Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Francois M. Moukam Kakmeni, Ritter Y. A. Guimapi, Frank T. Ndjomatchoua, Sansoa A. Pedro, James Mutunga, Henri E. Z. Tonnang

ABSTRACT

BACKGROUND: Malaria is highly sensitive to climatic variables and is strongly influenced by the presence of vectors in a region that further contribute to parasite development and sustained disease transmission. Mathematical analysis of malaria transmission through the use and application of the value of the basic reproduction number (R0) threshold is an important and useful tool for the understanding of disease patterns. METHODS: Temperature dependence aspect of R0 obtained from dynamical mathematical network model was used to derive the spatial distribution maps for malaria transmission under different climatic and intervention scenarios. Model validation was conducted using MARA map and the Annual Plasmodium falciparum Entomological Inoculation Rates for Africa. RESULTS: The inclusion of the coupling between patches in dynamical model seems to have no effects on the estimate of the optimal temperature (about 25 °C) for malaria transmission. In patches environment, we were able to establish a threshold value (about α = 5) representing the ratio between the migration rates from one patch to another that has no effect on the magnitude of R0. Such findings allow us to limit the production of the spatial distribution map of R0 to a single patch model. Future projections using temperature changes indicated a shift in malaria transmission areas towards the southern and northern areas of Africa and the application of the interventions scenario yielded a considerable reduction in transmission within malaria endemic areas of the continent. CONCLUSIONS: The approach employed here is a sole study that defined the limits of contemporary malaria transmission, using R0 derived from a dynamical mathematical model. It has offered a unique prospect for measuring the impacts of interventions through simple manipulation of model parameters. Projections at scale provide options to visualize and query the results, when linked to the human population could potentially deliver adequate highlight on the number of individuals at risk of malaria infection across Africa. The findings provide a reasonable basis for understanding the fundamental effects of malaria control and could contribute towards disease elimination, which is considered as a challenge especially in the context of climate change. More... »

PAGES

2

References to SciGraph publications

  • 2015-12. Modelling the potential spatial distribution of mosquito species using three different techniques in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2006-02. A Model of Spatial Epidemic Spread When Individuals Move Within Overlapping Home Ranges in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2014-12. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda in MALARIA JOURNAL
  • 2002-12. The application of geographical information systems to important public health problems in Africa in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2013-12. Implications of temperature variation for malaria parasite development across Africa in SCIENTIFIC REPORTS
  • 2010. Modelling Climate Change and Malaria Transmission in MODELLING PARASITE TRANSMISSION AND CONTROL
  • 2008-12. Spatial heterogeneity of malaria in Indian reserves of Southwestern Amazonia, Brazil in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2004-12. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission in MALARIA JOURNAL
  • 2006-12. Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2016-12. Mapping intra-urban malaria risk using high resolution satellite imagery: a case study of Dar es Salaam in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2011-12. Studying relationships between environment and malaria incidence in Camopi (French Guiana) through the objective selection of buffer-based landscape characterisations in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2006-12. Developing global climate anomalies suggest potential disease risks for 2006 – 2007 in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2014-12. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2014-12. Spatial-explicit modeling of social vulnerability to malaria in East Africa in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2014-09. Measuring malaria transmission reduction en route to elimination in MALARIA JOURNAL
  • 2009-12. Spatial analysis of malaria incidence at the village level in areas with unstable transmission in Ethiopia in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2011-12. A new world malaria map: Plasmodium falciparum endemicity in 2010 in MALARIA JOURNAL
  • 2011-12. Mathematical models of malaria - a review in MALARIA JOURNAL
  • 2006-12. Spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of infection data in INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS
  • 2010-12. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa in MALARIA JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12942-018-0122-3

    DOI

    http://dx.doi.org/10.1186/s12942-018-0122-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100433797

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29338736


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Buea", 
              "id": "https://www.grid.ac/institutes/grid.29273.3d", 
              "name": [
                "Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya", 
                "Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moukam Kakmeni", 
            "givenName": "Francois M.", 
            "id": "sg:person.011434352423.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434352423.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jomo Kenyatta University of Agriculture and Technology", 
              "id": "https://www.grid.ac/institutes/grid.411943.a", 
              "name": [
                "Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya", 
                "Department of Computing, School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guimapi", 
            "givenName": "Ritter Y. A.", 
            "id": "sg:person.013610634227.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013610634227.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 de Yaound\u00e9 I", 
              "id": "https://www.grid.ac/institutes/grid.412661.6", 
              "name": [
                "Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya", 
                "Laboratoire de M\u00e9canique, D\u00e9partement de Physique, Facult\u00e9 des Sciences, Universit\u00e9 de Yaound\u00e9 I, P.O. Box 812, Yaound\u00e9, Cameroun"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ndjomatchoua", 
            "givenName": "Frank T.", 
            "id": "sg:person.0760426154.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760426154.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Eduardo Mondlane University", 
              "id": "https://www.grid.ac/institutes/grid.8295.6", 
              "name": [
                "Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya", 
                "Departamento de Matem\u00e1tica e Inform\u00e1tica, Universidade Eduardo Mondlane, Campus Principal, Maputo, Mozambique"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pedro", 
            "givenName": "Sansoa A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mount Kenya University", 
              "id": "https://www.grid.ac/institutes/grid.449177.8", 
              "name": [
                "Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya", 
                "School of Pure and Applied Sciences, Department of Biological Sciences, Mount Kenya University, General Kago Rd, P.O. Box 342-01000, Thika, Kenya"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mutunga", 
            "givenName": "James", 
            "id": "sg:person.01171202754.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171202754.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Nairobi", 
              "id": "https://www.grid.ac/institutes/grid.10604.33", 
              "name": [
                "Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya", 
                "International Maize and Wheat Improvement Center (CIMMYT) ICRAF House, United Nation, Avenue, Gigiri, Village Market, P.O. Box 1041, 00621, Nairobi, Kenya", 
                "College of Biological and Physical Sciences, Institute for Climate Change and Adaptation (ICCA), University of Nairobi, P.O. Box 29053, Nairobi, Kenya"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tonnang", 
            "givenName": "Henri E. Z.", 
            "id": "sg:person.01121617221.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121617221.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12942-016-0051-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003410533", 
              "https://doi.org/10.1186/s12942-016-0051-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12942-016-0051-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003410533", 
              "https://doi.org/10.1186/s12942-016-0051-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmra020025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004370553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2014.01.127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006363542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-1-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006736431", 
              "https://doi.org/10.1186/1476-072x-1-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-13-29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008759507", 
              "https://doi.org/10.1186/1476-072x-13-29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-5-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009865636", 
              "https://doi.org/10.1186/1476-072x-5-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1256/qj.04.176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010291660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1256/qj.04.176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010291660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-13-s1-o26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013251762", 
              "https://doi.org/10.1186/1475-2875-13-s1-o26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/ele.12015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015226413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0053198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015865092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-005-9027-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016013532", 
              "https://doi.org/10.1007/s11538-005-9027-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-005-9027-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016013532", 
              "https://doi.org/10.1007/s11538-005-9027-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2012.11.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017616396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsif.2005.0051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017726907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-7-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017735754", 
              "https://doi.org/10.1186/1476-072x-7-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.1000048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017745843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.1000048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017745843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.epidem.2014.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017809310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-4758(99)01396-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017910581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mbs.2008.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018033258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0025-5564(02)00108-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029513709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-13-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030781668", 
              "https://doi.org/10.1186/1476-072x-13-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmaa.2012.04.077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031310690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032074561", 
              "https://doi.org/10.1038/srep01300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1302089111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032868326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.epidem.2008.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033757284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-5-20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034646582", 
              "https://doi.org/10.1186/1476-072x-5-20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12942-015-0001-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034686561", 
              "https://doi.org/10.1186/s12942-015-0001-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12942-015-0001-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034686561", 
              "https://doi.org/10.1186/s12942-015-0001-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-10-202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034806448", 
              "https://doi.org/10.1186/1475-2875-10-202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-10-65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035766343", 
              "https://doi.org/10.1186/1476-072x-10-65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-10-378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036893759", 
              "https://doi.org/10.1186/1475-2875-10-378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-9-111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037357622", 
              "https://doi.org/10.1186/1475-2875-9-111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-6064-1_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039251323", 
              "https://doi.org/10.1007/978-1-4419-6064-1_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-6064-1_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039251323", 
              "https://doi.org/10.1007/978-1-4419-6064-1_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-5-60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040196098", 
              "https://doi.org/10.1186/1476-072x-5-60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actatropica.2013.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041671786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0959-3780(95)00051-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043002394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/08-0079.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043239500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pntd.0001814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043256627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-13-111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044848638", 
              "https://doi.org/10.1186/1475-2875-13-111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0050042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047034288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1473-3099(10)70096-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050021907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-072x-8-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051893939", 
              "https://doi.org/10.1186/1476-072x-8-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.epidem.2009.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052322075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-3-29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053724248", 
              "https://doi.org/10.1186/1475-2875-3-29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/587530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058800382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.041920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.041920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/annotation/a7ab5bb8-c3bb-4f01-aa34-65cc53af065d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065268808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15388/na.2015.1.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067777773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074708536", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4269/ajtmh.2004.71.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076883971"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Malaria is highly sensitive to climatic variables and is strongly influenced by the presence of vectors in a region that further contribute to parasite development and sustained disease transmission. Mathematical analysis of malaria transmission through the use and application of the value of the basic reproduction number (R0) threshold is an important and useful tool for the understanding of disease patterns.\nMETHODS: Temperature dependence aspect of R0 obtained from dynamical mathematical network model was used to derive the spatial distribution maps for malaria transmission under different climatic and intervention scenarios. Model validation was conducted using MARA map and the Annual Plasmodium falciparum Entomological Inoculation Rates for Africa.\nRESULTS: The inclusion of the coupling between patches in dynamical model seems to have no effects on the estimate of the optimal temperature (about 25\u00a0\u00b0C) for malaria transmission. In patches environment, we were able to establish a threshold value (about \u03b1\u00a0=\u00a05) representing the ratio between the migration rates from one patch to another that has no effect on the magnitude of R0. Such findings allow us to limit the production of the spatial distribution map of R0 to a single patch model. Future projections using temperature changes indicated a shift in malaria transmission areas towards the southern and northern areas of Africa and the application of the interventions scenario yielded a considerable reduction in transmission within malaria endemic areas of the continent.\nCONCLUSIONS: The approach employed here is a sole study that defined the limits of contemporary malaria transmission, using R0 derived from a dynamical mathematical model. It has offered a unique prospect for measuring the impacts of interventions through simple manipulation of model parameters. Projections at scale provide options to visualize and query the results, when linked to the human population could potentially deliver adequate highlight on the number of individuals at risk of malaria infection across Africa. The findings provide a reasonable basis for understanding the fundamental effects of malaria control and could contribute towards disease elimination, which is considered as a challenge especially in the context of climate change.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12942-018-0122-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1031277", 
            "issn": [
              "1476-072X"
            ], 
            "name": "International Journal of Health Geographics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios", 
        "pagination": "2", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d1a9b80c3f68f9dba1b948b15b480d3a7cff5f0009aaa2962aa6c7929eae7d67"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29338736"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101152198"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12942-018-0122-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100433797"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12942-018-0122-3", 
          "https://app.dimensions.ai/details/publication/pub.1100433797"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000528.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/s12942-018-0122-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12942-018-0122-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12942-018-0122-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12942-018-0122-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12942-018-0122-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    287 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12942-018-0122-3 schema:about anzsrc-for:11
    2 anzsrc-for:1108
    3 schema:author Ne911e78542b441c9813142ab207c6fed
    4 schema:citation sg:pub.10.1007/978-1-4419-6064-1_13
    5 sg:pub.10.1007/s11538-005-9027-y
    6 sg:pub.10.1038/srep01300
    7 sg:pub.10.1186/1475-2875-10-202
    8 sg:pub.10.1186/1475-2875-10-378
    9 sg:pub.10.1186/1475-2875-13-111
    10 sg:pub.10.1186/1475-2875-13-s1-o26
    11 sg:pub.10.1186/1475-2875-3-29
    12 sg:pub.10.1186/1475-2875-9-111
    13 sg:pub.10.1186/1476-072x-1-4
    14 sg:pub.10.1186/1476-072x-10-65
    15 sg:pub.10.1186/1476-072x-13-12
    16 sg:pub.10.1186/1476-072x-13-29
    17 sg:pub.10.1186/1476-072x-5-20
    18 sg:pub.10.1186/1476-072x-5-41
    19 sg:pub.10.1186/1476-072x-5-60
    20 sg:pub.10.1186/1476-072x-7-55
    21 sg:pub.10.1186/1476-072x-8-5
    22 sg:pub.10.1186/s12942-015-0001-0
    23 sg:pub.10.1186/s12942-016-0051-y
    24 https://app.dimensions.ai/details/publication/pub.1074708536
    25 https://doi.org/10.1016/0959-3780(95)00051-o
    26 https://doi.org/10.1016/j.actatropica.2013.10.003
    27 https://doi.org/10.1016/j.amc.2014.01.127
    28 https://doi.org/10.1016/j.epidem.2008.12.001
    29 https://doi.org/10.1016/j.epidem.2009.05.004
    30 https://doi.org/10.1016/j.epidem.2014.07.001
    31 https://doi.org/10.1016/j.jmaa.2012.04.077
    32 https://doi.org/10.1016/j.jtbi.2012.11.014
    33 https://doi.org/10.1016/j.mbs.2008.08.010
    34 https://doi.org/10.1016/s0025-5564(02)00108-6
    35 https://doi.org/10.1016/s0169-4758(99)01396-4
    36 https://doi.org/10.1016/s1473-3099(10)70096-7
    37 https://doi.org/10.1056/nejmra020025
    38 https://doi.org/10.1073/pnas.1302089111
    39 https://doi.org/10.1086/587530
    40 https://doi.org/10.1098/rsif.2005.0051
    41 https://doi.org/10.1103/physreve.80.041920
    42 https://doi.org/10.1111/ele.12015
    43 https://doi.org/10.1256/qj.04.176
    44 https://doi.org/10.1371/annotation/a7ab5bb8-c3bb-4f01-aa34-65cc53af065d
    45 https://doi.org/10.1371/journal.pbio.0050042
    46 https://doi.org/10.1371/journal.pmed.1000048
    47 https://doi.org/10.1371/journal.pntd.0001814
    48 https://doi.org/10.1371/journal.pone.0053198
    49 https://doi.org/10.15388/na.2015.1.3
    50 https://doi.org/10.1890/08-0079.1
    51 https://doi.org/10.4269/ajtmh.2004.71.94
    52 schema:datePublished 2018-12
    53 schema:datePublishedReg 2018-12-01
    54 schema:description BACKGROUND: Malaria is highly sensitive to climatic variables and is strongly influenced by the presence of vectors in a region that further contribute to parasite development and sustained disease transmission. Mathematical analysis of malaria transmission through the use and application of the value of the basic reproduction number (R0) threshold is an important and useful tool for the understanding of disease patterns. METHODS: Temperature dependence aspect of R0 obtained from dynamical mathematical network model was used to derive the spatial distribution maps for malaria transmission under different climatic and intervention scenarios. Model validation was conducted using MARA map and the Annual Plasmodium falciparum Entomological Inoculation Rates for Africa. RESULTS: The inclusion of the coupling between patches in dynamical model seems to have no effects on the estimate of the optimal temperature (about 25 °C) for malaria transmission. In patches environment, we were able to establish a threshold value (about α = 5) representing the ratio between the migration rates from one patch to another that has no effect on the magnitude of R0. Such findings allow us to limit the production of the spatial distribution map of R0 to a single patch model. Future projections using temperature changes indicated a shift in malaria transmission areas towards the southern and northern areas of Africa and the application of the interventions scenario yielded a considerable reduction in transmission within malaria endemic areas of the continent. CONCLUSIONS: The approach employed here is a sole study that defined the limits of contemporary malaria transmission, using R0 derived from a dynamical mathematical model. It has offered a unique prospect for measuring the impacts of interventions through simple manipulation of model parameters. Projections at scale provide options to visualize and query the results, when linked to the human population could potentially deliver adequate highlight on the number of individuals at risk of malaria infection across Africa. The findings provide a reasonable basis for understanding the fundamental effects of malaria control and could contribute towards disease elimination, which is considered as a challenge especially in the context of climate change.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree true
    58 schema:isPartOf N15057af3baaf44a3a6c96c3d8bea9b4d
    59 Naa24ef0657b7494d9e714c8b364744ac
    60 sg:journal.1031277
    61 schema:name Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios
    62 schema:pagination 2
    63 schema:productId N52f3c36147864c08898ee3bb129e5770
    64 N633229f3eaf245b9b16811d9a883bb05
    65 Na886ed11cace4da6ba0d3b3f60f83278
    66 Nb7abd414d381407ba8683fcb19029121
    67 Nc8af877051694c2fa6f35e8c13eb7d84
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100433797
    69 https://doi.org/10.1186/s12942-018-0122-3
    70 schema:sdDatePublished 2019-04-10T19:12
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N8a504a40f4814b1283974c3066ffacaf
    73 schema:url http://link.springer.com/10.1186/s12942-018-0122-3
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N098cf638f726420d8639840eb13985d5 rdf:first sg:person.013610634227.99
    78 rdf:rest Nb99d30bd03df49b1b2069f4bd5b45398
    79 N15057af3baaf44a3a6c96c3d8bea9b4d schema:issueNumber 1
    80 rdf:type schema:PublicationIssue
    81 N3dda2f0b46ce47728f48addae3a4609f rdf:first Nd3fa20fd04484214b0ec972046d54627
    82 rdf:rest Nd058b388c82a4cfea944e359ee507479
    83 N52f3c36147864c08898ee3bb129e5770 schema:name readcube_id
    84 schema:value d1a9b80c3f68f9dba1b948b15b480d3a7cff5f0009aaa2962aa6c7929eae7d67
    85 rdf:type schema:PropertyValue
    86 N633229f3eaf245b9b16811d9a883bb05 schema:name nlm_unique_id
    87 schema:value 101152198
    88 rdf:type schema:PropertyValue
    89 N76bb908c01ce449e81e29a0051642842 rdf:first sg:person.01121617221.22
    90 rdf:rest rdf:nil
    91 N8a504a40f4814b1283974c3066ffacaf schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 Na886ed11cace4da6ba0d3b3f60f83278 schema:name doi
    94 schema:value 10.1186/s12942-018-0122-3
    95 rdf:type schema:PropertyValue
    96 Naa24ef0657b7494d9e714c8b364744ac schema:volumeNumber 17
    97 rdf:type schema:PublicationVolume
    98 Nb7abd414d381407ba8683fcb19029121 schema:name dimensions_id
    99 schema:value pub.1100433797
    100 rdf:type schema:PropertyValue
    101 Nb99d30bd03df49b1b2069f4bd5b45398 rdf:first sg:person.0760426154.34
    102 rdf:rest N3dda2f0b46ce47728f48addae3a4609f
    103 Nc8af877051694c2fa6f35e8c13eb7d84 schema:name pubmed_id
    104 schema:value 29338736
    105 rdf:type schema:PropertyValue
    106 Nd058b388c82a4cfea944e359ee507479 rdf:first sg:person.01171202754.23
    107 rdf:rest N76bb908c01ce449e81e29a0051642842
    108 Nd3fa20fd04484214b0ec972046d54627 schema:affiliation https://www.grid.ac/institutes/grid.8295.6
    109 schema:familyName Pedro
    110 schema:givenName Sansoa A.
    111 rdf:type schema:Person
    112 Ne911e78542b441c9813142ab207c6fed rdf:first sg:person.011434352423.26
    113 rdf:rest N098cf638f726420d8639840eb13985d5
    114 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Medical and Health Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Medical Microbiology
    119 rdf:type schema:DefinedTerm
    120 sg:journal.1031277 schema:issn 1476-072X
    121 schema:name International Journal of Health Geographics
    122 rdf:type schema:Periodical
    123 sg:person.01121617221.22 schema:affiliation https://www.grid.ac/institutes/grid.10604.33
    124 schema:familyName Tonnang
    125 schema:givenName Henri E. Z.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121617221.22
    127 rdf:type schema:Person
    128 sg:person.011434352423.26 schema:affiliation https://www.grid.ac/institutes/grid.29273.3d
    129 schema:familyName Moukam Kakmeni
    130 schema:givenName Francois M.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434352423.26
    132 rdf:type schema:Person
    133 sg:person.01171202754.23 schema:affiliation https://www.grid.ac/institutes/grid.449177.8
    134 schema:familyName Mutunga
    135 schema:givenName James
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171202754.23
    137 rdf:type schema:Person
    138 sg:person.013610634227.99 schema:affiliation https://www.grid.ac/institutes/grid.411943.a
    139 schema:familyName Guimapi
    140 schema:givenName Ritter Y. A.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013610634227.99
    142 rdf:type schema:Person
    143 sg:person.0760426154.34 schema:affiliation https://www.grid.ac/institutes/grid.412661.6
    144 schema:familyName Ndjomatchoua
    145 schema:givenName Frank T.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760426154.34
    147 rdf:type schema:Person
    148 sg:pub.10.1007/978-1-4419-6064-1_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039251323
    149 https://doi.org/10.1007/978-1-4419-6064-1_13
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s11538-005-9027-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016013532
    152 https://doi.org/10.1007/s11538-005-9027-y
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/srep01300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032074561
    155 https://doi.org/10.1038/srep01300
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1186/1475-2875-10-202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034806448
    158 https://doi.org/10.1186/1475-2875-10-202
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1186/1475-2875-10-378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036893759
    161 https://doi.org/10.1186/1475-2875-10-378
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1186/1475-2875-13-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044848638
    164 https://doi.org/10.1186/1475-2875-13-111
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1186/1475-2875-13-s1-o26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251762
    167 https://doi.org/10.1186/1475-2875-13-s1-o26
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/1475-2875-3-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053724248
    170 https://doi.org/10.1186/1475-2875-3-29
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1186/1475-2875-9-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037357622
    173 https://doi.org/10.1186/1475-2875-9-111
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1186/1476-072x-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006736431
    176 https://doi.org/10.1186/1476-072x-1-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1186/1476-072x-10-65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035766343
    179 https://doi.org/10.1186/1476-072x-10-65
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1186/1476-072x-13-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030781668
    182 https://doi.org/10.1186/1476-072x-13-12
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1186/1476-072x-13-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008759507
    185 https://doi.org/10.1186/1476-072x-13-29
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1186/1476-072x-5-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034646582
    188 https://doi.org/10.1186/1476-072x-5-20
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1476-072x-5-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009865636
    191 https://doi.org/10.1186/1476-072x-5-41
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1186/1476-072x-5-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040196098
    194 https://doi.org/10.1186/1476-072x-5-60
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/1476-072x-7-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017735754
    197 https://doi.org/10.1186/1476-072x-7-55
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/1476-072x-8-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051893939
    200 https://doi.org/10.1186/1476-072x-8-5
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1186/s12942-015-0001-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034686561
    203 https://doi.org/10.1186/s12942-015-0001-0
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/s12942-016-0051-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003410533
    206 https://doi.org/10.1186/s12942-016-0051-y
    207 rdf:type schema:CreativeWork
    208 https://app.dimensions.ai/details/publication/pub.1074708536 schema:CreativeWork
    209 https://doi.org/10.1016/0959-3780(95)00051-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1043002394
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.actatropica.2013.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041671786
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.amc.2014.01.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006363542
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.epidem.2008.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033757284
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.epidem.2009.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052322075
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/j.epidem.2014.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017809310
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/j.jmaa.2012.04.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031310690
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/j.jtbi.2012.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017616396
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/j.mbs.2008.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018033258
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/s0025-5564(02)00108-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029513709
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/s0169-4758(99)01396-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017910581
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/s1473-3099(10)70096-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050021907
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1056/nejmra020025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004370553
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1073/pnas.1302089111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032868326
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1086/587530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058800382
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1098/rsif.2005.0051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017726907
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1103/physreve.80.041920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739620
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1111/ele.12015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015226413
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1256/qj.04.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291660
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1371/annotation/a7ab5bb8-c3bb-4f01-aa34-65cc53af065d schema:sameAs https://app.dimensions.ai/details/publication/pub.1065268808
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1371/journal.pbio.0050042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047034288
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1371/journal.pmed.1000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017745843
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1371/journal.pntd.0001814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043256627
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1371/journal.pone.0053198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015865092
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.15388/na.2015.1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067777773
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1890/08-0079.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043239500
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.4269/ajtmh.2004.71.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076883971
    262 rdf:type schema:CreativeWork
    263 https://www.grid.ac/institutes/grid.10604.33 schema:alternateName University of Nairobi
    264 schema:name College of Biological and Physical Sciences, Institute for Climate Change and Adaptation (ICCA), University of Nairobi, P.O. Box 29053, Nairobi, Kenya
    265 Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
    266 International Maize and Wheat Improvement Center (CIMMYT) ICRAF House, United Nation, Avenue, Gigiri, Village Market, P.O. Box 1041, 00621, Nairobi, Kenya
    267 rdf:type schema:Organization
    268 https://www.grid.ac/institutes/grid.29273.3d schema:alternateName University of Buea
    269 schema:name Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
    270 Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
    271 rdf:type schema:Organization
    272 https://www.grid.ac/institutes/grid.411943.a schema:alternateName Jomo Kenyatta University of Agriculture and Technology
    273 schema:name Department of Computing, School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
    274 Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
    275 rdf:type schema:Organization
    276 https://www.grid.ac/institutes/grid.412661.6 schema:alternateName Université de Yaoundé I
    277 schema:name Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
    278 Laboratoire de Mécanique, Département de Physique, Faculté des Sciences, Université de Yaoundé I, P.O. Box 812, Yaoundé, Cameroun
    279 rdf:type schema:Organization
    280 https://www.grid.ac/institutes/grid.449177.8 schema:alternateName Mount Kenya University
    281 schema:name Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
    282 School of Pure and Applied Sciences, Department of Biological Sciences, Mount Kenya University, General Kago Rd, P.O. Box 342-01000, Thika, Kenya
    283 rdf:type schema:Organization
    284 https://www.grid.ac/institutes/grid.8295.6 schema:alternateName Eduardo Mondlane University
    285 schema:name Departamento de Matemática e Informática, Universidade Eduardo Mondlane, Campus Principal, Maputo, Mozambique
    286 Human Health Division, International Center of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
    287 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...