Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-04-10

AUTHORS

Yao Li, Amol C. Shetty, Chanthap Lon, Michele Spring, David L. Saunders, Mark M. Fukuda, Tran Tinh Hien, Sasithon Pukrittayakamee, Rick M. Fairhurst, Arjen M. Dondorp, Christopher V. Plowe, Timothy D. O’Connor, Shannon Takala-Harrison, Kathleen Stewart

ABSTRACT

BackgroundUnderstanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam.MethodsThe optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns.ResultsOptimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns.ConclusionsOptimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas. More... »

PAGES

13

References to SciGraph publications

  • 2014-08-26. A microarray platform and novel SNP calling algorithm to evaluate Plasmodium falciparum field samples of low DNA quantity in BMC GENOMICS
  • 2012-02-14. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam in ECOHEALTH
  • 2015-09-30. The epidemiology of subclinical malaria infections in South-East Asia: findings from cross-sectional surveys in Thailand–Myanmar border areas, Cambodia, and Vietnam in MALARIA JOURNAL
  • 2019-05-24. Spatially explicit analysis reveals complex human genetic gradients in the Iberian Peninsula in SCIENTIFIC REPORTS
  • 2014-09-30. Spatial and temporal epidemiology of clinical malaria in Cambodia 2004–2013 in MALARIA JOURNAL
  • 2012-10-26. In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam in MALARIA JOURNAL
  • 2014-09-30. Spatial clustering and risk factors of malaria infections in Ratanakiri Province, Cambodia in MALARIA JOURNAL
  • 2010-04-22. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination in MALARIA JOURNAL
  • 2012-03-25. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia in MALARIA JOURNAL
  • 2017-03-30. Population structure and gene flow in a newly harvested gray wolf (Canis lupus) population in CONSERVATION GENETICS
  • 2007. Forest Environments in the Mekong River Basin in NONE
  • 2007-03-06. The Anopheles dirus complex: spatial distribution and environmental drivers in MALARIA JOURNAL
  • 2015-09-21. Accelerated deforestation driven by large-scale land acquisitions in Cambodia in NATURE GEOSCIENCE
  • 2017-02-16. Genetic diversity of Atlantic Bluefin tuna in the Mediterranean Sea: insights from genome-wide SNPs and microsatellites in JOURNAL OF BIOLOGICAL RESEARCH-THESSALONIKI
  • 2012-09-21. Grounding Forest Carbon: Property Relations and Avoided Deforestation in Cambodia in HUMAN ECOLOGY
  • 2018-02-21. The genomic history of southeastern Europe in NATURE
  • 2013-04-28. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia in NATURE GENETICS
  • 2015-01-19. Genetic architecture of artemisinin-resistant Plasmodium falciparum in NATURE GENETICS
  • 2011-12-20. A new world malaria map: Plasmodium falciparum endemicity in 2010 in MALARIA JOURNAL
  • 2019-06-17. Genomic structure and diversity of Plasmodium falciparum in Southeast Asia reveal recent parasite migration patterns in NATURE COMMUNICATIONS
  • 2015-12-07. Visualizing spatial population structure with estimated effective migration surfaces in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12942-020-00207-3

    DOI

    http://dx.doi.org/10.1186/s12942-020-00207-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1126585029

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32276636


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Studies in Human Society", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Human Geography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cambodia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geographic Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Malaria, Falciparum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmodium falciparum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spatial Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thailand", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, 20742, College Park, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, 20742, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yao", 
            "id": "sg:person.01341503055.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341503055.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.411024.2", 
              "name": [
                "Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shetty", 
            "givenName": "Amol C.", 
            "id": "sg:person.0705703554.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705703554.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand", 
              "id": "http://www.grid.ac/institutes/grid.413910.e", 
              "name": [
                "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lon", 
            "givenName": "Chanthap", 
            "id": "sg:person.01052172351.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052172351.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand", 
              "id": "http://www.grid.ac/institutes/grid.413910.e", 
              "name": [
                "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spring", 
            "givenName": "Michele", 
            "id": "sg:person.01112600032.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112600032.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand", 
              "id": "http://www.grid.ac/institutes/grid.413910.e", 
              "name": [
                "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saunders", 
            "givenName": "David L.", 
            "id": "sg:person.01013561351.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013561351.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand", 
              "id": "http://www.grid.ac/institutes/grid.413910.e", 
              "name": [
                "Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fukuda", 
            "givenName": "Mark M.", 
            "id": "sg:person.0645422242.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645422242.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam", 
              "id": "http://www.grid.ac/institutes/grid.412433.3", 
              "name": [
                "Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hien", 
            "givenName": "Tran Tinh", 
            "id": "sg:person.011034415617.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034415617.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand", 
              "id": "http://www.grid.ac/institutes/grid.10223.32", 
              "name": [
                "Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pukrittayakamee", 
            "givenName": "Sasithon", 
            "id": "sg:person.0767420531.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767420531.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health, Bethesda, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.94365.3d", 
              "name": [
                "National Institutes of Health, Bethesda, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fairhurst", 
            "givenName": "Rick M.", 
            "id": "sg:person.01223571744.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223571744.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand", 
              "id": "http://www.grid.ac/institutes/grid.501272.3", 
              "name": [
                "Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dondorp", 
            "givenName": "Arjen M.", 
            "id": "sg:person.01162317707.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162317707.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Duke Global Health Institute, Duke University, 27710, Durham, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26009.3d", 
              "name": [
                "Duke Global Health Institute, Duke University, 27710, Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Plowe", 
            "givenName": "Christopher V.", 
            "id": "sg:person.01333507624.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333507624.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.411024.2", 
              "name": [
                "Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Connor", 
            "givenName": "Timothy D.", 
            "id": "sg:person.0644054044.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644054044.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 21201, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.411024.2", 
              "name": [
                "Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 21201, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takala-Harrison", 
            "givenName": "Shannon", 
            "id": "sg:person.0673633477.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673633477.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, 20742, College Park, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, 20742, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stewart", 
            "givenName": "Kathleen", 
            "id": "sg:person.011637614533.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637614533.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2164-15-719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023010813", 
              "https://doi.org/10.1186/1471-2164-15-719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-4-431-46503-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030227015", 
              "https://doi.org/10.1007/978-4-431-46503-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038472761", 
              "https://doi.org/10.1038/ngeo2540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-13-387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007014001", 
              "https://doi.org/10.1186/1475-2875-13-387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-017-0961-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084025739", 
              "https://doi.org/10.1007/s10592-017-0961-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-10-378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036893759", 
              "https://doi.org/10.1186/1475-2875-10-378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-9-108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047935302", 
              "https://doi.org/10.1186/1475-2875-9-108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045385714", 
              "https://doi.org/10.1038/ng.3189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016345544", 
              "https://doi.org/10.1038/ng.2624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10745-012-9526-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010326111", 
              "https://doi.org/10.1007/s10745-012-9526-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40709-017-0062-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083913314", 
              "https://doi.org/10.1186/s40709-017-0062-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012898786", 
              "https://doi.org/10.1038/ng.3464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-11-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017853987", 
              "https://doi.org/10.1186/1475-2875-11-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101139887", 
              "https://doi.org/10.1038/nature25778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-10121-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117288732", 
              "https://doi.org/10.1038/s41467-019-10121-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-13-385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029511199", 
              "https://doi.org/10.1186/1475-2875-13-385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-6-26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026029863", 
              "https://doi.org/10.1186/1475-2875-6-26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-44121-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115606569", 
              "https://doi.org/10.1038/s41598-019-44121-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12936-015-0906-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035849721", 
              "https://doi.org/10.1186/s12936-015-0906-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-11-355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028137830", 
              "https://doi.org/10.1186/1475-2875-11-355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10393-012-0749-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018113486", 
              "https://doi.org/10.1007/s10393-012-0749-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-04-10", 
        "datePublishedReg": "2020-04-10", 
        "description": "BackgroundUnderstanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam.MethodsThe optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns.ResultsOptimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns.ConclusionsOptimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12942-020-00207-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6664488", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.9020013", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6616578", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2459721", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031277", 
            "issn": [
              "1476-072X"
            ], 
            "name": "International Journal of Health Geographics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "malaria endemicity", 
          "P. falciparum", 
          "parasite migration", 
          "Plasmodium falciparum", 
          "falciparum", 
          "regions of Thailand", 
          "public health", 
          "translational applications", 
          "endemicity", 
          "population", 
          "geographic areas", 
          "genomic clusters", 
          "spatial grid", 
          "grid density", 
          "adaptive process", 
          "migration", 
          "health", 
          "effective migration surfaces", 
          "model accuracy", 
          "patterns", 
          "data", 
          "Cambodia", 
          "high model accuracy", 
          "geospatial patterns", 
          "topological skeleton", 
          "user-defined parameters", 
          "grid resolution", 
          "cases", 
          "migration patterns", 
          "study", 
          "such information", 
          "area", 
          "spatial uncertainty", 
          "variety of fields", 
          "manner", 
          "broad range", 
          "grid", 
          "test cases", 
          "region", 
          "Thailand", 
          "genomic data", 
          "optimal density", 
          "malaria parasite migration", 
          "addition", 
          "geographic properties", 
          "estimates", 
          "time", 
          "spatial clustering", 
          "validity", 
          "visualization", 
          "analysis", 
          "organisms", 
          "workflow", 
          "variety", 
          "resolution", 
          "optimization", 
          "accuracy", 
          "observed migration patterns", 
          "clusters", 
          "skeleton", 
          "spatial distribution", 
          "information", 
          "means", 
          "insights", 
          "density", 
          "properties", 
          "uncertainty", 
          "Vietnam", 
          "spatial distance", 
          "migration maps", 
          "maps", 
          "organism of interest", 
          "field", 
          "parameters", 
          "new workflow", 
          "model", 
          "interest", 
          "structure", 
          "approach", 
          "clustering", 
          "unguided manner", 
          "contours", 
          "distribution", 
          "range", 
          "applications", 
          "migration estimates", 
          "spatial patterns", 
          "distance", 
          "surface", 
          "process", 
          "users", 
          "population structure", 
          "study area", 
          "study region", 
          "geospatial data", 
          "natural populations", 
          "genetic structure"
        ], 
        "name": "Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces", 
        "pagination": "13", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1126585029"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12942-020-00207-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32276636"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12942-020-00207-3", 
          "https://app.dimensions.ai/details/publication/pub.1126585029"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_870.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12942-020-00207-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12942-020-00207-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12942-020-00207-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12942-020-00207-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12942-020-00207-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    407 TRIPLES      21 PREDICATES      154 URIs      123 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12942-020-00207-3 schema:about N07aaff9aa017467086721a265cb9ef5d
    2 N6108e15f7ef64196b7f66b351f2483c6
    3 N674721a26faa43f0ba1db9434922b2f8
    4 N6939994f2a854bb8bd4661dd572e89e3
    5 N8842afaf877a4b64a93370f165552824
    6 N94ab9b3181674ead8fc69b5923f75bb3
    7 Nd7cb2719f7bc4e649f3a5bbfaf38837f
    8 Nee58e44be2124617b68365594701e845
    9 Nf765833be59647f0951bdc1be857c043
    10 anzsrc-for:11
    11 anzsrc-for:1117
    12 anzsrc-for:16
    13 anzsrc-for:1604
    14 schema:author N1fb581d610eb4ac7967b4e18c67b5017
    15 schema:citation sg:pub.10.1007/978-4-431-46503-4
    16 sg:pub.10.1007/s10393-012-0749-7
    17 sg:pub.10.1007/s10592-017-0961-7
    18 sg:pub.10.1007/s10745-012-9526-z
    19 sg:pub.10.1038/nature25778
    20 sg:pub.10.1038/ng.2624
    21 sg:pub.10.1038/ng.3189
    22 sg:pub.10.1038/ng.3464
    23 sg:pub.10.1038/ngeo2540
    24 sg:pub.10.1038/s41467-019-10121-3
    25 sg:pub.10.1038/s41598-019-44121-6
    26 sg:pub.10.1186/1471-2164-15-719
    27 sg:pub.10.1186/1475-2875-10-378
    28 sg:pub.10.1186/1475-2875-11-355
    29 sg:pub.10.1186/1475-2875-11-86
    30 sg:pub.10.1186/1475-2875-13-385
    31 sg:pub.10.1186/1475-2875-13-387
    32 sg:pub.10.1186/1475-2875-6-26
    33 sg:pub.10.1186/1475-2875-9-108
    34 sg:pub.10.1186/s12936-015-0906-x
    35 sg:pub.10.1186/s40709-017-0062-2
    36 schema:datePublished 2020-04-10
    37 schema:datePublishedReg 2020-04-10
    38 schema:description BackgroundUnderstanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam.MethodsThe optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns.ResultsOptimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns.ConclusionsOptimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.
    39 schema:genre article
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N0eaf6bcf679e4cc28065c74bdeaea7b2
    42 N5bcbcffe78dd417c80c88929b0aeffff
    43 sg:journal.1031277
    44 schema:keywords Cambodia
    45 P. falciparum
    46 Plasmodium falciparum
    47 Thailand
    48 Vietnam
    49 accuracy
    50 adaptive process
    51 addition
    52 analysis
    53 applications
    54 approach
    55 area
    56 broad range
    57 cases
    58 clustering
    59 clusters
    60 contours
    61 data
    62 density
    63 distance
    64 distribution
    65 effective migration surfaces
    66 endemicity
    67 estimates
    68 falciparum
    69 field
    70 genetic structure
    71 genomic clusters
    72 genomic data
    73 geographic areas
    74 geographic properties
    75 geospatial data
    76 geospatial patterns
    77 grid
    78 grid density
    79 grid resolution
    80 health
    81 high model accuracy
    82 information
    83 insights
    84 interest
    85 malaria endemicity
    86 malaria parasite migration
    87 manner
    88 maps
    89 means
    90 migration
    91 migration estimates
    92 migration maps
    93 migration patterns
    94 model
    95 model accuracy
    96 natural populations
    97 new workflow
    98 observed migration patterns
    99 optimal density
    100 optimization
    101 organism of interest
    102 organisms
    103 parameters
    104 parasite migration
    105 patterns
    106 population
    107 population structure
    108 process
    109 properties
    110 public health
    111 range
    112 region
    113 regions of Thailand
    114 resolution
    115 skeleton
    116 spatial clustering
    117 spatial distance
    118 spatial distribution
    119 spatial grid
    120 spatial patterns
    121 spatial uncertainty
    122 structure
    123 study
    124 study area
    125 study region
    126 such information
    127 surface
    128 test cases
    129 time
    130 topological skeleton
    131 translational applications
    132 uncertainty
    133 unguided manner
    134 user-defined parameters
    135 users
    136 validity
    137 variety
    138 variety of fields
    139 visualization
    140 workflow
    141 schema:name Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces
    142 schema:pagination 13
    143 schema:productId N1607cea1d04740f2943c1e00e1612a2a
    144 N1dded3343c9d4bab9d1b711db24b8109
    145 N7d81c8f3201a40988497376761ba7181
    146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126585029
    147 https://doi.org/10.1186/s12942-020-00207-3
    148 schema:sdDatePublished 2022-09-02T16:06
    149 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    150 schema:sdPublisher Na0cd9c46772e46bb91fe620027628132
    151 schema:url https://doi.org/10.1186/s12942-020-00207-3
    152 sgo:license sg:explorer/license/
    153 sgo:sdDataset articles
    154 rdf:type schema:ScholarlyArticle
    155 N07aaff9aa017467086721a265cb9ef5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Animals
    157 rdf:type schema:DefinedTerm
    158 N0ceaf0819b8a4162b4544081923eff7b rdf:first sg:person.0644054044.78
    159 rdf:rest N60d196d8b7764c9888a1ab303b6e96b7
    160 N0eaf6bcf679e4cc28065c74bdeaea7b2 schema:issueNumber 1
    161 rdf:type schema:PublicationIssue
    162 N1607cea1d04740f2943c1e00e1612a2a schema:name pubmed_id
    163 schema:value 32276636
    164 rdf:type schema:PropertyValue
    165 N1dded3343c9d4bab9d1b711db24b8109 schema:name doi
    166 schema:value 10.1186/s12942-020-00207-3
    167 rdf:type schema:PropertyValue
    168 N1fb581d610eb4ac7967b4e18c67b5017 rdf:first sg:person.01341503055.22
    169 rdf:rest Nd777aa48564c49908472367c50d207e8
    170 N5bcbcffe78dd417c80c88929b0aeffff schema:volumeNumber 19
    171 rdf:type schema:PublicationVolume
    172 N60d196d8b7764c9888a1ab303b6e96b7 rdf:first sg:person.0673633477.13
    173 rdf:rest N93ec401daaa94d7aa5a29941290b33e7
    174 N6108e15f7ef64196b7f66b351f2483c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Humans
    176 rdf:type schema:DefinedTerm
    177 N634dbddd17a748189e834db4ea0f4bb6 rdf:first sg:person.01013561351.59
    178 rdf:rest Ndbd9cdee95c046aca5ccdf5dd85621e2
    179 N674721a26faa43f0ba1db9434922b2f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Cluster Analysis
    181 rdf:type schema:DefinedTerm
    182 N693390d776734f508989e2c79d213f6a rdf:first sg:person.01223571744.44
    183 rdf:rest Nd7439f772916457c86933ccc9f220509
    184 N6939994f2a854bb8bd4661dd572e89e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Spatial Analysis
    186 rdf:type schema:DefinedTerm
    187 N7285794efe114db4ab318edff0a4cfd6 rdf:first sg:person.01052172351.50
    188 rdf:rest Naa14c93da3224e61998c59bc126d4b63
    189 N7d81c8f3201a40988497376761ba7181 schema:name dimensions_id
    190 schema:value pub.1126585029
    191 rdf:type schema:PropertyValue
    192 N8842afaf877a4b64a93370f165552824 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Plasmodium falciparum
    194 rdf:type schema:DefinedTerm
    195 N93ec401daaa94d7aa5a29941290b33e7 rdf:first sg:person.011637614533.55
    196 rdf:rest rdf:nil
    197 N94ab9b3181674ead8fc69b5923f75bb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Thailand
    199 rdf:type schema:DefinedTerm
    200 Na0cd9c46772e46bb91fe620027628132 schema:name Springer Nature - SN SciGraph project
    201 rdf:type schema:Organization
    202 Naa14c93da3224e61998c59bc126d4b63 rdf:first sg:person.01112600032.53
    203 rdf:rest N634dbddd17a748189e834db4ea0f4bb6
    204 Nabe40feeed9b4460a122f004362ddf5f rdf:first sg:person.011034415617.22
    205 rdf:rest Nb3f837f8765141ab808bb0b4d3f7915a
    206 Nb3f837f8765141ab808bb0b4d3f7915a rdf:first sg:person.0767420531.33
    207 rdf:rest N693390d776734f508989e2c79d213f6a
    208 Nd7439f772916457c86933ccc9f220509 rdf:first sg:person.01162317707.88
    209 rdf:rest Ne6a50eef21634b71a613d5b924cbc5a1
    210 Nd777aa48564c49908472367c50d207e8 rdf:first sg:person.0705703554.98
    211 rdf:rest N7285794efe114db4ab318edff0a4cfd6
    212 Nd7cb2719f7bc4e649f3a5bbfaf38837f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Cambodia
    214 rdf:type schema:DefinedTerm
    215 Ndbd9cdee95c046aca5ccdf5dd85621e2 rdf:first sg:person.0645422242.64
    216 rdf:rest Nabe40feeed9b4460a122f004362ddf5f
    217 Ne6a50eef21634b71a613d5b924cbc5a1 rdf:first sg:person.01333507624.36
    218 rdf:rest N0ceaf0819b8a4162b4544081923eff7b
    219 Nee58e44be2124617b68365594701e845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Malaria, Falciparum
    221 rdf:type schema:DefinedTerm
    222 Nf765833be59647f0951bdc1be857c043 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Geographic Information Systems
    224 rdf:type schema:DefinedTerm
    225 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    226 schema:name Medical and Health Sciences
    227 rdf:type schema:DefinedTerm
    228 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    229 schema:name Public Health and Health Services
    230 rdf:type schema:DefinedTerm
    231 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
    232 schema:name Studies in Human Society
    233 rdf:type schema:DefinedTerm
    234 anzsrc-for:1604 schema:inDefinedTermSet anzsrc-for:
    235 schema:name Human Geography
    236 rdf:type schema:DefinedTerm
    237 sg:grant.2459721 http://pending.schema.org/fundedItem sg:pub.10.1186/s12942-020-00207-3
    238 rdf:type schema:MonetaryGrant
    239 sg:grant.6616578 http://pending.schema.org/fundedItem sg:pub.10.1186/s12942-020-00207-3
    240 rdf:type schema:MonetaryGrant
    241 sg:grant.6664488 http://pending.schema.org/fundedItem sg:pub.10.1186/s12942-020-00207-3
    242 rdf:type schema:MonetaryGrant
    243 sg:grant.9020013 http://pending.schema.org/fundedItem sg:pub.10.1186/s12942-020-00207-3
    244 rdf:type schema:MonetaryGrant
    245 sg:journal.1031277 schema:issn 1476-072X
    246 schema:name International Journal of Health Geographics
    247 schema:publisher Springer Nature
    248 rdf:type schema:Periodical
    249 sg:person.01013561351.59 schema:affiliation grid-institutes:grid.413910.e
    250 schema:familyName Saunders
    251 schema:givenName David L.
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013561351.59
    253 rdf:type schema:Person
    254 sg:person.01052172351.50 schema:affiliation grid-institutes:grid.413910.e
    255 schema:familyName Lon
    256 schema:givenName Chanthap
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052172351.50
    258 rdf:type schema:Person
    259 sg:person.011034415617.22 schema:affiliation grid-institutes:grid.412433.3
    260 schema:familyName Hien
    261 schema:givenName Tran Tinh
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034415617.22
    263 rdf:type schema:Person
    264 sg:person.01112600032.53 schema:affiliation grid-institutes:grid.413910.e
    265 schema:familyName Spring
    266 schema:givenName Michele
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112600032.53
    268 rdf:type schema:Person
    269 sg:person.01162317707.88 schema:affiliation grid-institutes:grid.501272.3
    270 schema:familyName Dondorp
    271 schema:givenName Arjen M.
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162317707.88
    273 rdf:type schema:Person
    274 sg:person.011637614533.55 schema:affiliation grid-institutes:grid.164295.d
    275 schema:familyName Stewart
    276 schema:givenName Kathleen
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637614533.55
    278 rdf:type schema:Person
    279 sg:person.01223571744.44 schema:affiliation grid-institutes:grid.94365.3d
    280 schema:familyName Fairhurst
    281 schema:givenName Rick M.
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223571744.44
    283 rdf:type schema:Person
    284 sg:person.01333507624.36 schema:affiliation grid-institutes:grid.26009.3d
    285 schema:familyName Plowe
    286 schema:givenName Christopher V.
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333507624.36
    288 rdf:type schema:Person
    289 sg:person.01341503055.22 schema:affiliation grid-institutes:grid.164295.d
    290 schema:familyName Li
    291 schema:givenName Yao
    292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341503055.22
    293 rdf:type schema:Person
    294 sg:person.0644054044.78 schema:affiliation grid-institutes:grid.411024.2
    295 schema:familyName O’Connor
    296 schema:givenName Timothy D.
    297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644054044.78
    298 rdf:type schema:Person
    299 sg:person.0645422242.64 schema:affiliation grid-institutes:grid.413910.e
    300 schema:familyName Fukuda
    301 schema:givenName Mark M.
    302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645422242.64
    303 rdf:type schema:Person
    304 sg:person.0673633477.13 schema:affiliation grid-institutes:grid.411024.2
    305 schema:familyName Takala-Harrison
    306 schema:givenName Shannon
    307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673633477.13
    308 rdf:type schema:Person
    309 sg:person.0705703554.98 schema:affiliation grid-institutes:grid.411024.2
    310 schema:familyName Shetty
    311 schema:givenName Amol C.
    312 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705703554.98
    313 rdf:type schema:Person
    314 sg:person.0767420531.33 schema:affiliation grid-institutes:grid.10223.32
    315 schema:familyName Pukrittayakamee
    316 schema:givenName Sasithon
    317 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767420531.33
    318 rdf:type schema:Person
    319 sg:pub.10.1007/978-4-431-46503-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030227015
    320 https://doi.org/10.1007/978-4-431-46503-4
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1007/s10393-012-0749-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018113486
    323 https://doi.org/10.1007/s10393-012-0749-7
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1007/s10592-017-0961-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084025739
    326 https://doi.org/10.1007/s10592-017-0961-7
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1007/s10745-012-9526-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010326111
    329 https://doi.org/10.1007/s10745-012-9526-z
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nature25778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101139887
    332 https://doi.org/10.1038/nature25778
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/ng.2624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016345544
    335 https://doi.org/10.1038/ng.2624
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/ng.3189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045385714
    338 https://doi.org/10.1038/ng.3189
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/ng.3464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012898786
    341 https://doi.org/10.1038/ng.3464
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/ngeo2540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472761
    344 https://doi.org/10.1038/ngeo2540
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/s41467-019-10121-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117288732
    347 https://doi.org/10.1038/s41467-019-10121-3
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/s41598-019-44121-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115606569
    350 https://doi.org/10.1038/s41598-019-44121-6
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1186/1471-2164-15-719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023010813
    353 https://doi.org/10.1186/1471-2164-15-719
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1186/1475-2875-10-378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036893759
    356 https://doi.org/10.1186/1475-2875-10-378
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1186/1475-2875-11-355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028137830
    359 https://doi.org/10.1186/1475-2875-11-355
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1186/1475-2875-11-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017853987
    362 https://doi.org/10.1186/1475-2875-11-86
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1186/1475-2875-13-385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029511199
    365 https://doi.org/10.1186/1475-2875-13-385
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1186/1475-2875-13-387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014001
    368 https://doi.org/10.1186/1475-2875-13-387
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1186/1475-2875-6-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026029863
    371 https://doi.org/10.1186/1475-2875-6-26
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1186/1475-2875-9-108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047935302
    374 https://doi.org/10.1186/1475-2875-9-108
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1186/s12936-015-0906-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035849721
    377 https://doi.org/10.1186/s12936-015-0906-x
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1186/s40709-017-0062-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083913314
    380 https://doi.org/10.1186/s40709-017-0062-2
    381 rdf:type schema:CreativeWork
    382 grid-institutes:grid.10223.32 schema:alternateName Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
    383 schema:name Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
    384 rdf:type schema:Organization
    385 grid-institutes:grid.164295.d schema:alternateName Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, 20742, College Park, MD, USA
    386 schema:name Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, 20742, College Park, MD, USA
    387 rdf:type schema:Organization
    388 grid-institutes:grid.26009.3d schema:alternateName Duke Global Health Institute, Duke University, 27710, Durham, NC, USA
    389 schema:name Duke Global Health Institute, Duke University, 27710, Durham, NC, USA
    390 rdf:type schema:Organization
    391 grid-institutes:grid.411024.2 schema:alternateName Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 21201, Baltimore, MD, USA
    392 Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA
    393 schema:name Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 21201, Baltimore, MD, USA
    394 Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA
    395 rdf:type schema:Organization
    396 grid-institutes:grid.412433.3 schema:alternateName Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
    397 schema:name Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
    398 rdf:type schema:Organization
    399 grid-institutes:grid.413910.e schema:alternateName Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
    400 schema:name Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
    401 rdf:type schema:Organization
    402 grid-institutes:grid.501272.3 schema:alternateName Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    403 schema:name Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    404 rdf:type schema:Organization
    405 grid-institutes:grid.94365.3d schema:alternateName National Institutes of Health, Bethesda, MD, USA
    406 schema:name National Institutes of Health, Bethesda, MD, USA
    407 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...