Use of attribute association error probability estimates to evaluate quality of medical record geocodes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Christian A. Klaus, Luis E. Carrasco, Daniel W. Goldberg, Kevin A. Henry, Recinda L. Sherman

ABSTRACT

BACKGROUND: The utility of patient attributes associated with the spatiotemporal analysis of medical records lies not just in their values but also the strength of association between them. Estimating the extent to which a hierarchy of conditional probability exists between patient attribute associations such as patient identifying fields, patient and date of diagnosis, and patient and address at diagnosis is fundamental to estimating the strength of association between patient and geocode, and patient and enumeration area. We propose a hierarchy for the attribute associations within medical records that enable spatiotemporal relationships. We also present a set of metrics that store attribute association error probability (AAEP), to estimate error probability for all attribute associations upon which certainty in a patient geocode depends. METHODS: A series of experiments were undertaken to understand how error estimation could be operationalized within health data and what levels of AAEP in real data reveal themselves using these methods. Specifically, the goals of this evaluation were to (1) assess if the concept of our error assessment techniques could be implemented by a population-based cancer registry; (2) apply the techniques to real data from a large health data agency and characterize the observed levels of AAEP; and (3) demonstrate how detected AAEP might impact spatiotemporal health research. RESULTS: We present an evaluation of AAEP metrics generated for cancer cases in a North Carolina county. We show examples of how we estimated AAEP for selected attribute associations and circumstances. We demonstrate the distribution of AAEP in our case sample across attribute associations, and demonstrate ways in which disease registry specific operations influence the prevalence of AAEP estimates for specific attribute associations. CONCLUSIONS: The effort to detect and store estimates of AAEP is worthwhile because of the increase in confidence fostered by the attribute association level approach to the assessment of uncertainty in patient geocodes, relative to existing geocoding related uncertainty metrics. More... »

PAGES

26

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12942-015-0019-3

DOI

http://dx.doi.org/10.1186/s12942-015-0019-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021371195

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26370237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bias", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Accuracy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geographic Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Record Linkage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Medical Records", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "North Carolina", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Probability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Registries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "North Carolina Central Cancer Registry, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klaus", 
        "givenName": "Christian A.", 
        "id": "sg:person.01150072041.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150072041.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "North Carolina Center for Geographic Information and Analysis, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrasco", 
        "givenName": "Luis E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University", 
          "id": "https://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Geography, Texas A&M University, College Station, TX, USA", 
            "Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldberg", 
        "givenName": "Daniel W.", 
        "id": "sg:person.014253441577.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014253441577.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Temple University", 
          "id": "https://www.grid.ac/institutes/grid.264727.2", 
          "name": [
            "Department of Geography and Urban Studies, Temple University, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henry", 
        "givenName": "Kevin A.", 
        "id": "sg:person.01345477136.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345477136.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North American Association of Central Cancer Registries", 
          "id": "https://www.grid.ac/institutes/grid.422731.1", 
          "name": [
            "North American Association of Central Cancer Registries, Springfield, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherman", 
        "givenName": "Recinda L.", 
        "id": "sg:person.01242301563.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242301563.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/02693798908941520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000844052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sste.2012.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002759158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005259835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005259835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-8-24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005418674", 
          "https://doi.org/10.1186/1476-072x-8-24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2005.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-4-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007218606", 
          "https://doi.org/10.1186/1476-072x-4-29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwh310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010915487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sste.2010.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013282349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-842x.1999.tb01297.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015365223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658810110047221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015727617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-2-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015818951", 
          "https://doi.org/10.1186/1476-072x-2-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-006-0015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025614022", 
          "https://doi.org/10.1007/s10707-006-0015-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-publhealth-031811-124655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028459310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sste.2012.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030767848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sste.2010.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031941465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-7-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035729237", 
          "https://doi.org/10.1186/1476-072x-7-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040190483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040190483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sste.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042595225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.healthplace.2005.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043759449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-072x-9-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048374582", 
          "https://doi.org/10.1186/1476-072x-9-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780849384332.ch6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053513486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1584.2002.tb00015.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061931885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1584.2002.tb00015.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061931885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972801.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdmw.2007.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093685891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/978-1-4666-2455-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096034324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: The utility of patient attributes associated with the spatiotemporal analysis of medical records lies not just in their values but also the strength of association between them. Estimating the extent to which a hierarchy of conditional probability exists between patient attribute associations such as patient identifying fields, patient and date of diagnosis, and patient and address at diagnosis is fundamental to estimating the strength of association between patient and geocode, and patient and enumeration area. We propose a hierarchy for the attribute associations within medical records that enable spatiotemporal relationships. We also present a set of metrics that store attribute association error probability (AAEP), to estimate error probability for all attribute associations upon which certainty in a patient geocode depends.\nMETHODS: A series of experiments were undertaken to understand how error estimation could be operationalized within health data and what levels of AAEP in real data reveal themselves using these methods. Specifically, the goals of this evaluation were to (1) assess if the concept of our error assessment techniques could be implemented by a population-based cancer registry; (2) apply the techniques to real data from a large health data agency and characterize the observed levels of AAEP; and (3) demonstrate how detected AAEP might impact spatiotemporal health research.\nRESULTS: We present an evaluation of AAEP metrics generated for cancer cases in a North Carolina county. We show examples of how we estimated AAEP for selected attribute associations and circumstances. We demonstrate the distribution of AAEP in our case sample across attribute associations, and demonstrate ways in which disease registry specific operations influence the prevalence of AAEP estimates for specific attribute associations.\nCONCLUSIONS: The effort to detect and store estimates of AAEP is worthwhile because of the increase in confidence fostered by the attribute association level approach to the assessment of uncertainty in patient geocodes, relative to existing geocoding related uncertainty metrics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12942-015-0019-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2700468", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031277", 
        "issn": [
          "1476-072X"
        ], 
        "name": "International Journal of Health Geographics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Use of attribute association error probability estimates to evaluate quality of medical record geocodes", 
    "pagination": "26", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65d285f3587ce3c5499a6aa66c4cb99a7f15a762ea25793b7b5ac9709fd415c3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26370237"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101152198"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12942-015-0019-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021371195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12942-015-0019-3", 
      "https://app.dimensions.ai/details/publication/pub.1021371195"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12942-015-0019-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0019-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0019-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0019-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12942-015-0019-3'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      63 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12942-015-0019-3 schema:about N1af2f9aa8e0b4da0984a819252052e8f
2 N2c0ceb1acff04b909f33a8c92e0e22d4
3 N566c546dabcb484a9d5ce91b83610055
4 N702461b0cdd94d15929152e46b70d1e3
5 N7bd940d1883e42ff879638d28b0923f1
6 N803b608451654e6e9c3042ef0b9bc189
7 N8943ff554b8f464ca5eacbcfcd4d978d
8 Na11bf9f96b684393be315335d0c72d77
9 Nf012ca516235419fba5991a522dd365d
10 anzsrc-for:11
11 anzsrc-for:1117
12 schema:author N87e70133be6e4cb885e588444e3a05bc
13 schema:citation sg:pub.10.1007/s10707-006-0015-7
14 sg:pub.10.1186/1476-072x-2-10
15 sg:pub.10.1186/1476-072x-4-29
16 sg:pub.10.1186/1476-072x-7-60
17 sg:pub.10.1186/1476-072x-8-24
18 sg:pub.10.1186/1476-072x-9-10
19 https://doi.org/10.1016/j.amepre.2005.09.011
20 https://doi.org/10.1016/j.healthplace.2005.08.006
21 https://doi.org/10.1016/j.sste.2010.03.002
22 https://doi.org/10.1016/j.sste.2010.10.001
23 https://doi.org/10.1016/j.sste.2012.02.002
24 https://doi.org/10.1016/j.sste.2012.02.005
25 https://doi.org/10.1016/j.sste.2012.02.007
26 https://doi.org/10.1080/02693798908941520
27 https://doi.org/10.1080/13658810110047221
28 https://doi.org/10.1093/aje/kwh310
29 https://doi.org/10.1093/aje/kwq292
30 https://doi.org/10.1093/aje/kwq350
31 https://doi.org/10.1109/icdmw.2007.11
32 https://doi.org/10.1111/j.1440-1584.2002.tb00015.x
33 https://doi.org/10.1111/j.1467-842x.1999.tb01297.x
34 https://doi.org/10.1137/1.9781611972801.13
35 https://doi.org/10.1146/annurev-publhealth-031811-124655
36 https://doi.org/10.1201/9780849384332.ch6
37 https://doi.org/10.4018/978-1-4666-2455-9
38 schema:datePublished 2015-12
39 schema:datePublishedReg 2015-12-01
40 schema:description BACKGROUND: The utility of patient attributes associated with the spatiotemporal analysis of medical records lies not just in their values but also the strength of association between them. Estimating the extent to which a hierarchy of conditional probability exists between patient attribute associations such as patient identifying fields, patient and date of diagnosis, and patient and address at diagnosis is fundamental to estimating the strength of association between patient and geocode, and patient and enumeration area. We propose a hierarchy for the attribute associations within medical records that enable spatiotemporal relationships. We also present a set of metrics that store attribute association error probability (AAEP), to estimate error probability for all attribute associations upon which certainty in a patient geocode depends. METHODS: A series of experiments were undertaken to understand how error estimation could be operationalized within health data and what levels of AAEP in real data reveal themselves using these methods. Specifically, the goals of this evaluation were to (1) assess if the concept of our error assessment techniques could be implemented by a population-based cancer registry; (2) apply the techniques to real data from a large health data agency and characterize the observed levels of AAEP; and (3) demonstrate how detected AAEP might impact spatiotemporal health research. RESULTS: We present an evaluation of AAEP metrics generated for cancer cases in a North Carolina county. We show examples of how we estimated AAEP for selected attribute associations and circumstances. We demonstrate the distribution of AAEP in our case sample across attribute associations, and demonstrate ways in which disease registry specific operations influence the prevalence of AAEP estimates for specific attribute associations. CONCLUSIONS: The effort to detect and store estimates of AAEP is worthwhile because of the increase in confidence fostered by the attribute association level approach to the assessment of uncertainty in patient geocodes, relative to existing geocoding related uncertainty metrics.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N7ef08afb8a984178ac6f80408470d419
45 N88b1b91747cb470489adb2c9a35cf250
46 sg:journal.1031277
47 schema:name Use of attribute association error probability estimates to evaluate quality of medical record geocodes
48 schema:pagination 26
49 schema:productId N640f3a0ba4664d868b9e352e822ceb8d
50 N78cf6cc8e5cf44198f6f55d05bdd67c8
51 Na78b53f8103c462285023cffc2302f89
52 Ne71bdb5433394ef28accc3717a31f520
53 Nf7f669dff8194eadad85d1e29c01d550
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371195
55 https://doi.org/10.1186/s12942-015-0019-3
56 schema:sdDatePublished 2019-04-10T13:16
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N736a082f855e47b7ab031342f768eac0
59 schema:url http://link.springer.com/10.1186%2Fs12942-015-0019-3
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N065ffe62142d4d21a5b2fdebdd9e6783 schema:name North Carolina Center for Geographic Information and Analysis, Raleigh, NC, USA
64 rdf:type schema:Organization
65 N16a821374d53467abcfd0202cfa3a922 rdf:first N5905f99d849b42a9b7549f2e293872fc
66 rdf:rest Nddb0241e9d884532a7f3b72bc7f31fe2
67 N1af2f9aa8e0b4da0984a819252052e8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name North Carolina
69 rdf:type schema:DefinedTerm
70 N2c0ceb1acff04b909f33a8c92e0e22d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Registries
72 rdf:type schema:DefinedTerm
73 N48ac5e332ef74d5698c4539caa1dd118 rdf:first sg:person.01345477136.02
74 rdf:rest N7d3f8f687b9441f5a136dd9122be87a6
75 N566c546dabcb484a9d5ce91b83610055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Data Accuracy
77 rdf:type schema:DefinedTerm
78 N5905f99d849b42a9b7549f2e293872fc schema:affiliation N065ffe62142d4d21a5b2fdebdd9e6783
79 schema:familyName Carrasco
80 schema:givenName Luis E.
81 rdf:type schema:Person
82 N640f3a0ba4664d868b9e352e822ceb8d schema:name pubmed_id
83 schema:value 26370237
84 rdf:type schema:PropertyValue
85 N702461b0cdd94d15929152e46b70d1e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Probability
87 rdf:type schema:DefinedTerm
88 N736a082f855e47b7ab031342f768eac0 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N78cf6cc8e5cf44198f6f55d05bdd67c8 schema:name readcube_id
91 schema:value 65d285f3587ce3c5499a6aa66c4cb99a7f15a762ea25793b7b5ac9709fd415c3
92 rdf:type schema:PropertyValue
93 N7bd940d1883e42ff879638d28b0923f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Regression Analysis
95 rdf:type schema:DefinedTerm
96 N7d3f8f687b9441f5a136dd9122be87a6 rdf:first sg:person.01242301563.68
97 rdf:rest rdf:nil
98 N7ef08afb8a984178ac6f80408470d419 schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 N803b608451654e6e9c3042ef0b9bc189 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Bias
102 rdf:type schema:DefinedTerm
103 N87e70133be6e4cb885e588444e3a05bc rdf:first sg:person.01150072041.33
104 rdf:rest N16a821374d53467abcfd0202cfa3a922
105 N88b1b91747cb470489adb2c9a35cf250 schema:volumeNumber 14
106 rdf:type schema:PublicationVolume
107 N8943ff554b8f464ca5eacbcfcd4d978d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Medical Records
109 rdf:type schema:DefinedTerm
110 N9e9dd58f599745e49d7ce92863a995c7 schema:name North Carolina Central Cancer Registry, Raleigh, NC, USA
111 rdf:type schema:Organization
112 Na11bf9f96b684393be315335d0c72d77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Medical Record Linkage
114 rdf:type schema:DefinedTerm
115 Na78b53f8103c462285023cffc2302f89 schema:name doi
116 schema:value 10.1186/s12942-015-0019-3
117 rdf:type schema:PropertyValue
118 Nddb0241e9d884532a7f3b72bc7f31fe2 rdf:first sg:person.014253441577.07
119 rdf:rest N48ac5e332ef74d5698c4539caa1dd118
120 Ne71bdb5433394ef28accc3717a31f520 schema:name dimensions_id
121 schema:value pub.1021371195
122 rdf:type schema:PropertyValue
123 Nf012ca516235419fba5991a522dd365d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Geographic Mapping
125 rdf:type schema:DefinedTerm
126 Nf7f669dff8194eadad85d1e29c01d550 schema:name nlm_unique_id
127 schema:value 101152198
128 rdf:type schema:PropertyValue
129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
130 schema:name Medical and Health Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
133 schema:name Public Health and Health Services
134 rdf:type schema:DefinedTerm
135 sg:grant.2700468 http://pending.schema.org/fundedItem sg:pub.10.1186/s12942-015-0019-3
136 rdf:type schema:MonetaryGrant
137 sg:journal.1031277 schema:issn 1476-072X
138 schema:name International Journal of Health Geographics
139 rdf:type schema:Periodical
140 sg:person.01150072041.33 schema:affiliation N9e9dd58f599745e49d7ce92863a995c7
141 schema:familyName Klaus
142 schema:givenName Christian A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150072041.33
144 rdf:type schema:Person
145 sg:person.01242301563.68 schema:affiliation https://www.grid.ac/institutes/grid.422731.1
146 schema:familyName Sherman
147 schema:givenName Recinda L.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242301563.68
149 rdf:type schema:Person
150 sg:person.01345477136.02 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
151 schema:familyName Henry
152 schema:givenName Kevin A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345477136.02
154 rdf:type schema:Person
155 sg:person.014253441577.07 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
156 schema:familyName Goldberg
157 schema:givenName Daniel W.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014253441577.07
159 rdf:type schema:Person
160 sg:pub.10.1007/s10707-006-0015-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025614022
161 https://doi.org/10.1007/s10707-006-0015-7
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1476-072x-2-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015818951
164 https://doi.org/10.1186/1476-072x-2-10
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1476-072x-4-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007218606
167 https://doi.org/10.1186/1476-072x-4-29
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1476-072x-7-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035729237
170 https://doi.org/10.1186/1476-072x-7-60
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1476-072x-8-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005418674
173 https://doi.org/10.1186/1476-072x-8-24
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1476-072x-9-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048374582
176 https://doi.org/10.1186/1476-072x-9-10
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.amepre.2005.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137272
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.healthplace.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043759449
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.sste.2010.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013282349
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.sste.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031941465
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.sste.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030767848
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.sste.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042595225
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.sste.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002759158
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/02693798908941520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000844052
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/13658810110047221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015727617
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/aje/kwh310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010915487
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/aje/kwq292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040190483
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/aje/kwq350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005259835
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/icdmw.2007.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093685891
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1440-1584.2002.tb00015.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1061931885
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1467-842x.1999.tb01297.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015365223
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1137/1.9781611972801.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800427
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1146/annurev-publhealth-031811-124655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028459310
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1201/9780849384332.ch6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053513486
213 rdf:type schema:CreativeWork
214 https://doi.org/10.4018/978-1-4666-2455-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096034324
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
217 schema:name Department of Geography and Urban Studies, Temple University, Philadelphia, PA, USA
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
220 schema:name Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA
221 Department of Geography, Texas A&M University, College Station, TX, USA
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.422731.1 schema:alternateName North American Association of Central Cancer Registries
224 schema:name North American Association of Central Cancer Registries, Springfield, IL, USA
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...