113 rdf:type schema:PropertyValue
114 N7c71ed6a3cf94e1da514396234425737 rdf:first sg:person.015635237343.40
115 rdf:rest Nef5c4b9eca3f44898605ccf53a3e543b
116 N8c76debdbf9c450184e95ee1fb12c590 rdf:first sg:person.0751012046.13
117 rdf:rest rdf:nil
118 N8e8f69a1074a40e48731b7396ae1dd4d schema:name dimensions_id
119 schema:value pub.1141888368
120 rdf:type schema:PropertyValue
121 Na7006ddbc02c4c5c8dc7813011b7f016 schema:name doi
122 schema:value 10.1186/s12951-021-01042-9
123 rdf:type schema:PropertyValue
124 Nbf0001cafca64522861f0d540813097e schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 Ndd52e0c06e68448c8ab1b04722a21334 rdf:first sg:person.010503070271.24
127 rdf:rest Ne0869249f7424c8ca9c86d0da3a7185b
128 Ne0869249f7424c8ca9c86d0da3a7185b rdf:first sg:person.014651330114.93
129 rdf:rest N1a167b445aac4dbb8492d7ad8fb15db7
130 Nef5c4b9eca3f44898605ccf53a3e543b rdf:first sg:person.0724663612.16
131 rdf:rest N8c76debdbf9c450184e95ee1fb12c590
132 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
133 schema:name Technology
134 rdf:type schema:DefinedTerm
135 sg:grant.8931551 http://pending.schema.org/fundedItem sg:pub.10.1186/s12951-021-01042-9
136 rdf:type schema:MonetaryGrant
137 sg:journal.1031280 schema:issn 1477-3155
138 schema:name Journal of Nanobiotechnology
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.010503070271.24 schema:affiliation grid-institutes:grid.412531.0
142 schema:familyName Guo
143 schema:givenName Xiaoyang
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010503070271.24
145 rdf:type schema:Person
146 sg:person.014651330114.93 schema:affiliation grid-institutes:grid.10784.3a
147 schema:familyName Liu
148 schema:givenName Jia
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651330114.93
150 rdf:type schema:Person
151 sg:person.015446710514.28 schema:affiliation grid-institutes:grid.263488.3
152 schema:familyName Jiang
153 schema:givenName Lingdong
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015446710514.28
155 rdf:type schema:Person
156 sg:person.015635237343.40 schema:affiliation grid-institutes:grid.263488.3
157 schema:familyName Gong
158 schema:givenName Wanjun
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015635237343.40
160 rdf:type schema:Person
161 sg:person.0724663612.16 schema:affiliation grid-institutes:grid.412531.0
162 schema:familyName Wu
163 schema:givenName Huixia
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724663612.16
165 rdf:type schema:Person
166 sg:person.0751012046.13 schema:affiliation grid-institutes:grid.263488.3
167 schema:familyName He
168 schema:givenName Qianjun
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751012046.13
170 rdf:type schema:Person
171 sg:pub.10.1007/s12274-014-0605-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009078481
172 https://doi.org/10.1007/s12274-014-0605-x
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s12274-016-1349-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023476494
175 https://doi.org/10.1007/s12274-016-1349-6
176 rdf:type schema:CreativeWork
177 sg:pub.10.1023/b:rugc.0000045862.69442.aa schema:sameAs https://app.dimensions.ai/details/publication/pub.1038373206
178 https://doi.org/10.1023/b:rugc.0000045862.69442.aa
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nrd2425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017010462
181 https://doi.org/10.1038/nrd2425
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/s41467-018-06630-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107503760
184 https://doi.org/10.1038/s41467-018-06630-2
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.10784.3a schema:alternateName Central Laboratory, Longgang District People’s Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong China
187 schema:name Central Laboratory, Longgang District People’s Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong China
188 rdf:type schema:Organization
189 grid-institutes:grid.263488.3 schema:alternateName Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China
190 schema:name Central Laboratory, Longgang District People’s Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong China
191 Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060 Guangdong China
192 rdf:type schema:Organization
193 grid-institutes:grid.412531.0 schema:alternateName The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234 China
194 schema:name The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234 China
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...