Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Christoph Buck, Thomas Kneib, Tobias Tkaczick, Kenn Konstabel, Iris Pigeot

ABSTRACT

BACKGROUND: Built environment studies provide broad evidence that urban characteristics influence physical activity (PA). However, findings are still difficult to compare, due to inconsistent measures assessing urban point characteristics and varying definitions of spatial scale. Both were found to influence the strength of the association between the built environment and PA. METHODS: We simultaneously evaluated the effect of kernel approaches and network-distances to investigate the association between urban characteristics and physical activity depending on spatial scale and intensity measure. We assessed urban measures of point characteristics such as intersections, public transit stations, and public open spaces in ego-centered network-dependent neighborhoods based on geographical data of one German study region of the IDEFICS study. We calculated point intensities using the simple intensity and kernel approaches based on fixed bandwidths, cross-validated bandwidths including isotropic and anisotropic kernel functions and considering adaptive bandwidths that adjust for residential density. We distinguished six network-distances from 500 m up to 2 km to calculate each intensity measure. A log-gamma regression model was used to investigate the effect of each urban measure on moderate-to-vigorous physical activity (MVPA) of 400 2- to 9.9-year old children who participated in the IDEFICS study. Models were stratified by sex and age groups, i.e. pre-school children (2 to <6 years) and school children (6-9.9 years), and were adjusted for age, body mass index (BMI), education and safety concerns of parents, season and valid weartime of accelerometers. RESULTS: Association between intensity measures and MVPA strongly differed by network-distance, with stronger effects found for larger network-distances. Simple intensity revealed smaller effect estimates and smaller goodness-of-fit compared to kernel approaches. Smallest variation in effect estimates over network-distances was found for kernel intensity measures based on isotropic and anisotropic cross-validated bandwidth selection. CONCLUSION: We found a strong variation in the association between the built environment and PA of children based on the choice of intensity measure and network-distance. Kernel intensity measures provided stable results over various scales and improved the assessment compared to the simple intensity measure. Considering different spatial scales and kernel intensity methods might reduce methodological limitations in assessing opportunities for PA in the built environment. More... »

PAGES

35

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12942-015-0027-3

DOI

http://dx.doi.org/10.1186/s12942-015-0027-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028200437

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26694651


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Accelerometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Germany", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monitoring, Physiologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motor Activity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Residence Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Safety", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spatial Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urban Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Walking", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Prevention Research and Epidemiology - BIPS", 
          "id": "https://www.grid.ac/institutes/grid.418465.a", 
          "name": [
            "Leibniz Institute for Prevention Research and Epidemiology, BIPS, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buck", 
        "givenName": "Christoph", 
        "id": "sg:person.01042320410.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042320410.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Faculty of Economic Sciences, University of G\u00f6ttingen, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneib", 
        "givenName": "Thomas", 
        "id": "sg:person.01272020411.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bremen", 
          "id": "https://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "Institute of Geography, University of Bremen, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tkaczick", 
        "givenName": "Tobias", 
        "id": "sg:person.01232264206.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232264206.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tartu", 
          "id": "https://www.grid.ac/institutes/grid.10939.32", 
          "name": [
            "National Institute for Health Development, Tallinn, Estonia", 
            "Institute of Psychology, University of Tartu, Tartu, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konstabel", 
        "givenName": "Kenn", 
        "id": "sg:person.01363726363.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363726363.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bremen", 
          "id": "https://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "Leibniz Institute for Prevention Research and Epidemiology, BIPS, Bremen, Germany", 
            "Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pigeot", 
        "givenName": "Iris", 
        "id": "sg:person.015370023320.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370023320.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ijo.2011.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000196894", 
          "https://doi.org/10.1038/ijo.2011.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2011.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000196894", 
          "https://doi.org/10.1038/ijo.2011.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2011.06.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002024031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwt251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003083238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02640410802334196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004336873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2014.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008957047", 
          "https://doi.org/10.1038/ijo.2014.144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-9-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009974423", 
          "https://doi.org/10.1186/1476-072x-9-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m1920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010175577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2009.05333.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010607115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2009.05333.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010607115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/s0195-6310(2013)0000030017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011926100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2009.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013408941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodqual.2011.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014461521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2009.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015160012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2007.00569.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015234014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2014.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016179063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2011.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016974320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5868-10-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017543526", 
          "https://doi.org/10.1186/1479-5868-10-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2010.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018521712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2011.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020275736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.socscimed.2008.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023224652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-014-9915-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023419798", 
          "https://doi.org/10.1007/s11524-014-9915-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2014.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024071844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5868-8-125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029789196", 
          "https://doi.org/10.1186/1479-5868-8-125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.socscimed.2009.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031836385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2004.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032919888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jth.2014.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034623762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0042098014528393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035478639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0042098014528393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035478639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658810902950625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038048732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/jes.0000000000000035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040138947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/jes.0000000000000035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040138947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1249/jes.0000000000000035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040138947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00045608.2012.687349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040989410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2011.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041155419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2014.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042352944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bjsm.2009.058701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042432121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-8-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042635473", 
          "https://doi.org/10.1186/1476-072x-8-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeog.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044388742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmjopen-2014-006481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045499408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046035590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2047-6310.2012.00064.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047193200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11524-012-9758-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047326867", 
          "https://doi.org/10.1007/s11524-012-9758-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.numecd.2006.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049136131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-789x.2010.00726.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051349268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpubh.2014.00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053022518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/71.2.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v012.i06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Built environment studies provide broad evidence that urban characteristics influence physical activity (PA). However, findings are still difficult to compare, due to inconsistent measures assessing urban point characteristics and varying definitions of spatial scale. Both were found to influence the strength of the association between the built environment and PA.\nMETHODS: We simultaneously evaluated the effect of kernel approaches and network-distances to investigate the association between urban characteristics and physical activity depending on spatial scale and intensity measure. We assessed urban measures of point characteristics such as intersections, public transit stations, and public open spaces in ego-centered network-dependent neighborhoods based on geographical data of one German study region of the IDEFICS study. We calculated point intensities using the simple intensity and kernel approaches based on fixed bandwidths, cross-validated bandwidths including isotropic and anisotropic kernel functions and considering adaptive bandwidths that adjust for residential density. We distinguished six network-distances from 500 m up to 2 km to calculate each intensity measure. A log-gamma regression model was used to investigate the effect of each urban measure on moderate-to-vigorous physical activity (MVPA) of 400 2- to 9.9-year old children who participated in the IDEFICS study. Models were stratified by sex and age groups, i.e. pre-school children (2 to <6 years) and school children (6-9.9 years), and were adjusted for age, body mass index (BMI), education and safety concerns of parents, season and valid weartime of accelerometers.\nRESULTS: Association between intensity measures and MVPA strongly differed by network-distance, with stronger effects found for larger network-distances. Simple intensity revealed smaller effect estimates and smaller goodness-of-fit compared to kernel approaches. Smallest variation in effect estimates over network-distances was found for kernel intensity measures based on isotropic and anisotropic cross-validated bandwidth selection.\nCONCLUSION: We found a strong variation in the association between the built environment and PA of children based on the choice of intensity measure and network-distance. Kernel intensity measures provided stable results over various scales and improved the assessment compared to the simple intensity measure. Considering different spatial scales and kernel intensity methods might reduce methodological limitations in assessing opportunities for PA in the built environment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12942-015-0027-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3767420", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031277", 
        "issn": [
          "1476-072X"
        ], 
        "name": "International Journal of Health Geographics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale", 
    "pagination": "35", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86576d13882de1479b63e2ba173c71511b2da4e175670fc13cfe4d326129e238"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26694651"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101152198"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12942-015-0027-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028200437"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12942-015-0027-3", 
      "https://app.dimensions.ai/details/publication/pub.1028200437"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12942-015-0027-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0027-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0027-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0027-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0027-3'


 

This table displays all metadata directly associated to this object as RDF triples.

327 TRIPLES      21 PREDICATES      92 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12942-015-0027-3 schema:about N2367a9ee270240a197cb855f8f12ca66
2 N46ee066b09c94f47ac1aeaf45b25cd20
3 N48c8990836ba49b6a1aa23525f5bb5fa
4 N530ec8c89bfb4d189e03266250e257e3
5 N5963502541fd4ca182a83a308b93c198
6 N599a2bceac76478bbe579d9110a1bdaf
7 N6651f4efd68342ce8f67a2f21a39c737
8 N6772f097e1ae4942afa6f2b445c4558b
9 N6bf98dbe521d4579a0bcde0020a9f94e
10 N75af329095184750b352a8fe35704b6b
11 N78fe05172b744fe99d07afcb29c8bc55
12 N7b4c8492ac8349c6b2169b9bda018671
13 N93e0cf82a8f448b48792bd38c2a9182d
14 Na87f5987c849487782eb27c19602e3c6
15 Nab55686b9fc64ba98733abe2f3ab812c
16 Nb92bafd2e5ca4d5db69f51eaad054d6d
17 Nccf3957f393845c49f3327c41872cdee
18 Ne00dbea3383e48af97fd87d2a8bcd258
19 Nf84e093be4294fbd9f8760568618e9b1
20 anzsrc-for:11
21 anzsrc-for:1117
22 schema:author N79ae3a1ac32f487eb3f4c64abc2575e2
23 schema:citation sg:pub.10.1007/978-1-4899-3324-9
24 sg:pub.10.1007/s11524-012-9758-7
25 sg:pub.10.1007/s11524-014-9915-2
26 sg:pub.10.1038/ijo.2011.30
27 sg:pub.10.1038/ijo.2014.144
28 sg:pub.10.1186/1476-072x-8-34
29 sg:pub.10.1186/1476-072x-9-39
30 sg:pub.10.1186/1479-5868-10-34
31 sg:pub.10.1186/1479-5868-8-125
32 https://doi.org/10.1016/j.amepre.2004.11.001
33 https://doi.org/10.1016/j.amepre.2009.01.005
34 https://doi.org/10.1016/j.amepre.2011.06.036
35 https://doi.org/10.1016/j.amepre.2011.11.015
36 https://doi.org/10.1016/j.apgeog.2014.02.008
37 https://doi.org/10.1016/j.foodqual.2011.06.003
38 https://doi.org/10.1016/j.healthplace.2009.09.008
39 https://doi.org/10.1016/j.healthplace.2010.06.015
40 https://doi.org/10.1016/j.healthplace.2011.08.011
41 https://doi.org/10.1016/j.healthplace.2011.08.021
42 https://doi.org/10.1016/j.healthplace.2013.01.005
43 https://doi.org/10.1016/j.healthplace.2014.02.003
44 https://doi.org/10.1016/j.healthplace.2014.11.006
45 https://doi.org/10.1016/j.healthplace.2014.12.008
46 https://doi.org/10.1016/j.jth.2014.10.002
47 https://doi.org/10.1016/j.numecd.2006.01.011
48 https://doi.org/10.1016/j.socscimed.2008.12.048
49 https://doi.org/10.1016/j.socscimed.2009.07.018
50 https://doi.org/10.1080/00045608.2012.687349
51 https://doi.org/10.1080/02640410802334196
52 https://doi.org/10.1080/13658810902950625
53 https://doi.org/10.1093/aje/kwt251
54 https://doi.org/10.1093/biomet/71.2.353
55 https://doi.org/10.1108/s0195-6310(2013)0000030017
56 https://doi.org/10.1111/j.1467-789x.2010.00726.x
57 https://doi.org/10.1111/j.1467-9469.2007.00569.x
58 https://doi.org/10.1111/j.1749-6632.2009.05333.x
59 https://doi.org/10.1111/j.2047-6310.2012.00064.x
60 https://doi.org/10.1136/bjsm.2009.058701
61 https://doi.org/10.1136/bmjopen-2014-006481
62 https://doi.org/10.1177/0042098014528393
63 https://doi.org/10.1197/jamia.m1920
64 https://doi.org/10.1249/jes.0000000000000035
65 https://doi.org/10.18637/jss.v012.i06
66 https://doi.org/10.3389/fpubh.2014.00002
67 schema:datePublished 2015-12
68 schema:datePublishedReg 2015-12-01
69 schema:description BACKGROUND: Built environment studies provide broad evidence that urban characteristics influence physical activity (PA). However, findings are still difficult to compare, due to inconsistent measures assessing urban point characteristics and varying definitions of spatial scale. Both were found to influence the strength of the association between the built environment and PA. METHODS: We simultaneously evaluated the effect of kernel approaches and network-distances to investigate the association between urban characteristics and physical activity depending on spatial scale and intensity measure. We assessed urban measures of point characteristics such as intersections, public transit stations, and public open spaces in ego-centered network-dependent neighborhoods based on geographical data of one German study region of the IDEFICS study. We calculated point intensities using the simple intensity and kernel approaches based on fixed bandwidths, cross-validated bandwidths including isotropic and anisotropic kernel functions and considering adaptive bandwidths that adjust for residential density. We distinguished six network-distances from 500 m up to 2 km to calculate each intensity measure. A log-gamma regression model was used to investigate the effect of each urban measure on moderate-to-vigorous physical activity (MVPA) of 400 2- to 9.9-year old children who participated in the IDEFICS study. Models were stratified by sex and age groups, i.e. pre-school children (2 to <6 years) and school children (6-9.9 years), and were adjusted for age, body mass index (BMI), education and safety concerns of parents, season and valid weartime of accelerometers. RESULTS: Association between intensity measures and MVPA strongly differed by network-distance, with stronger effects found for larger network-distances. Simple intensity revealed smaller effect estimates and smaller goodness-of-fit compared to kernel approaches. Smallest variation in effect estimates over network-distances was found for kernel intensity measures based on isotropic and anisotropic cross-validated bandwidth selection. CONCLUSION: We found a strong variation in the association between the built environment and PA of children based on the choice of intensity measure and network-distance. Kernel intensity measures provided stable results over various scales and improved the assessment compared to the simple intensity measure. Considering different spatial scales and kernel intensity methods might reduce methodological limitations in assessing opportunities for PA in the built environment.
70 schema:genre research_article
71 schema:inLanguage en
72 schema:isAccessibleForFree true
73 schema:isPartOf N6c6a3ce4bc0e4971b00df04ca56cb553
74 Naa2d35e8b3c74029bfc9c53c9508f341
75 sg:journal.1031277
76 schema:name Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale
77 schema:pagination 35
78 schema:productId N4543713d9e70417abbdaf7d32ca8eaad
79 Na75e8e76234c4977b3b132ba4895155f
80 Nbd049e6492d74ae7bb0e1d3748ec6262
81 Nc932a7c4353d4d3d90f0e1c3c2b3d325
82 Neba37ce464404eccbac209ce65018b71
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028200437
84 https://doi.org/10.1186/s12942-015-0027-3
85 schema:sdDatePublished 2019-04-10T13:30
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N244505bbd1704ecaad69fb9601026513
88 schema:url http://link.springer.com/10.1186%2Fs12942-015-0027-3
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N10d0887df9e944f9aeb243b06703e170 rdf:first sg:person.01272020411.15
93 rdf:rest N8ef3dc0b16d545268b3749f185ed7c2f
94 N172643b297ef432cba518b18df6b5f9d rdf:first sg:person.015370023320.82
95 rdf:rest rdf:nil
96 N2367a9ee270240a197cb855f8f12ca66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Residence Characteristics
98 rdf:type schema:DefinedTerm
99 N244505bbd1704ecaad69fb9601026513 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N380e9c592979478f91e268ca14b798bd rdf:first sg:person.01363726363.28
102 rdf:rest N172643b297ef432cba518b18df6b5f9d
103 N4543713d9e70417abbdaf7d32ca8eaad schema:name dimensions_id
104 schema:value pub.1028200437
105 rdf:type schema:PropertyValue
106 N46ee066b09c94f47ac1aeaf45b25cd20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Spatial Analysis
108 rdf:type schema:DefinedTerm
109 N48c8990836ba49b6a1aa23525f5bb5fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Urban Population
111 rdf:type schema:DefinedTerm
112 N530ec8c89bfb4d189e03266250e257e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Female
114 rdf:type schema:DefinedTerm
115 N5963502541fd4ca182a83a308b93c198 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Child
117 rdf:type schema:DefinedTerm
118 N599a2bceac76478bbe579d9110a1bdaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Child, Preschool
120 rdf:type schema:DefinedTerm
121 N6651f4efd68342ce8f67a2f21a39c737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Motor Activity
123 rdf:type schema:DefinedTerm
124 N6772f097e1ae4942afa6f2b445c4558b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Regression Analysis
126 rdf:type schema:DefinedTerm
127 N6bf98dbe521d4579a0bcde0020a9f94e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Germany
129 rdf:type schema:DefinedTerm
130 N6c6a3ce4bc0e4971b00df04ca56cb553 schema:volumeNumber 14
131 rdf:type schema:PublicationVolume
132 N75af329095184750b352a8fe35704b6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Accelerometry
134 rdf:type schema:DefinedTerm
135 N78fe05172b744fe99d07afcb29c8bc55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Population Density
137 rdf:type schema:DefinedTerm
138 N79ae3a1ac32f487eb3f4c64abc2575e2 rdf:first sg:person.01042320410.43
139 rdf:rest N10d0887df9e944f9aeb243b06703e170
140 N7b4c8492ac8349c6b2169b9bda018671 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Male
142 rdf:type schema:DefinedTerm
143 N8ef3dc0b16d545268b3749f185ed7c2f rdf:first sg:person.01232264206.38
144 rdf:rest N380e9c592979478f91e268ca14b798bd
145 N93e0cf82a8f448b48792bd38c2a9182d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Safety
147 rdf:type schema:DefinedTerm
148 Na75e8e76234c4977b3b132ba4895155f schema:name readcube_id
149 schema:value 86576d13882de1479b63e2ba173c71511b2da4e175670fc13cfe4d326129e238
150 rdf:type schema:PropertyValue
151 Na87f5987c849487782eb27c19602e3c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Walking
153 rdf:type schema:DefinedTerm
154 Naa2d35e8b3c74029bfc9c53c9508f341 schema:issueNumber 1
155 rdf:type schema:PublicationIssue
156 Nab55686b9fc64ba98733abe2f3ab812c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Body Mass Index
158 rdf:type schema:DefinedTerm
159 Nb92bafd2e5ca4d5db69f51eaad054d6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 Nbd049e6492d74ae7bb0e1d3748ec6262 schema:name doi
163 schema:value 10.1186/s12942-015-0027-3
164 rdf:type schema:PropertyValue
165 Nc932a7c4353d4d3d90f0e1c3c2b3d325 schema:name pubmed_id
166 schema:value 26694651
167 rdf:type schema:PropertyValue
168 Nccf3957f393845c49f3327c41872cdee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Monitoring, Physiologic
170 rdf:type schema:DefinedTerm
171 Ne00dbea3383e48af97fd87d2a8bcd258 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Environment Design
173 rdf:type schema:DefinedTerm
174 Neba37ce464404eccbac209ce65018b71 schema:name nlm_unique_id
175 schema:value 101152198
176 rdf:type schema:PropertyValue
177 Nf84e093be4294fbd9f8760568618e9b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Least-Squares Analysis
179 rdf:type schema:DefinedTerm
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
184 schema:name Public Health and Health Services
185 rdf:type schema:DefinedTerm
186 sg:grant.3767420 http://pending.schema.org/fundedItem sg:pub.10.1186/s12942-015-0027-3
187 rdf:type schema:MonetaryGrant
188 sg:journal.1031277 schema:issn 1476-072X
189 schema:name International Journal of Health Geographics
190 rdf:type schema:Periodical
191 sg:person.01042320410.43 schema:affiliation https://www.grid.ac/institutes/grid.418465.a
192 schema:familyName Buck
193 schema:givenName Christoph
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042320410.43
195 rdf:type schema:Person
196 sg:person.01232264206.38 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
197 schema:familyName Tkaczick
198 schema:givenName Tobias
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232264206.38
200 rdf:type schema:Person
201 sg:person.01272020411.15 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
202 schema:familyName Kneib
203 schema:givenName Thomas
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272020411.15
205 rdf:type schema:Person
206 sg:person.01363726363.28 schema:affiliation https://www.grid.ac/institutes/grid.10939.32
207 schema:familyName Konstabel
208 schema:givenName Kenn
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363726363.28
210 rdf:type schema:Person
211 sg:person.015370023320.82 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
212 schema:familyName Pigeot
213 schema:givenName Iris
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370023320.82
215 rdf:type schema:Person
216 sg:pub.10.1007/978-1-4899-3324-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705894
217 https://doi.org/10.1007/978-1-4899-3324-9
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s11524-012-9758-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047326867
220 https://doi.org/10.1007/s11524-012-9758-7
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s11524-014-9915-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023419798
223 https://doi.org/10.1007/s11524-014-9915-2
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/ijo.2011.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000196894
226 https://doi.org/10.1038/ijo.2011.30
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/ijo.2014.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008957047
229 https://doi.org/10.1038/ijo.2014.144
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/1476-072x-8-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042635473
232 https://doi.org/10.1186/1476-072x-8-34
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1476-072x-9-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009974423
235 https://doi.org/10.1186/1476-072x-9-39
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1479-5868-10-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017543526
238 https://doi.org/10.1186/1479-5868-10-34
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1479-5868-8-125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029789196
241 https://doi.org/10.1186/1479-5868-8-125
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.amepre.2004.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032919888
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.amepre.2009.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015160012
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.amepre.2011.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002024031
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.amepre.2011.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020275736
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.apgeog.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044388742
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.foodqual.2011.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014461521
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.healthplace.2009.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013408941
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.healthplace.2010.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018521712
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.healthplace.2011.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041155419
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.healthplace.2011.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016974320
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.healthplace.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046035590
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.healthplace.2014.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016179063
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.healthplace.2014.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042352944
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/j.healthplace.2014.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024071844
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/j.jth.2014.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034623762
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/j.numecd.2006.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049136131
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/j.socscimed.2008.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023224652
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.socscimed.2009.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031836385
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1080/00045608.2012.687349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040989410
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1080/02640410802334196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004336873
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1080/13658810902950625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038048732
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1093/aje/kwt251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003083238
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1093/biomet/71.2.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419423
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1108/s0195-6310(2013)0000030017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011926100
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1111/j.1467-789x.2010.00726.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051349268
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1111/j.1467-9469.2007.00569.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015234014
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1111/j.1749-6632.2009.05333.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010607115
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1111/j.2047-6310.2012.00064.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047193200
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1136/bjsm.2009.058701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042432121
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1136/bmjopen-2014-006481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045499408
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1177/0042098014528393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035478639
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1197/jamia.m1920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010175577
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1249/jes.0000000000000035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040138947
308 rdf:type schema:CreativeWork
309 https://doi.org/10.18637/jss.v012.i06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672184
310 rdf:type schema:CreativeWork
311 https://doi.org/10.3389/fpubh.2014.00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053022518
312 rdf:type schema:CreativeWork
313 https://www.grid.ac/institutes/grid.10939.32 schema:alternateName University of Tartu
314 schema:name Institute of Psychology, University of Tartu, Tartu, Estonia
315 National Institute for Health Development, Tallinn, Estonia
316 rdf:type schema:Organization
317 https://www.grid.ac/institutes/grid.418465.a schema:alternateName Leibniz Institute for Prevention Research and Epidemiology - BIPS
318 schema:name Leibniz Institute for Prevention Research and Epidemiology, BIPS, Bremen, Germany
319 rdf:type schema:Organization
320 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
321 schema:name Faculty of Economic Sciences, University of Göttingen, Göttingen, Germany
322 rdf:type schema:Organization
323 https://www.grid.ac/institutes/grid.7704.4 schema:alternateName University of Bremen
324 schema:name Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
325 Institute of Geography, University of Bremen, Bremen, Germany
326 Leibniz Institute for Prevention Research and Epidemiology, BIPS, Bremen, Germany
327 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...