Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Xuhui Zhang, Yaqin Ni, Yi Liu, Lei Zhang, Meibian Zhang, Xinyan Fang, Zhangping Yang, Qiang Wang, Hao Li, Yuyong Xia, Yimin Zhu

ABSTRACT

BACKGROUND: The aim of this study was to screen for noise-induced hearing loss (NIHL)-associated single nucleotide polymorphisms (SNPs) and to construct genetic risk prediction models for NIHL in a Chinese population. METHODS: Four hundred seventy-six subjects with NIHL and 476 matched controls were recruited from a cross-sectional survey on NIHL in China. A total of 83 candidate SNPs were genotyped using nanofluidic dynamic arrays on a Fluidigm platform. NIHL-associated SNPs were screened with a multiple logistic model, and a genetic risk model was constructed based on the genetic risk score (GRS). The results were validated using a prospective cohort population. RESULTS: Seven SNPs in the CDH23, PCDH15, EYA4, MYO1A, KCNMA1, and OTOG genes were significantly (P < 0.05) associated with the risk of NIHL, whereas seven other SNPs were marginally (P > 0.05 and P < 0.1) associated with the risk of NIHL. A positive correlation was observed between GRS values and odds ratio (OR) for NIHL. Two SNPs, namely, rs212769 and rs7910544, were validated in the cohort study. Subjects with higher GRS (≧9) showed a higher risk of NIHL incidence with an OR of 2.00 (95% CI = 1.04, 3.86). CONCLUSIONS: Genetic susceptibility plays an important role in the incidence of NIHL. GRS values, which are based on NIHL-associated SNPs. GRS may be utilized in the evaluation of genetic risk for NIHL and in the determination of NIHL susceptibility. More... »

PAGES

30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9

DOI

http://dx.doi.org/10.1186/s12940-019-0471-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113184510

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30947719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuhui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ni", 
        "givenName": "Yaqin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang Center for Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.433871.a", 
          "name": [
            "Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Meibian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Yongkang Center for Disease Control and Prevention, Yongkang, 321304, People's Republic of China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Xinyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhangping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Yuyong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China. zhuym@zju.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yimin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/aud.0b013e3181987080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aud.0b013e3181987080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aud.0b013e3181987080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajim.20223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajim.20223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-5955(01)00250-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004937153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2015.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005441558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/8.7.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005847694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80556-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008355029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/6.12.2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009853222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0089662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011297435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1116981109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014173666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2010.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023385197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029822535", 
          "https://doi.org/10.1007/s00335-009-9178-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029822535", 
          "https://doi.org/10.1007/s00335-009-9178-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029822535", 
          "https://doi.org/10.1007/s00335-009-9178-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jhg.2016.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030763140", 
          "https://doi.org/10.1038/jhg.2016.93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mrrev.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032925658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0402660101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036042854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddm135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038074607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2006.08.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038810150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2008.00499.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039806597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00521.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00521.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e3182a00332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041804091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e3182a00332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041804091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2014.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041994179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-015-0063-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042175382", 
          "https://doi.org/10.1186/s12940-015-0063-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajhb.20744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044173987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1047-06.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049073839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2009.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050157671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0297-186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052145139", 
          "https://doi.org/10.1038/ng0297-186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/14651858.cd006396.pub4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090367300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph14101139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091929252"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The aim of this study was to screen for noise-induced hearing loss (NIHL)-associated single nucleotide polymorphisms (SNPs) and to construct genetic risk prediction models for NIHL in a Chinese population.\nMETHODS: Four hundred seventy-six subjects with NIHL and 476 matched controls were recruited from a cross-sectional survey on NIHL in China. A total of 83 candidate SNPs were genotyped using nanofluidic dynamic arrays on a Fluidigm platform. NIHL-associated SNPs were screened with a multiple logistic model, and a genetic risk model was constructed based on the genetic risk score (GRS). The results were validated using a prospective cohort population.\nRESULTS: Seven SNPs in the CDH23, PCDH15, EYA4, MYO1A, KCNMA1, and OTOG genes were significantly (P\u2009<\u20090.05) associated with the risk of NIHL, whereas seven other SNPs were marginally (P\u2009>\u20090.05 and P\u2009<\u20090.1) associated with the risk of NIHL. A positive correlation was observed between GRS values and odds ratio (OR) for NIHL. Two SNPs, namely, rs212769 and rs7910544, were validated in the cohort study. Subjects with higher GRS (\u22679) showed a higher risk of NIHL incidence with an OR of 2.00 (95% CI\u2009=\u20091.04, 3.86).\nCONCLUSIONS: Genetic susceptibility plays an important role in the incidence of NIHL. GRS values, which are based on NIHL-associated SNPs. GRS may be utilized in the evaluation of genetic risk for NIHL and in the determination of NIHL susceptibility.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12940-019-0471-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327425", 
        "issn": [
          "1476-069X"
        ], 
        "name": "Environmental Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility.", 
    "pagination": "30", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12940-019-0471-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113184510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147645"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30947719"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12940-019-0471-9", 
      "https://app.dimensions.ai/details/publication/pub.1113184510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91433_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0471-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      56 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12940-019-0471-9 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N9f96ab783b294e0f89f7f2ef4d65d997
4 schema:citation sg:pub.10.1007/s00335-009-9178-5
5 sg:pub.10.1038/jhg.2016.93
6 sg:pub.10.1038/ng0297-186
7 sg:pub.10.1186/s12940-015-0063-2
8 https://doi.org/10.1001/jama.2010.119
9 https://doi.org/10.1002/14651858.cd006396.pub4
10 https://doi.org/10.1002/ajhb.20744
11 https://doi.org/10.1002/ajim.20223
12 https://doi.org/10.1016/j.atherosclerosis.2015.12.031
13 https://doi.org/10.1016/j.envres.2014.09.021
14 https://doi.org/10.1016/j.heares.2009.07.008
15 https://doi.org/10.1016/j.mrrev.2012.11.001
16 https://doi.org/10.1016/j.neuroscience.2006.08.060
17 https://doi.org/10.1016/s0092-8674(00)80556-5
18 https://doi.org/10.1016/s0378-5955(01)00250-7
19 https://doi.org/10.1073/pnas.0402660101
20 https://doi.org/10.1073/pnas.1116981109
21 https://doi.org/10.1093/hmg/6.12.2179
22 https://doi.org/10.1093/hmg/8.7.1321
23 https://doi.org/10.1093/hmg/ddm135
24 https://doi.org/10.1097/01.aud.0000191942.36672.f3
25 https://doi.org/10.1097/aud.0b013e3181987080
26 https://doi.org/10.1097/mao.0b013e3182a00332
27 https://doi.org/10.1111/j.1469-1809.2008.00499.x
28 https://doi.org/10.1111/j.1469-1809.2009.00521.x
29 https://doi.org/10.1371/journal.pone.0089662
30 https://doi.org/10.1523/jneurosci.1047-06.2006
31 https://doi.org/10.3390/ijerph14101139
32 schema:datePublished 2019-12
33 schema:datePublishedReg 2019-12-01
34 schema:description BACKGROUND: The aim of this study was to screen for noise-induced hearing loss (NIHL)-associated single nucleotide polymorphisms (SNPs) and to construct genetic risk prediction models for NIHL in a Chinese population. METHODS: Four hundred seventy-six subjects with NIHL and 476 matched controls were recruited from a cross-sectional survey on NIHL in China. A total of 83 candidate SNPs were genotyped using nanofluidic dynamic arrays on a Fluidigm platform. NIHL-associated SNPs were screened with a multiple logistic model, and a genetic risk model was constructed based on the genetic risk score (GRS). The results were validated using a prospective cohort population. RESULTS: Seven SNPs in the CDH23, PCDH15, EYA4, MYO1A, KCNMA1, and OTOG genes were significantly (P < 0.05) associated with the risk of NIHL, whereas seven other SNPs were marginally (P > 0.05 and P < 0.1) associated with the risk of NIHL. A positive correlation was observed between GRS values and odds ratio (OR) for NIHL. Two SNPs, namely, rs212769 and rs7910544, were validated in the cohort study. Subjects with higher GRS (≧9) showed a higher risk of NIHL incidence with an OR of 2.00 (95% CI = 1.04, 3.86). CONCLUSIONS: Genetic susceptibility plays an important role in the incidence of NIHL. GRS values, which are based on NIHL-associated SNPs. GRS may be utilized in the evaluation of genetic risk for NIHL and in the determination of NIHL susceptibility.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nb442294fa60f4b26bec98e01c1126981
39 Ncf1d6735f5b54bdaae68ab82e72b7334
40 sg:journal.1327425
41 schema:name Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility.
42 schema:pagination 30
43 schema:productId N084eea6f0984488bb7d72f254b05f53f
44 N0ce27fa6ea1b4767a3434e380ceaf25c
45 N180134af3c6f4741902e46b12f4d11dc
46 N4df46438ba8342d19e7c0d4b5ca3e305
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113184510
48 https://doi.org/10.1186/s12940-019-0471-9
49 schema:sdDatePublished 2019-04-15T09:00
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nd6ebdd8427c7465cb51d4acf2d68dec5
52 schema:url https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0471-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N084eea6f0984488bb7d72f254b05f53f schema:name nlm_unique_id
57 schema:value 101147645
58 rdf:type schema:PropertyValue
59 N0ce27fa6ea1b4767a3434e380ceaf25c schema:name dimensions_id
60 schema:value pub.1113184510
61 rdf:type schema:PropertyValue
62 N11edd42892c84377940f0d1723298622 rdf:first Ne6b6127ad7f44e69a3b492c76dc8c7ab
63 rdf:rest N61865c125e54447baf4f3a330deb2212
64 N180134af3c6f4741902e46b12f4d11dc schema:name pubmed_id
65 schema:value 30947719
66 rdf:type schema:PropertyValue
67 N2d6a63d2f3c64f58a7b533145b064939 rdf:first Nb8d998e146a243c6a1df963ce9c5930f
68 rdf:rest N70357928857b4e4e93c9def81595c0f1
69 N319c59da2cc44f31823f61fa1760ca94 rdf:first Nc76fccaffe4a483a8adcfb51b598a145
70 rdf:rest Na3a43d2dd8414518a553f7b7dd1dcedc
71 N33e481da1af74040898038e0cf5e3e61 schema:affiliation Na8c4864e4b91439aa52bab7000c5ef59
72 schema:familyName Wang
73 schema:givenName Qiang
74 rdf:type schema:Person
75 N3e508ace52184d8fbfbf01cb6878b25d rdf:first Nb591e46c42ad4d0299d4b0cbab986912
76 rdf:rest rdf:nil
77 N4049788e1e294a99af271e94a3075826 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
78 schema:familyName Liu
79 schema:givenName Yi
80 rdf:type schema:Person
81 N490bbf66cf2540e6bdc441b2fe57ea8f schema:name Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China.
82 rdf:type schema:Organization
83 N4df46438ba8342d19e7c0d4b5ca3e305 schema:name doi
84 schema:value 10.1186/s12940-019-0471-9
85 rdf:type schema:PropertyValue
86 N61865c125e54447baf4f3a330deb2212 rdf:first N8e4e7c392d604bf29871e9853348eebb
87 rdf:rest N93d4fd44b87f4b7e8e31e76a7be1c5a9
88 N70357928857b4e4e93c9def81595c0f1 rdf:first N33e481da1af74040898038e0cf5e3e61
89 rdf:rest N319c59da2cc44f31823f61fa1760ca94
90 N73b5aaf6f80948b1bbcd2afdc4a9479c schema:affiliation https://www.grid.ac/institutes/grid.13402.34
91 schema:familyName Ni
92 schema:givenName Yaqin
93 rdf:type schema:Person
94 N8a260ea13da146b5bcb189cee2fa88c1 schema:name Yongkang Center for Disease Control and Prevention, Yongkang, 321304, People's Republic of China.
95 rdf:type schema:Organization
96 N8e4e7c392d604bf29871e9853348eebb schema:affiliation https://www.grid.ac/institutes/grid.433871.a
97 schema:familyName Zhang
98 schema:givenName Meibian
99 rdf:type schema:Person
100 N93d4fd44b87f4b7e8e31e76a7be1c5a9 rdf:first Nc5e97a90984c4200b4f7ef130a676271
101 rdf:rest N2d6a63d2f3c64f58a7b533145b064939
102 N9babcc80425a407c857e9bd87e188089 rdf:first N73b5aaf6f80948b1bbcd2afdc4a9479c
103 rdf:rest Nc00a03eff30d4921988e2f0c79060c1a
104 N9f96ab783b294e0f89f7f2ef4d65d997 rdf:first Ne12833b20e8142078931696815a31f9e
105 rdf:rest N9babcc80425a407c857e9bd87e188089
106 Na0729a80a3d54a248ad30ebfe465dca3 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
107 schema:familyName Xia
108 schema:givenName Yuyong
109 rdf:type schema:Person
110 Na3a43d2dd8414518a553f7b7dd1dcedc rdf:first Na0729a80a3d54a248ad30ebfe465dca3
111 rdf:rest N3e508ace52184d8fbfbf01cb6878b25d
112 Na8c4864e4b91439aa52bab7000c5ef59 schema:name Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China.
113 rdf:type schema:Organization
114 Nb442294fa60f4b26bec98e01c1126981 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Nb591e46c42ad4d0299d4b0cbab986912 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
117 schema:familyName Zhu
118 schema:givenName Yimin
119 rdf:type schema:Person
120 Nb8d998e146a243c6a1df963ce9c5930f schema:affiliation https://www.grid.ac/institutes/grid.198530.6
121 schema:familyName Yang
122 schema:givenName Zhangping
123 rdf:type schema:Person
124 Nc00a03eff30d4921988e2f0c79060c1a rdf:first N4049788e1e294a99af271e94a3075826
125 rdf:rest N11edd42892c84377940f0d1723298622
126 Nc5e97a90984c4200b4f7ef130a676271 schema:affiliation N8a260ea13da146b5bcb189cee2fa88c1
127 schema:familyName Fang
128 schema:givenName Xinyan
129 rdf:type schema:Person
130 Nc76fccaffe4a483a8adcfb51b598a145 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
131 schema:familyName Li
132 schema:givenName Hao
133 rdf:type schema:Person
134 Ncf1d6735f5b54bdaae68ab82e72b7334 schema:volumeNumber 18
135 rdf:type schema:PublicationVolume
136 Nd6ebdd8427c7465cb51d4acf2d68dec5 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Ne12833b20e8142078931696815a31f9e schema:affiliation https://www.grid.ac/institutes/grid.198530.6
139 schema:familyName Zhang
140 schema:givenName Xuhui
141 rdf:type schema:Person
142 Ne6b6127ad7f44e69a3b492c76dc8c7ab schema:affiliation N490bbf66cf2540e6bdc441b2fe57ea8f
143 schema:familyName Zhang
144 schema:givenName Lei
145 rdf:type schema:Person
146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biological Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
150 schema:name Genetics
151 rdf:type schema:DefinedTerm
152 sg:journal.1327425 schema:issn 1476-069X
153 schema:name Environmental Health
154 rdf:type schema:Periodical
155 sg:pub.10.1007/s00335-009-9178-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029822535
156 https://doi.org/10.1007/s00335-009-9178-5
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/jhg.2016.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030763140
159 https://doi.org/10.1038/jhg.2016.93
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ng0297-186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052145139
162 https://doi.org/10.1038/ng0297-186
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/s12940-015-0063-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042175382
165 https://doi.org/10.1186/s12940-015-0063-2
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1001/jama.2010.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023385197
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/14651858.cd006396.pub4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090367300
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/ajhb.20744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044173987
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/ajim.20223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003813964
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.atherosclerosis.2015.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005441558
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.envres.2014.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994179
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.heares.2009.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050157671
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.mrrev.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032925658
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neuroscience.2006.08.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038810150
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0092-8674(00)80556-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008355029
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0378-5955(01)00250-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004937153
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.0402660101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036042854
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1073/pnas.1116981109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014173666
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/hmg/6.12.2179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009853222
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/hmg/8.7.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005847694
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/hmg/ddm135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038074607
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/01.aud.0000191942.36672.f3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010591290
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/aud.0b013e3181987080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002708282
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1097/mao.0b013e3182a00332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041804091
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1469-1809.2008.00499.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039806597
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1469-1809.2009.00521.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403313
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1371/journal.pone.0089662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011297435
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1523/jneurosci.1047-06.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049073839
212 rdf:type schema:CreativeWork
213 https://doi.org/10.3390/ijerph14101139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091929252
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
216 schema:name Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China.
217 Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China. zhuym@zju.edu.cn.
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.198530.6 schema:alternateName Chinese Center For Disease Control and Prevention
220 schema:name Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China.
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.433871.a schema:alternateName Zhejiang Center for Disease Control and Prevention
223 schema:name Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China.
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...