Serum microRNA profiling in patients with glioblastoma: a survival analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-11

AUTHORS

Hua Zhao, Jie Shen, Tiffany R. Hodges, Renduo Song, Gregory N. Fuller, Amy B. Heimberger

ABSTRACT

Because circulating microRNAs (miRNAs) have drawn a great deal of attention as promising novel cancer diagnostics and prognostic biomarkers, we sought to identify serum miRNAs significantly associated with outcome in glioblastoma patients. To do this, we performed global miRNA profiling in serum samples from 106 primary glioblastoma patients. The study subjects were randomly divided into two sets: set one (n = 40) and set two (n = 66). Using a Cox regression model, 3 serum miRNAs (miR-106a-5p, miR-182, and miR-145-5p) and 5 serum miRNAs (miR-222-3p, miR-182, miR-20a-5p, miR-106a-5p, and miR-145-5p) were identified significantly associated with 2-year patient overall survival and disease-free survival (P < 0.05) in both sets and the combined set. We then created the miRNA risk scores to assess the total impact of the significant serum miRNAs on survival. The high risk scores were associated with poor patient survival (overall survival: HR = 1.92, 95% CI: 1.19, 10.23, and disease-free survival: HR = 2.03, 95%CI: 1.24, 4.28), and were independent of other clinicopathological factors. Our results suggest that serum miRNAs could serve as prognostic predictors of glioblastoma. More... »

PAGES

59

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12943-017-0628-5

DOI

http://dx.doi.org/10.1186/s12943-017-0628-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084251314

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28284220


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioblastoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kaplan-Meier Estimate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Hua", 
        "id": "sg:person.013357557577.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013357557577.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Jie", 
        "id": "sg:person.01155750053.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155750053.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodges", 
        "givenName": "Tiffany R.", 
        "id": "sg:person.01241450467.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241450467.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Renduo", 
        "id": "sg:person.01332131761.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332131761.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuller", 
        "givenName": "Gregory N.", 
        "id": "sg:person.013732343337.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732343337.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heimberger", 
        "givenName": "Amy B.", 
        "id": "sg:person.0745122131.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745122131.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/onc.2014.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030490730", 
          "https://doi.org/10.1038/onc.2014.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2013.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041306", 
          "https://doi.org/10.1038/nrclinonc.2013.110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2010.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009663084", 
          "https://doi.org/10.1038/onc.2010.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00401-007-0243-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001430701", 
          "https://doi.org/10.1007/s00401-007-0243-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-9966-31-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029533420", 
          "https://doi.org/10.1186/1756-9966-31-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2014.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004935950", 
          "https://doi.org/10.1038/nrclinonc.2014.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12038-012-9192-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025092263", 
          "https://doi.org/10.1007/s12038-012-9192-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0955-9_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049825918", 
          "https://doi.org/10.1007/978-3-0348-0955-9_11"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-11", 
    "datePublishedReg": "2017-03-11", 
    "description": "Because circulating microRNAs (miRNAs) have drawn a great deal of attention as promising novel cancer diagnostics and prognostic biomarkers, we sought to identify serum miRNAs significantly associated with outcome in glioblastoma patients. To do this, we performed global miRNA profiling in serum samples from 106 primary glioblastoma patients. The study subjects were randomly divided into two sets: set one (n\u2009=\u200940) and set two (n\u2009=\u200966). Using a Cox regression model, 3 serum miRNAs (miR-106a-5p, miR-182, and miR-145-5p) and 5 serum miRNAs (miR-222-3p, miR-182, miR-20a-5p, miR-106a-5p, and miR-145-5p) were identified significantly associated with 2-year patient overall survival and disease-free survival (P\u2009<\u20090.05) in both sets and the combined set. We then created the miRNA risk scores to assess the total impact of the significant serum miRNAs on survival. The high risk scores were associated with poor patient survival (overall survival: HR\u2009=\u20091.92, 95% CI: 1.19, 10.23, and disease-free survival: HR\u2009=\u20092.03, 95%CI: 1.24, 4.28), and were independent of other clinicopathological factors. Our results suggest that serum miRNAs could serve as prognostic predictors of glioblastoma.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12943-017-0628-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031030", 
        "issn": [
          "1476-4598"
        ], 
        "name": "Molecular Cancer", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "serum miRNAs", 
      "risk score", 
      "glioblastoma patients", 
      "disease-free survival", 
      "Cox regression model", 
      "patient overall survival", 
      "primary glioblastoma patients", 
      "poor patient survival", 
      "high-risk score", 
      "global miRNA profiling", 
      "overall survival", 
      "clinicopathological factors", 
      "prognostic predictor", 
      "patient survival", 
      "prognostic biomarker", 
      "study subjects", 
      "serum microRNAs", 
      "survival analysis", 
      "patients", 
      "serum samples", 
      "survival", 
      "miRNA profiling", 
      "novel cancer diagnostics", 
      "glioblastoma", 
      "regression models", 
      "scores", 
      "miRNAs", 
      "cancer diagnostics", 
      "microRNAs", 
      "biomarkers", 
      "outcomes", 
      "predictors", 
      "subjects", 
      "factors", 
      "profiling", 
      "diagnostics", 
      "samples", 
      "great deal", 
      "impact", 
      "analysis", 
      "results", 
      "total impact", 
      "attention", 
      "model", 
      "set", 
      "deal", 
      "promising novel cancer diagnostics", 
      "miRNA risk scores", 
      "significant serum miRNAs"
    ], 
    "name": "Serum microRNA profiling in patients with glioblastoma: a survival analysis", 
    "pagination": "59", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084251314"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12943-017-0628-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28284220"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12943-017-0628-5", 
      "https://app.dimensions.ai/details/publication/pub.1084251314"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_730.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12943-017-0628-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12943-017-0628-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12943-017-0628-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12943-017-0628-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12943-017-0628-5'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      22 PREDICATES      90 URIs      74 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12943-017-0628-5 schema:about N0063b314dbae477986d974ee65e8ca26
2 N061f5efdc395494eba71575edfee046e
3 N097c2a9d0c2f4ef4a543a5ff48fefb2d
4 N2b3029233a4b44bb86943ded3e3a3b25
5 N37307b6d85ce4c439814ccfadb8048da
6 N465a982ca0c64a9a8c37890e0306b85a
7 N91d42dac3dcd4f1795285567f1b633f0
8 anzsrc-for:11
9 anzsrc-for:1112
10 schema:author N656a047db52248ddb84820308f30f1c9
11 schema:citation sg:pub.10.1007/978-3-0348-0955-9_11
12 sg:pub.10.1007/s00401-007-0243-4
13 sg:pub.10.1007/s12038-012-9192-8
14 sg:pub.10.1038/nrclinonc.2013.110
15 sg:pub.10.1038/nrclinonc.2014.5
16 sg:pub.10.1038/onc.2010.83
17 sg:pub.10.1038/onc.2014.75
18 sg:pub.10.1186/1756-9966-31-38
19 schema:datePublished 2017-03-11
20 schema:datePublishedReg 2017-03-11
21 schema:description Because circulating microRNAs (miRNAs) have drawn a great deal of attention as promising novel cancer diagnostics and prognostic biomarkers, we sought to identify serum miRNAs significantly associated with outcome in glioblastoma patients. To do this, we performed global miRNA profiling in serum samples from 106 primary glioblastoma patients. The study subjects were randomly divided into two sets: set one (n = 40) and set two (n = 66). Using a Cox regression model, 3 serum miRNAs (miR-106a-5p, miR-182, and miR-145-5p) and 5 serum miRNAs (miR-222-3p, miR-182, miR-20a-5p, miR-106a-5p, and miR-145-5p) were identified significantly associated with 2-year patient overall survival and disease-free survival (P < 0.05) in both sets and the combined set. We then created the miRNA risk scores to assess the total impact of the significant serum miRNAs on survival. The high risk scores were associated with poor patient survival (overall survival: HR = 1.92, 95% CI: 1.19, 10.23, and disease-free survival: HR = 2.03, 95%CI: 1.24, 4.28), and were independent of other clinicopathological factors. Our results suggest that serum miRNAs could serve as prognostic predictors of glioblastoma.
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N9fc4f794be0a4c79b452aeab86ff5362
26 Na4e6ebd334424f62893143149f28c483
27 sg:journal.1031030
28 schema:keywords Cox regression model
29 analysis
30 attention
31 biomarkers
32 cancer diagnostics
33 clinicopathological factors
34 deal
35 diagnostics
36 disease-free survival
37 factors
38 glioblastoma
39 glioblastoma patients
40 global miRNA profiling
41 great deal
42 high-risk score
43 impact
44 miRNA profiling
45 miRNA risk scores
46 miRNAs
47 microRNAs
48 model
49 novel cancer diagnostics
50 outcomes
51 overall survival
52 patient overall survival
53 patient survival
54 patients
55 poor patient survival
56 predictors
57 primary glioblastoma patients
58 profiling
59 prognostic biomarker
60 prognostic predictor
61 promising novel cancer diagnostics
62 regression models
63 results
64 risk score
65 samples
66 scores
67 serum miRNAs
68 serum microRNAs
69 serum samples
70 set
71 significant serum miRNAs
72 study subjects
73 subjects
74 survival
75 survival analysis
76 total impact
77 schema:name Serum microRNA profiling in patients with glioblastoma: a survival analysis
78 schema:pagination 59
79 schema:productId Nda52dc66e775415ea5f49ebac74606f2
80 Nf204197d7a2b4fe788415806e72443ce
81 Nf324810e19af4af2832fdc221a2c6512
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084251314
83 https://doi.org/10.1186/s12943-017-0628-5
84 schema:sdDatePublished 2021-12-01T19:38
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N6f28c0ea2e6e4f488660ccf1206de144
87 schema:url https://doi.org/10.1186/s12943-017-0628-5
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0063b314dbae477986d974ee65e8ca26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name MicroRNAs
93 rdf:type schema:DefinedTerm
94 N061f5efdc395494eba71575edfee046e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Glioblastoma
96 rdf:type schema:DefinedTerm
97 N097c2a9d0c2f4ef4a543a5ff48fefb2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Prognosis
99 rdf:type schema:DefinedTerm
100 N29b47f65b94847beb2cc340b905334b0 rdf:first sg:person.013732343337.08
101 rdf:rest Na2eaf662987f43439cb5f770a3d70569
102 N2b3029233a4b44bb86943ded3e3a3b25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Humans
104 rdf:type schema:DefinedTerm
105 N37307b6d85ce4c439814ccfadb8048da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Biomarkers, Tumor
107 rdf:type schema:DefinedTerm
108 N465a982ca0c64a9a8c37890e0306b85a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Kaplan-Meier Estimate
110 rdf:type schema:DefinedTerm
111 N512efca18ec0455ba6fad4e8f238df81 rdf:first sg:person.01332131761.31
112 rdf:rest N29b47f65b94847beb2cc340b905334b0
113 N656a047db52248ddb84820308f30f1c9 rdf:first sg:person.013357557577.20
114 rdf:rest Nf2a7593aab7c4341b91f1d83dc3ae9cc
115 N6f28c0ea2e6e4f488660ccf1206de144 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N91d42dac3dcd4f1795285567f1b633f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Gene Expression Regulation, Neoplastic
119 rdf:type schema:DefinedTerm
120 N9fc4f794be0a4c79b452aeab86ff5362 schema:volumeNumber 16
121 rdf:type schema:PublicationVolume
122 Na2eaf662987f43439cb5f770a3d70569 rdf:first sg:person.0745122131.07
123 rdf:rest rdf:nil
124 Na4e6ebd334424f62893143149f28c483 schema:issueNumber 1
125 rdf:type schema:PublicationIssue
126 Nca6e92281ace4c7988b5a4f8990f46eb rdf:first sg:person.01241450467.98
127 rdf:rest N512efca18ec0455ba6fad4e8f238df81
128 Nda52dc66e775415ea5f49ebac74606f2 schema:name dimensions_id
129 schema:value pub.1084251314
130 rdf:type schema:PropertyValue
131 Nf204197d7a2b4fe788415806e72443ce schema:name pubmed_id
132 schema:value 28284220
133 rdf:type schema:PropertyValue
134 Nf2a7593aab7c4341b91f1d83dc3ae9cc rdf:first sg:person.01155750053.04
135 rdf:rest Nca6e92281ace4c7988b5a4f8990f46eb
136 Nf324810e19af4af2832fdc221a2c6512 schema:name doi
137 schema:value 10.1186/s12943-017-0628-5
138 rdf:type schema:PropertyValue
139 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
140 schema:name Medical and Health Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
143 schema:name Oncology and Carcinogenesis
144 rdf:type schema:DefinedTerm
145 sg:journal.1031030 schema:issn 1476-4598
146 schema:name Molecular Cancer
147 schema:publisher Springer Nature
148 rdf:type schema:Periodical
149 sg:person.01155750053.04 schema:affiliation grid-institutes:grid.240145.6
150 schema:familyName Shen
151 schema:givenName Jie
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155750053.04
153 rdf:type schema:Person
154 sg:person.01241450467.98 schema:affiliation grid-institutes:grid.240145.6
155 schema:familyName Hodges
156 schema:givenName Tiffany R.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241450467.98
158 rdf:type schema:Person
159 sg:person.01332131761.31 schema:affiliation grid-institutes:grid.240145.6
160 schema:familyName Song
161 schema:givenName Renduo
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332131761.31
163 rdf:type schema:Person
164 sg:person.013357557577.20 schema:affiliation grid-institutes:grid.240145.6
165 schema:familyName Zhao
166 schema:givenName Hua
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013357557577.20
168 rdf:type schema:Person
169 sg:person.013732343337.08 schema:affiliation grid-institutes:grid.240145.6
170 schema:familyName Fuller
171 schema:givenName Gregory N.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732343337.08
173 rdf:type schema:Person
174 sg:person.0745122131.07 schema:affiliation grid-institutes:grid.240145.6
175 schema:familyName Heimberger
176 schema:givenName Amy B.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745122131.07
178 rdf:type schema:Person
179 sg:pub.10.1007/978-3-0348-0955-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049825918
180 https://doi.org/10.1007/978-3-0348-0955-9_11
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00401-007-0243-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001430701
183 https://doi.org/10.1007/s00401-007-0243-4
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s12038-012-9192-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025092263
186 https://doi.org/10.1007/s12038-012-9192-8
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrclinonc.2013.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012041306
189 https://doi.org/10.1038/nrclinonc.2013.110
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrclinonc.2014.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004935950
192 https://doi.org/10.1038/nrclinonc.2014.5
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/onc.2010.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009663084
195 https://doi.org/10.1038/onc.2010.83
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/onc.2014.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030490730
198 https://doi.org/10.1038/onc.2014.75
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1756-9966-31-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029533420
201 https://doi.org/10.1186/1756-9966-31-38
202 rdf:type schema:CreativeWork
203 grid-institutes:grid.240145.6 schema:alternateName Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA
204 Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
205 Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
206 schema:name Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030 USA
207 Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
208 Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...