Hierarchical modelling of blood lipids’ profile and 10-year (2002–2012) all cause mortality and incidence of cardiovascular disease: the ATTICA study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Tzortzis Nomikos, Demosthenes Panagiotakos, Ekavi Georgousopoulou, Vassiliki Metaxa, Christina Chrysohoou, Ioannis Skoumas, Smaragdi Antonopoulou, Dimitrios Tousoulis, Christodoulos Stefanadis, Christos Pitsavos, and the ATTICA Study group

ABSTRACT

BACKGROUND: The traditional view on the relationship between lipid biomarkers and CVD risk has changed during the last decade. However, it is not clear whether novel lipid biomarkers are able to confer a better predictability of CVD risk, compared to traditional ones.Under this perspective, the aim of the present work was to evaluate the predictive ability of blood lipids' profile on all cause mortality as well as 10-year incidence of CVD, in a sample of apparently healthy adults of the ATTICA epidemiological study. METHODS: From May 2001 to December 2002, 1514 men and 1528 women (>18 y) without any clinical evidence of any other chronic disease, at baseline, were enrolled. In 2011-12, the 10-year follow-up was performed in 2583 participants (85 % follow-up participation rate). Incidence of fatal or non-fatal CVD was defined according to WHO-ICD-10 criteria. Baseline serum blood lipids' profile (Total-C, HDL-, non HDL-, LDL-cholesterol, triglycerides (TG), apolipoprotein (Apo)A1 and B, and lipoprotein-(a) levels were also measured. RESULTS: The 10-year all-cause mortality rate was 5.7 % for men and 2.0 % for women (p = 0.55). The, 10-year CVD incidence was 19.7 % in men and 11.7 % in women (p < 0.001). Multi-adjusted analysis revealed that TC, non-HDL-C, TG and TG/HDL-C ratio, were independent predictors of all cause mortality (RR per 1 mg/dL or unit (95 % CI): 1.006 (1.000-1.013), 1.006 (1.000-1.013), 1.002 (1.000-1.004), 1.038 (1.001-1.077), respectively). Moreover, TC, HDL-, LDL-, non-HDL-cholesterol, TG, apoA1, TC/HDL-C and TG/HDL-C were independently associated with CVD risk. Among all lipid indices the ratio of apoB/apoA1 demonstrated the best correct reclassification ability, followed by non-HDL-C and TC/HDL-C ratio (continuous Net Reclassification Index 26.1 and 21.2 %, respectively). CONCLUSION: Elevated levels of lipid biomarkers are independently associated with all-cause mortality, as well as CVD risk. The ratio of apoB/apoA1, followed by non-HDL-C, demonstrated the best correct classification ability of the developed CVD risk models. More... »

PAGES

108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12944-015-0101-7

DOI

http://dx.doi.org/10.1186/s12944-015-0101-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019074586

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26370413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apolipoprotein A-I", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apolipoproteins B", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol, HDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol, LDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Greece", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipoprotein(a)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triglycerides", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harokopio University", 
          "id": "https://www.grid.ac/institutes/grid.15823.3d", 
          "name": [
            "Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nomikos", 
        "givenName": "Tzortzis", 
        "id": "sg:person.01165400042.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165400042.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harokopio University", 
          "id": "https://www.grid.ac/institutes/grid.15823.3d", 
          "name": [
            "Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece", 
            "46 Paleon Polemiston St., 166 74, Glyfada, Attica, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panagiotakos", 
        "givenName": "Demosthenes", 
        "id": "sg:person.07461536757.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07461536757.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harokopio University", 
          "id": "https://www.grid.ac/institutes/grid.15823.3d", 
          "name": [
            "Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgousopoulou", 
        "givenName": "Ekavi", 
        "id": "sg:person.01004741501.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004741501.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National and Kapodistrian University of Athens", 
          "id": "https://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Metaxa", 
        "givenName": "Vassiliki", 
        "id": "sg:person.01110175742.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110175742.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National and Kapodistrian University of Athens", 
          "id": "https://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chrysohoou", 
        "givenName": "Christina", 
        "id": "sg:person.014327500257.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014327500257.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National and Kapodistrian University of Athens", 
          "id": "https://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skoumas", 
        "givenName": "Ioannis", 
        "id": "sg:person.0733567174.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733567174.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harokopio University", 
          "id": "https://www.grid.ac/institutes/grid.15823.3d", 
          "name": [
            "Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antonopoulou", 
        "givenName": "Smaragdi", 
        "id": "sg:person.01276465224.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276465224.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National and Kapodistrian University of Athens", 
          "id": "https://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tousoulis", 
        "givenName": "Dimitrios", 
        "id": "sg:person.013264260052.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264260052.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National and Kapodistrian University of Athens", 
          "id": "https://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanadis", 
        "givenName": "Christodoulos", 
        "id": "sg:person.014552453202.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552453202.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National and Kapodistrian University of Athens", 
          "id": "https://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pitsavos", 
        "givenName": "Christos", 
        "id": "sg:person.014416460677.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416460677.02"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "and the ATTICA Study group", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2014.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000608897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehq386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002212361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jff.2013.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003752739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2010.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006031030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2011.06.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007141779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(07)61778-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010851118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacl.2015.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012013090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2010.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013642115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2008.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014281120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2008.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014281120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2008.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014281120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2008.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014281120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2008.115899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015931920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2014.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016662121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/782137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020027694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0123521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020051946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-511x-12-159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020729715", 
          "https://doi.org/10.1186/1476-511x-12-159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-3-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020760334", 
          "https://doi.org/10.1186/1471-2458-3-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11883-011-0219-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022677736", 
          "https://doi.org/10.1007/s11883-011-0219-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.284.3.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023075316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2047487314555095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024512640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2047487314555095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024512640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-3-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024693113", 
          "https://doi.org/10.1186/1471-2458-3-32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/26.suppl_1.s118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025571363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027475560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)61217-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029306405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2015.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031107373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circoutcomes.110.959247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031640531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circoutcomes.110.959247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031640531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9149(01)01709-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032149914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2006.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032771861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mol.0000000000000090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033120199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mol.0000000000000090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033120199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm.2004.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033288480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacl.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033694631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)61177-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034859204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.2010.02286.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035187431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.2010.02286.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035187431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2014.11.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035362978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2015.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035831575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2009.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036648165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000345107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037415987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1982.03320430047030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038627387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12020-013-0056-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039648961", 
          "https://doi.org/10.1007/s12020-013-0056-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.1995.00430010021004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040608200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2005.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042680278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2005.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042680278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2005.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042983403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjmed.2010.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045322605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2012.08.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047473665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5551/jat.7161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047664627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a008878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050157943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(04)17018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052249325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2010.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053179909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.155.1.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054114559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/140349489502300103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064002843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/140349489502300103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064002843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157016110791330861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069196704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074526173", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circ.106.25.3143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075204771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077934028", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: The traditional view on the relationship between lipid biomarkers and CVD risk has changed during the last decade. However, it is not clear whether novel lipid biomarkers are able to confer a better predictability of CVD risk, compared to traditional ones.Under this perspective, the aim of the present work was to evaluate the predictive ability of blood lipids' profile on all cause mortality as well as 10-year incidence of CVD, in a sample of apparently healthy adults of the ATTICA epidemiological study.\nMETHODS: From May 2001 to December 2002, 1514 men and 1528 women (>18 y) without any clinical evidence of any other chronic disease, at baseline, were enrolled. In 2011-12, the 10-year follow-up was performed in 2583 participants (85 % follow-up participation rate). Incidence of fatal or non-fatal CVD was defined according to WHO-ICD-10 criteria. Baseline serum blood lipids' profile (Total-C, HDL-, non HDL-, LDL-cholesterol, triglycerides (TG), apolipoprotein (Apo)A1 and B, and lipoprotein-(a) levels were also measured.\nRESULTS: The 10-year all-cause mortality rate was 5.7 % for men and 2.0 % for women (p = 0.55). The, 10-year CVD incidence was 19.7 % in men and 11.7 % in women (p < 0.001). Multi-adjusted analysis revealed that TC, non-HDL-C, TG and TG/HDL-C ratio, were independent predictors of all cause mortality (RR per 1 mg/dL or unit (95 % CI): 1.006 (1.000-1.013), 1.006 (1.000-1.013), 1.002 (1.000-1.004), 1.038 (1.001-1.077), respectively). Moreover, TC, HDL-, LDL-, non-HDL-cholesterol, TG, apoA1, TC/HDL-C and TG/HDL-C were independently associated with CVD risk. Among all lipid indices the ratio of apoB/apoA1 demonstrated the best correct reclassification ability, followed by non-HDL-C and TC/HDL-C ratio (continuous Net Reclassification Index 26.1 and 21.2 %, respectively).\nCONCLUSION: Elevated levels of lipid biomarkers are independently associated with all-cause mortality, as well as CVD risk. The ratio of apoB/apoA1, followed by non-HDL-C, demonstrated the best correct classification ability of the developed CVD risk models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12944-015-0101-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031029", 
        "issn": [
          "1476-511X"
        ], 
        "name": "Lipids in Health and Disease", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Hierarchical modelling of blood lipids\u2019 profile and 10-year (2002\u20132012) all cause mortality and incidence of cardiovascular disease: the ATTICA study", 
    "pagination": "108", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ae282e61005ef0dc407cd71aa3dfffb851ee55e260db08ba56b8abc8fff5a6f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26370413"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147696"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12944-015-0101-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019074586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12944-015-0101-7", 
      "https://app.dimensions.ai/details/publication/pub.1019074586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12944-015-0101-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12944-015-0101-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12944-015-0101-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12944-015-0101-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12944-015-0101-7'


 

This table displays all metadata directly associated to this object as RDF triples.

382 TRIPLES      21 PREDICATES      102 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12944-015-0101-7 schema:about N14d41f2ab23343fbb23fecc7c908bfde
2 N15139004885c41b9bdd9bbaf2a450286
3 N20f30cea364242b494180d5311816516
4 N27dd09f3d8fc40e081e3ccf59712b2a6
5 N2bb3e9a034414189b89c20bf8fd5d169
6 N4fef51b61d7b4345a68f5a183c42df07
7 N5795260060e44a5380f49fbff3e5220c
8 N5ca57b3f2a5243569bb02631dfa35205
9 N7bc4c29e5a844aa593642a4626fb5b69
10 N81bc3cac68734dffb05b2283ad3bc818
11 N83ecb6bd3c8048659f3e1d9c15a10b00
12 N8ad341be867f472480aa424cf68c35b4
13 N97b5701b4d2c4a7591ffdac491c79b68
14 Na963d132ebf54199bdb22c557e624a68
15 Naa77b795993745f4876d07ecaaeb7bc0
16 Ncdae417ed69442beb842c39c825098c3
17 Nd1fdeb8b176a479da877640dbdd53867
18 Nd2c5ef2aa61e42e79b7fceb3d386e5e3
19 Nd63e57cbe4cc4255a6ed6bd6c13e2692
20 Ne5ed9c32530f442c90d87ea7d99006b3
21 Nee09fd632fc54c2bb75c99ddcecef5a2
22 anzsrc-for:11
23 anzsrc-for:1117
24 schema:author Ncd71e714fe9f4eafb8d5b4b6334f9db0
25 schema:citation sg:pub.10.1007/s11883-011-0219-7
26 sg:pub.10.1007/s12020-013-0056-2
27 sg:pub.10.1186/1471-2458-3-1
28 sg:pub.10.1186/1471-2458-3-32
29 sg:pub.10.1186/1476-511x-12-159
30 https://app.dimensions.ai/details/publication/pub.1074526173
31 https://app.dimensions.ai/details/publication/pub.1077934028
32 https://doi.org/10.1001/archinte.155.1.17
33 https://doi.org/10.1001/archinte.1995.00430010021004
34 https://doi.org/10.1001/jama.1982.03320430047030
35 https://doi.org/10.1001/jama.284.3.311
36 https://doi.org/10.1002/sim.1802
37 https://doi.org/10.1016/j.ahj.2008.11.014
38 https://doi.org/10.1016/j.amjmed.2010.08.015
39 https://doi.org/10.1016/j.atherosclerosis.2006.01.024
40 https://doi.org/10.1016/j.atherosclerosis.2009.08.026
41 https://doi.org/10.1016/j.atherosclerosis.2010.06.019
42 https://doi.org/10.1016/j.atherosclerosis.2011.06.028
43 https://doi.org/10.1016/j.atherosclerosis.2012.08.039
44 https://doi.org/10.1016/j.atherosclerosis.2014.06.029
45 https://doi.org/10.1016/j.atherosclerosis.2015.01.031
46 https://doi.org/10.1016/j.atherosclerosis.2015.03.022
47 https://doi.org/10.1016/j.ijcard.2005.06.056
48 https://doi.org/10.1016/j.ijcard.2014.11.206
49 https://doi.org/10.1016/j.jacc.2010.09.001
50 https://doi.org/10.1016/j.jacc.2010.09.002
51 https://doi.org/10.1016/j.jacl.2011.07.005
52 https://doi.org/10.1016/j.jacl.2015.02.003
53 https://doi.org/10.1016/j.jff.2013.12.006
54 https://doi.org/10.1016/j.numecd.2005.08.006
55 https://doi.org/10.1016/j.numecd.2014.09.006
56 https://doi.org/10.1016/s0002-9149(01)01709-x
57 https://doi.org/10.1016/s0140-6736(04)17018-9
58 https://doi.org/10.1016/s0140-6736(07)61778-4
59 https://doi.org/10.1016/s0140-6736(14)61177-6
60 https://doi.org/10.1016/s0140-6736(14)61217-4
61 https://doi.org/10.1093/eurheartj/ehq386
62 https://doi.org/10.1093/ije/26.suppl_1.s118
63 https://doi.org/10.1093/oxfordjournals.aje.a008878
64 https://doi.org/10.1097/mol.0000000000000090
65 https://doi.org/10.1111/j.1365-2796.2010.02286.x
66 https://doi.org/10.1155/2013/782137
67 https://doi.org/10.1159/000345107
68 https://doi.org/10.1161/circ.106.25.3143
69 https://doi.org/10.1161/circoutcomes.110.959247
70 https://doi.org/10.1177/140349489502300103
71 https://doi.org/10.1177/2047487314555095
72 https://doi.org/10.1371/journal.pone.0123521
73 https://doi.org/10.1373/clinchem.2008.115899
74 https://doi.org/10.1515/cclm.2004.254
75 https://doi.org/10.2174/157016110791330861
76 https://doi.org/10.5551/jat.7161
77 schema:datePublished 2015-12
78 schema:datePublishedReg 2015-12-01
79 schema:description BACKGROUND: The traditional view on the relationship between lipid biomarkers and CVD risk has changed during the last decade. However, it is not clear whether novel lipid biomarkers are able to confer a better predictability of CVD risk, compared to traditional ones.Under this perspective, the aim of the present work was to evaluate the predictive ability of blood lipids' profile on all cause mortality as well as 10-year incidence of CVD, in a sample of apparently healthy adults of the ATTICA epidemiological study. METHODS: From May 2001 to December 2002, 1514 men and 1528 women (>18 y) without any clinical evidence of any other chronic disease, at baseline, were enrolled. In 2011-12, the 10-year follow-up was performed in 2583 participants (85 % follow-up participation rate). Incidence of fatal or non-fatal CVD was defined according to WHO-ICD-10 criteria. Baseline serum blood lipids' profile (Total-C, HDL-, non HDL-, LDL-cholesterol, triglycerides (TG), apolipoprotein (Apo)A1 and B, and lipoprotein-(a) levels were also measured. RESULTS: The 10-year all-cause mortality rate was 5.7 % for men and 2.0 % for women (p = 0.55). The, 10-year CVD incidence was 19.7 % in men and 11.7 % in women (p < 0.001). Multi-adjusted analysis revealed that TC, non-HDL-C, TG and TG/HDL-C ratio, were independent predictors of all cause mortality (RR per 1 mg/dL or unit (95 % CI): 1.006 (1.000-1.013), 1.006 (1.000-1.013), 1.002 (1.000-1.004), 1.038 (1.001-1.077), respectively). Moreover, TC, HDL-, LDL-, non-HDL-cholesterol, TG, apoA1, TC/HDL-C and TG/HDL-C were independently associated with CVD risk. Among all lipid indices the ratio of apoB/apoA1 demonstrated the best correct reclassification ability, followed by non-HDL-C and TC/HDL-C ratio (continuous Net Reclassification Index 26.1 and 21.2 %, respectively). CONCLUSION: Elevated levels of lipid biomarkers are independently associated with all-cause mortality, as well as CVD risk. The ratio of apoB/apoA1, followed by non-HDL-C, demonstrated the best correct classification ability of the developed CVD risk models.
80 schema:genre research_article
81 schema:inLanguage en
82 schema:isAccessibleForFree true
83 schema:isPartOf N3eda475852854668943723bcaed46a1f
84 N4dfbc41366bf4cb2a0ba355328a9af46
85 sg:journal.1031029
86 schema:name Hierarchical modelling of blood lipids’ profile and 10-year (2002–2012) all cause mortality and incidence of cardiovascular disease: the ATTICA study
87 schema:pagination 108
88 schema:productId N8fe9405e523844bea8f35f4c9dd6e29f
89 Nb23e79c397174d1b8994acad90ba7ee6
90 Nbd3702003bde466d9c78118a7cde7060
91 Nc33683588ca34abea6f96eb1b4b2ce96
92 Ndc5983b71361421e9c3de1f370d12715
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019074586
94 https://doi.org/10.1186/s12944-015-0101-7
95 schema:sdDatePublished 2019-04-10T22:31
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N9e04613f3dcc4a75a0bef7d4d257251d
98 schema:url http://link.springer.com/10.1186%2Fs12944-015-0101-7
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N07d74c53d15549a4bba165c61b466a39 rdf:first sg:person.014552453202.98
103 rdf:rest Ne0484e23ce644f67b89dbe6e90c10c30
104 N13f798a2b11540c48f79958073d450d2 rdf:first sg:person.014327500257.64
105 rdf:rest N2b8ce9c85d6f4e76b4dc07db387d5556
106 N14d41f2ab23343fbb23fecc7c908bfde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Apolipoprotein A-I
108 rdf:type schema:DefinedTerm
109 N15139004885c41b9bdd9bbaf2a450286 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Male
111 rdf:type schema:DefinedTerm
112 N1a25ad7690594e4783b42d3235b06985 rdf:first sg:person.01004741501.88
113 rdf:rest Nc79803ce7cb34f0ba5b6044ab203b626
114 N20f30cea364242b494180d5311816516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Incidence
116 rdf:type schema:DefinedTerm
117 N27dd09f3d8fc40e081e3ccf59712b2a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Middle Aged
119 rdf:type schema:DefinedTerm
120 N2b8ce9c85d6f4e76b4dc07db387d5556 rdf:first sg:person.0733567174.58
121 rdf:rest N54a662d04971465d814d414e66cc3094
122 N2bb3e9a034414189b89c20bf8fd5d169 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Risk
124 rdf:type schema:DefinedTerm
125 N3eda475852854668943723bcaed46a1f schema:volumeNumber 14
126 rdf:type schema:PublicationVolume
127 N4dfbc41366bf4cb2a0ba355328a9af46 schema:issueNumber 1
128 rdf:type schema:PublicationIssue
129 N4fef51b61d7b4345a68f5a183c42df07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Prognosis
131 rdf:type schema:DefinedTerm
132 N54a662d04971465d814d414e66cc3094 rdf:first sg:person.01276465224.94
133 rdf:rest N92118b8d710f4ee3b4cd2df93b45b9b1
134 N56e97cf5e6a040018095b9c2b3ece12e rdf:first Nc4128caaff13481596614fbeaba692af
135 rdf:rest rdf:nil
136 N5795260060e44a5380f49fbff3e5220c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Greece
138 rdf:type schema:DefinedTerm
139 N5ca57b3f2a5243569bb02631dfa35205 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Lipoprotein(a)
141 rdf:type schema:DefinedTerm
142 N7bc4c29e5a844aa593642a4626fb5b69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Aged
144 rdf:type schema:DefinedTerm
145 N81bc3cac68734dffb05b2283ad3bc818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Humans
147 rdf:type schema:DefinedTerm
148 N83ecb6bd3c8048659f3e1d9c15a10b00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Cardiovascular Diseases
150 rdf:type schema:DefinedTerm
151 N8ad341be867f472480aa424cf68c35b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Cholesterol, LDL
153 rdf:type schema:DefinedTerm
154 N8fe9405e523844bea8f35f4c9dd6e29f schema:name readcube_id
155 schema:value 5ae282e61005ef0dc407cd71aa3dfffb851ee55e260db08ba56b8abc8fff5a6f
156 rdf:type schema:PropertyValue
157 N92118b8d710f4ee3b4cd2df93b45b9b1 rdf:first sg:person.013264260052.96
158 rdf:rest N07d74c53d15549a4bba165c61b466a39
159 N97b5701b4d2c4a7591ffdac491c79b68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Longitudinal Studies
161 rdf:type schema:DefinedTerm
162 N9e04613f3dcc4a75a0bef7d4d257251d schema:name Springer Nature - SN SciGraph project
163 rdf:type schema:Organization
164 Na963d132ebf54199bdb22c557e624a68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Adult
166 rdf:type schema:DefinedTerm
167 Naa77b795993745f4876d07ecaaeb7bc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Cholesterol, HDL
169 rdf:type schema:DefinedTerm
170 Nb23e79c397174d1b8994acad90ba7ee6 schema:name doi
171 schema:value 10.1186/s12944-015-0101-7
172 rdf:type schema:PropertyValue
173 Nbad2346d8d5e49c39c470219b8d55082 rdf:first sg:person.07461536757.28
174 rdf:rest N1a25ad7690594e4783b42d3235b06985
175 Nbd3702003bde466d9c78118a7cde7060 schema:name pubmed_id
176 schema:value 26370413
177 rdf:type schema:PropertyValue
178 Nc33683588ca34abea6f96eb1b4b2ce96 schema:name dimensions_id
179 schema:value pub.1019074586
180 rdf:type schema:PropertyValue
181 Nc4128caaff13481596614fbeaba692af schema:familyName and the ATTICA Study group
182 rdf:type schema:Person
183 Nc79803ce7cb34f0ba5b6044ab203b626 rdf:first sg:person.01110175742.87
184 rdf:rest N13f798a2b11540c48f79958073d450d2
185 Ncd71e714fe9f4eafb8d5b4b6334f9db0 rdf:first sg:person.01165400042.75
186 rdf:rest Nbad2346d8d5e49c39c470219b8d55082
187 Ncdae417ed69442beb842c39c825098c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Triglycerides
189 rdf:type schema:DefinedTerm
190 Nd1fdeb8b176a479da877640dbdd53867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Apolipoproteins B
192 rdf:type schema:DefinedTerm
193 Nd2c5ef2aa61e42e79b7fceb3d386e5e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Models, Statistical
195 rdf:type schema:DefinedTerm
196 Nd63e57cbe4cc4255a6ed6bd6c13e2692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Survival Analysis
198 rdf:type schema:DefinedTerm
199 Ndc5983b71361421e9c3de1f370d12715 schema:name nlm_unique_id
200 schema:value 101147696
201 rdf:type schema:PropertyValue
202 Ne0484e23ce644f67b89dbe6e90c10c30 rdf:first sg:person.014416460677.02
203 rdf:rest N56e97cf5e6a040018095b9c2b3ece12e
204 Ne5ed9c32530f442c90d87ea7d99006b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Biomarkers
206 rdf:type schema:DefinedTerm
207 Nee09fd632fc54c2bb75c99ddcecef5a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Female
209 rdf:type schema:DefinedTerm
210 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
211 schema:name Medical and Health Sciences
212 rdf:type schema:DefinedTerm
213 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
214 schema:name Public Health and Health Services
215 rdf:type schema:DefinedTerm
216 sg:journal.1031029 schema:issn 1476-511X
217 schema:name Lipids in Health and Disease
218 rdf:type schema:Periodical
219 sg:person.01004741501.88 schema:affiliation https://www.grid.ac/institutes/grid.15823.3d
220 schema:familyName Georgousopoulou
221 schema:givenName Ekavi
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004741501.88
223 rdf:type schema:Person
224 sg:person.01110175742.87 schema:affiliation https://www.grid.ac/institutes/grid.5216.0
225 schema:familyName Metaxa
226 schema:givenName Vassiliki
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110175742.87
228 rdf:type schema:Person
229 sg:person.01165400042.75 schema:affiliation https://www.grid.ac/institutes/grid.15823.3d
230 schema:familyName Nomikos
231 schema:givenName Tzortzis
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165400042.75
233 rdf:type schema:Person
234 sg:person.01276465224.94 schema:affiliation https://www.grid.ac/institutes/grid.15823.3d
235 schema:familyName Antonopoulou
236 schema:givenName Smaragdi
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276465224.94
238 rdf:type schema:Person
239 sg:person.013264260052.96 schema:affiliation https://www.grid.ac/institutes/grid.5216.0
240 schema:familyName Tousoulis
241 schema:givenName Dimitrios
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264260052.96
243 rdf:type schema:Person
244 sg:person.014327500257.64 schema:affiliation https://www.grid.ac/institutes/grid.5216.0
245 schema:familyName Chrysohoou
246 schema:givenName Christina
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014327500257.64
248 rdf:type schema:Person
249 sg:person.014416460677.02 schema:affiliation https://www.grid.ac/institutes/grid.5216.0
250 schema:familyName Pitsavos
251 schema:givenName Christos
252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416460677.02
253 rdf:type schema:Person
254 sg:person.014552453202.98 schema:affiliation https://www.grid.ac/institutes/grid.5216.0
255 schema:familyName Stefanadis
256 schema:givenName Christodoulos
257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552453202.98
258 rdf:type schema:Person
259 sg:person.0733567174.58 schema:affiliation https://www.grid.ac/institutes/grid.5216.0
260 schema:familyName Skoumas
261 schema:givenName Ioannis
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733567174.58
263 rdf:type schema:Person
264 sg:person.07461536757.28 schema:affiliation https://www.grid.ac/institutes/grid.15823.3d
265 schema:familyName Panagiotakos
266 schema:givenName Demosthenes
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07461536757.28
268 rdf:type schema:Person
269 sg:pub.10.1007/s11883-011-0219-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677736
270 https://doi.org/10.1007/s11883-011-0219-7
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/s12020-013-0056-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039648961
273 https://doi.org/10.1007/s12020-013-0056-2
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/1471-2458-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020760334
276 https://doi.org/10.1186/1471-2458-3-1
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/1471-2458-3-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024693113
279 https://doi.org/10.1186/1471-2458-3-32
280 rdf:type schema:CreativeWork
281 sg:pub.10.1186/1476-511x-12-159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020729715
282 https://doi.org/10.1186/1476-511x-12-159
283 rdf:type schema:CreativeWork
284 https://app.dimensions.ai/details/publication/pub.1074526173 schema:CreativeWork
285 https://app.dimensions.ai/details/publication/pub.1077934028 schema:CreativeWork
286 https://doi.org/10.1001/archinte.155.1.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054114559
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1001/archinte.1995.00430010021004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040608200
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1001/jama.1982.03320430047030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038627387
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1001/jama.284.3.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023075316
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1002/sim.1802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027475560
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/j.ahj.2008.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014281120
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1016/j.amjmed.2010.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045322605
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1016/j.atherosclerosis.2006.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032771861
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1016/j.atherosclerosis.2009.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036648165
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1016/j.atherosclerosis.2010.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013642115
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/j.atherosclerosis.2011.06.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007141779
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.atherosclerosis.2012.08.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047473665
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/j.atherosclerosis.2014.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000608897
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1016/j.atherosclerosis.2015.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031107373
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1016/j.atherosclerosis.2015.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035831575
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1016/j.ijcard.2005.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042680278
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1016/j.ijcard.2014.11.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035362978
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1016/j.jacc.2010.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006031030
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1016/j.jacc.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053179909
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1016/j.jacl.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033694631
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1016/j.jacl.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012013090
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1016/j.jff.2013.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003752739
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1016/j.numecd.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042983403
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1016/j.numecd.2014.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016662121
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1016/s0002-9149(01)01709-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149914
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1016/s0140-6736(04)17018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052249325
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1016/s0140-6736(07)61778-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010851118
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1016/s0140-6736(14)61177-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034859204
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1016/s0140-6736(14)61217-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029306405
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1093/eurheartj/ehq386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002212361
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1093/ije/26.suppl_1.s118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025571363
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1093/oxfordjournals.aje.a008878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050157943
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1097/mol.0000000000000090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033120199
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1111/j.1365-2796.2010.02286.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035187431
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1155/2013/782137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020027694
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1159/000345107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037415987
357 rdf:type schema:CreativeWork
358 https://doi.org/10.1161/circ.106.25.3143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075204771
359 rdf:type schema:CreativeWork
360 https://doi.org/10.1161/circoutcomes.110.959247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031640531
361 rdf:type schema:CreativeWork
362 https://doi.org/10.1177/140349489502300103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064002843
363 rdf:type schema:CreativeWork
364 https://doi.org/10.1177/2047487314555095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024512640
365 rdf:type schema:CreativeWork
366 https://doi.org/10.1371/journal.pone.0123521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020051946
367 rdf:type schema:CreativeWork
368 https://doi.org/10.1373/clinchem.2008.115899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015931920
369 rdf:type schema:CreativeWork
370 https://doi.org/10.1515/cclm.2004.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033288480
371 rdf:type schema:CreativeWork
372 https://doi.org/10.2174/157016110791330861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069196704
373 rdf:type schema:CreativeWork
374 https://doi.org/10.5551/jat.7161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047664627
375 rdf:type schema:CreativeWork
376 https://www.grid.ac/institutes/grid.15823.3d schema:alternateName Harokopio University
377 schema:name 46 Paleon Polemiston St., 166 74, Glyfada, Attica, Greece
378 Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
379 rdf:type schema:Organization
380 https://www.grid.ac/institutes/grid.5216.0 schema:alternateName National and Kapodistrian University of Athens
381 schema:name First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
382 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...