Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Michelle Griffin, Deepak Kalaskar, Peter Butler

ABSTRACT

BACKGROUND: Children born with a small or absent ear undergo surgical reconstruction to create a suitable replacement using rib cartilage. To overcome the donor site morbidity and long-term pain of harvesting rib cartilage, synthetic materials can be a useful alternative. Medpor, is the currently used synthetic polyethylene material to replace missing facial cartilage but unfortunately it has high levels of surgical complications including infection and extrusion, making it an unsuitable replacement. New materials for facial cartilage reconstruction are required to improve the outcomes of surgical reconstruction. This study has developed a new nanomaterial with argon surface modification for auricular cartilage replacement to overcome the complications with Medpor. RESULTS: Polyurethanes nanocomposites scaffolds (PU) were modified with argon plasma surface modification (Ar) and compared to Medpor in vitro and in vivo. Ar scaffolds allowed for greater protein adsorption than Medpor and PU after 48 h (p < 0.05). Cell viability and DNA assays demonstrated over 14-days greater human dermal fibroblast adhesion and cell growth on Ar than PU and Medpor nanocomposites scaffolds (p < 0.05). Gene expression using RT-qPCR of collagen-I, fibronectin, elastin, and laminin was upregulated on Ar scaffolds compared to Medpor and PU after 14-days (p < 0.05). Medpor, unmodified polyurethane and plasma modified polyurethane scaffolds were subcutaneously implanted in the dorsum of mice for 12 weeks to assess tissue integration and angiogenesis. Subcutaneous implantation of Ar scaffolds in mice dorsum, demonstrated significantly greater tissue integration by H&E and Massons trichrome staining, as well as angiogenesis by CD31 vessel immunohistochemistry staining over 12-weeks (p < 0.05). CONCLUSIONS: Argon modified polyurethane nanocomposite scaffolds support cell attachment and growth, tissue integration and angiogenesis and are a promising alternative for facial cartilage replacement. This study demonstrates polyurethane nanocomposite scaffolds with argon surface modification are a promising biomaterial for cartilage tissue engineering applications. More... »

PAGES

51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12951-019-0477-z

DOI

http://dx.doi.org/10.1186/s12951-019-0477-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113286879

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30954085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Free Hospital", 
          "id": "https://www.grid.ac/institutes/grid.426108.9", 
          "name": [
            "Division of Surgery & Interventional Science, University College London (UCL), London, UK. 12michellegriffin@gmail.com.", 
            "Plastic and Reconstructive Surgery Department, NHS Foundation Trust Hospital, Royal Free London, Pond Street, London, UK. 12michellegriffin@gmail.com.", 
            "The Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK. 12michellegriffin@gmail.com."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griffin", 
        "givenName": "Michelle", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Division of Surgery & Interventional Science, University College London (UCL), London, UK.", 
            "UCL Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Stanmore, Middlesex, HA7 4LP, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalaskar", 
        "givenName": "Deepak", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Free Hospital", 
          "id": "https://www.grid.ac/institutes/grid.426108.9", 
          "name": [
            "Division of Surgery & Interventional Science, University College London (UCL), London, UK.", 
            "Plastic and Reconstructive Surgery Department, NHS Foundation Trust Hospital, Royal Free London, Pond Street, London, UK.", 
            "The Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butler", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2012.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003202604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2014.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004989185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-010-9175-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006733702", 
          "https://doi.org/10.1208/s12248-010-9175-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3342/ceo.2015.8.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008858238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5bm00613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010105538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2006.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012121259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2006.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012121259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/nnm.12.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012526043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mattod.2015.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014620059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e318268d4e0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015223828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e318268d4e0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015223828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2015.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015884933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006534-199209000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018306661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006534-199209000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018306661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5bm00265f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018623127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/0366-6999.162505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020747209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nano.2016.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021131346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nano.2016.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021131346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/prs.0b013e31824a2c1c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021429019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/prs.0b013e31824a2c1c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021429019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006534-199308000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022511108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006534-199308000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022511108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0741-5214(90)90309-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022569124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(01)00011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024682234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-016-1688-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024785371", 
          "https://doi.org/10.1007/s10439-016-1688-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-016-1688-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024785371", 
          "https://doi.org/10.1007/s10439-016-1688-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(92)90301-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027147955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1987.tb33038.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027332671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nano.2014.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028005416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsfs.2012.0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030389646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(03)00343-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032811898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(03)00343-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032811898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006534-195901000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033686126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00006534-195901000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033686126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.201500250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035758489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2007.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036255463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2007.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036255463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/7371645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039278380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bab.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040126205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smim.2007.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041601862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2013.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043423467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2016.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043814908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/asj/sju117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046151923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adhm.201500968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047155159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/ijn.s17180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047239192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpc.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048085738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aia.0b013e318034194e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052860959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aia.0b013e318034194e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052860959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la203907t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b10881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055128939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0035-1568138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057350521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2007-1008442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057481992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2008-1064786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057556254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.tea.2011.0340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059315937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156802608783790893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069193647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.36127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085613003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2018.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100830968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527648009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108372439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109489066", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109489066", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471270598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109489066"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Children born with a small or absent ear undergo surgical reconstruction to create a suitable replacement using rib cartilage. To overcome the donor site morbidity and long-term pain of harvesting rib cartilage, synthetic materials can be a useful alternative. Medpor, is the currently used synthetic polyethylene material to replace missing facial cartilage but unfortunately it has high levels of surgical complications including infection and extrusion, making it an unsuitable replacement. New materials for facial cartilage reconstruction are required to improve the outcomes of surgical reconstruction. This study has developed a new nanomaterial with argon surface modification for auricular cartilage replacement to overcome the complications with Medpor.\nRESULTS: Polyurethanes nanocomposites scaffolds (PU) were modified with argon plasma surface modification (Ar) and compared to Medpor in vitro and in vivo. Ar scaffolds allowed for greater protein adsorption than Medpor and PU after 48\u00a0h (p\u2009<\u20090.05). Cell viability and DNA assays demonstrated over 14-days greater human dermal fibroblast adhesion and cell growth on Ar than PU and Medpor nanocomposites scaffolds (p\u2009<\u20090.05). Gene expression using RT-qPCR of collagen-I, fibronectin, elastin, and laminin was upregulated on Ar scaffolds compared to Medpor and PU after 14-days (p\u2009<\u20090.05). Medpor, unmodified polyurethane and plasma modified polyurethane scaffolds were subcutaneously implanted in the dorsum of mice for 12\u00a0weeks to assess tissue integration and angiogenesis. Subcutaneous implantation of Ar scaffolds in mice dorsum, demonstrated significantly greater tissue integration by H&E and Massons trichrome staining, as well as angiogenesis by CD31 vessel immunohistochemistry staining over 12-weeks (p\u2009<\u20090.05).\nCONCLUSIONS: Argon modified polyurethane nanocomposite scaffolds support cell attachment and growth, tissue integration and angiogenesis and are a promising alternative for facial cartilage replacement. This study demonstrates polyurethane nanocomposite scaffolds with argon surface modification are a promising biomaterial for cartilage tissue engineering applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12951-019-0477-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031280", 
        "issn": [
          "1477-3155"
        ], 
        "name": "Journal of Nanobiotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering.", 
    "pagination": "51", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12951-019-0477-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113286879"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101152208"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30954085"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12951-019-0477-z", 
      "https://app.dimensions.ai/details/publication/pub.1113286879"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91450_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-019-0477-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12951-019-0477-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12951-019-0477-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12951-019-0477-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12951-019-0477-z'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      77 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12951-019-0477-z schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Nbd379e8d06754a548ac11ca9dab79e71
4 schema:citation sg:pub.10.1007/s10439-016-1688-1
5 sg:pub.10.1208/s12248-010-9175-3
6 https://app.dimensions.ai/details/publication/pub.1109489066
7 https://doi.org/10.1002/0471270598
8 https://doi.org/10.1002/9783527648009
9 https://doi.org/10.1002/adhm.201500968
10 https://doi.org/10.1002/bab.50
11 https://doi.org/10.1002/elps.201500250
12 https://doi.org/10.1002/jbm.a.36127
13 https://doi.org/10.1016/0003-2697(92)90301-m
14 https://doi.org/10.1016/0741-5214(90)90309-x
15 https://doi.org/10.1016/j.actbio.2014.07.004
16 https://doi.org/10.1016/j.actbio.2015.12.003
17 https://doi.org/10.1016/j.actbio.2016.12.016
18 https://doi.org/10.1016/j.biomaterials.2006.12.020
19 https://doi.org/10.1016/j.biomaterials.2007.01.026
20 https://doi.org/10.1016/j.bpc.2007.12.007
21 https://doi.org/10.1016/j.immuni.2013.11.010
22 https://doi.org/10.1016/j.mattod.2015.01.019
23 https://doi.org/10.1016/j.nano.2014.01.010
24 https://doi.org/10.1016/j.nano.2016.02.011
25 https://doi.org/10.1016/j.progpolymsci.2012.05.003
26 https://doi.org/10.1016/j.smim.2007.11.004
27 https://doi.org/10.1016/j.tibtech.2018.01.008
28 https://doi.org/10.1016/s0142-9612(01)00011-4
29 https://doi.org/10.1016/s0142-9612(03)00343-0
30 https://doi.org/10.1021/acsami.5b10881
31 https://doi.org/10.1021/la203907t
32 https://doi.org/10.1039/c5bm00265f
33 https://doi.org/10.1039/c5bm00613a
34 https://doi.org/10.1055/s-0035-1568138
35 https://doi.org/10.1055/s-2007-1008442
36 https://doi.org/10.1055/s-2008-1064786
37 https://doi.org/10.1089/ten.tea.2011.0340
38 https://doi.org/10.1093/asj/sju117
39 https://doi.org/10.1097/00006534-195901000-00001
40 https://doi.org/10.1097/00006534-199209000-00001
41 https://doi.org/10.1097/00006534-199308000-00001
42 https://doi.org/10.1097/aia.0b013e318034194e
43 https://doi.org/10.1097/mao.0b013e318268d4e0
44 https://doi.org/10.1097/prs.0b013e31824a2c1c
45 https://doi.org/10.1098/rsfs.2012.0012
46 https://doi.org/10.1111/j.1749-6632.1987.tb33038.x
47 https://doi.org/10.1155/2016/7371645
48 https://doi.org/10.2147/ijn.s17180
49 https://doi.org/10.2174/156802608783790893
50 https://doi.org/10.2217/nnm.12.161
51 https://doi.org/10.3342/ceo.2015.8.1.13
52 https://doi.org/10.4103/0366-6999.162505
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description BACKGROUND: Children born with a small or absent ear undergo surgical reconstruction to create a suitable replacement using rib cartilage. To overcome the donor site morbidity and long-term pain of harvesting rib cartilage, synthetic materials can be a useful alternative. Medpor, is the currently used synthetic polyethylene material to replace missing facial cartilage but unfortunately it has high levels of surgical complications including infection and extrusion, making it an unsuitable replacement. New materials for facial cartilage reconstruction are required to improve the outcomes of surgical reconstruction. This study has developed a new nanomaterial with argon surface modification for auricular cartilage replacement to overcome the complications with Medpor. RESULTS: Polyurethanes nanocomposites scaffolds (PU) were modified with argon plasma surface modification (Ar) and compared to Medpor in vitro and in vivo. Ar scaffolds allowed for greater protein adsorption than Medpor and PU after 48 h (p < 0.05). Cell viability and DNA assays demonstrated over 14-days greater human dermal fibroblast adhesion and cell growth on Ar than PU and Medpor nanocomposites scaffolds (p < 0.05). Gene expression using RT-qPCR of collagen-I, fibronectin, elastin, and laminin was upregulated on Ar scaffolds compared to Medpor and PU after 14-days (p < 0.05). Medpor, unmodified polyurethane and plasma modified polyurethane scaffolds were subcutaneously implanted in the dorsum of mice for 12 weeks to assess tissue integration and angiogenesis. Subcutaneous implantation of Ar scaffolds in mice dorsum, demonstrated significantly greater tissue integration by H&E and Massons trichrome staining, as well as angiogenesis by CD31 vessel immunohistochemistry staining over 12-weeks (p < 0.05). CONCLUSIONS: Argon modified polyurethane nanocomposite scaffolds support cell attachment and growth, tissue integration and angiogenesis and are a promising alternative for facial cartilage replacement. This study demonstrates polyurethane nanocomposite scaffolds with argon surface modification are a promising biomaterial for cartilage tissue engineering applications.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf Nebaf78537ec949afa32d34d369d555a9
60 Nece5239f9333412091bbd165d78749e2
61 sg:journal.1031280
62 schema:name Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering.
63 schema:pagination 51
64 schema:productId N349839f899644530b1ef6d31fdc8e356
65 N7d9ce43561a840f8a630c5c8d8da57f7
66 N974af94cfd014804948f87c3ce69eb7c
67 Na47dd9d5c9974d0aa06f3d698e085a1c
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113286879
69 https://doi.org/10.1186/s12951-019-0477-z
70 schema:sdDatePublished 2019-04-15T09:02
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nb6746349559d490d9c95aad69391ffa6
73 schema:url https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-019-0477-z
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N349839f899644530b1ef6d31fdc8e356 schema:name pubmed_id
78 schema:value 30954085
79 rdf:type schema:PropertyValue
80 N4307a033075e4fcd9cf6dcadb0044beb rdf:first N6b5698deac4446b6848ef50487306429
81 rdf:rest N7ebdb8a410df40ed9df0e7e6b4b972c2
82 N6b5698deac4446b6848ef50487306429 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
83 schema:familyName Kalaskar
84 schema:givenName Deepak
85 rdf:type schema:Person
86 N7d9ce43561a840f8a630c5c8d8da57f7 schema:name dimensions_id
87 schema:value pub.1113286879
88 rdf:type schema:PropertyValue
89 N7ebdb8a410df40ed9df0e7e6b4b972c2 rdf:first Ne023d7f316e7408ba18a0c58c56ddf83
90 rdf:rest rdf:nil
91 N974af94cfd014804948f87c3ce69eb7c schema:name doi
92 schema:value 10.1186/s12951-019-0477-z
93 rdf:type schema:PropertyValue
94 Na47dd9d5c9974d0aa06f3d698e085a1c schema:name nlm_unique_id
95 schema:value 101152208
96 rdf:type schema:PropertyValue
97 Na86f1237627048df834d6dfcaa742477 schema:affiliation https://www.grid.ac/institutes/grid.426108.9
98 schema:familyName Griffin
99 schema:givenName Michelle
100 rdf:type schema:Person
101 Nb6746349559d490d9c95aad69391ffa6 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nbd379e8d06754a548ac11ca9dab79e71 rdf:first Na86f1237627048df834d6dfcaa742477
104 rdf:rest N4307a033075e4fcd9cf6dcadb0044beb
105 Ne023d7f316e7408ba18a0c58c56ddf83 schema:affiliation https://www.grid.ac/institutes/grid.426108.9
106 schema:familyName Butler
107 schema:givenName Peter
108 rdf:type schema:Person
109 Nebaf78537ec949afa32d34d369d555a9 schema:volumeNumber 17
110 rdf:type schema:PublicationVolume
111 Nece5239f9333412091bbd165d78749e2 schema:issueNumber 1
112 rdf:type schema:PublicationIssue
113 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
114 schema:name Engineering
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biomedical Engineering
118 rdf:type schema:DefinedTerm
119 sg:journal.1031280 schema:issn 1477-3155
120 schema:name Journal of Nanobiotechnology
121 rdf:type schema:Periodical
122 sg:pub.10.1007/s10439-016-1688-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024785371
123 https://doi.org/10.1007/s10439-016-1688-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1208/s12248-010-9175-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006733702
126 https://doi.org/10.1208/s12248-010-9175-3
127 rdf:type schema:CreativeWork
128 https://app.dimensions.ai/details/publication/pub.1109489066 schema:CreativeWork
129 https://doi.org/10.1002/0471270598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109489066
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/9783527648009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108372439
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/adhm.201500968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047155159
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/bab.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040126205
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/elps.201500250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035758489
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/jbm.a.36127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085613003
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0003-2697(92)90301-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1027147955
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0741-5214(90)90309-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022569124
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.actbio.2014.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004989185
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.actbio.2015.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015884933
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.actbio.2016.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043814908
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.biomaterials.2006.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012121259
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.biomaterials.2007.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036255463
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.bpc.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048085738
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.immuni.2013.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043423467
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.mattod.2015.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014620059
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.nano.2014.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028005416
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.nano.2016.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021131346
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.progpolymsci.2012.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003202604
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.smim.2007.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041601862
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.tibtech.2018.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100830968
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0142-9612(01)00011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024682234
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0142-9612(03)00343-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032811898
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/acsami.5b10881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055128939
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/la203907t schema:sameAs https://app.dimensions.ai/details/publication/pub.1052920727
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1039/c5bm00265f schema:sameAs https://app.dimensions.ai/details/publication/pub.1018623127
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1039/c5bm00613a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010105538
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1055/s-0035-1568138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057350521
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1055/s-2007-1008442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057481992
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1055/s-2008-1064786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057556254
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1089/ten.tea.2011.0340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059315937
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/asj/sju117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046151923
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/00006534-195901000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033686126
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1097/00006534-199209000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018306661
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1097/00006534-199308000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022511108
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/aia.0b013e318034194e schema:sameAs https://app.dimensions.ai/details/publication/pub.1052860959
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/mao.0b013e318268d4e0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015223828
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1097/prs.0b013e31824a2c1c schema:sameAs https://app.dimensions.ai/details/publication/pub.1021429019
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1098/rsfs.2012.0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030389646
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1749-6632.1987.tb33038.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027332671
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1155/2016/7371645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039278380
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2147/ijn.s17180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047239192
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2174/156802608783790893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069193647
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2217/nnm.12.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012526043
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3342/ceo.2015.8.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008858238
218 rdf:type schema:CreativeWork
219 https://doi.org/10.4103/0366-6999.162505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020747209
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.426108.9 schema:alternateName Royal Free Hospital
222 schema:name Division of Surgery & Interventional Science, University College London (UCL), London, UK.
223 Division of Surgery & Interventional Science, University College London (UCL), London, UK. 12michellegriffin@gmail.com.
224 Plastic and Reconstructive Surgery Department, NHS Foundation Trust Hospital, Royal Free London, Pond Street, London, UK.
225 Plastic and Reconstructive Surgery Department, NHS Foundation Trust Hospital, Royal Free London, Pond Street, London, UK. 12michellegriffin@gmail.com.
226 The Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
227 The Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK. 12michellegriffin@gmail.com.
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
230 schema:name Division of Surgery & Interventional Science, University College London (UCL), London, UK.
231 UCL Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Stanmore, Middlesex, HA7 4LP, UK.
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...