Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Xuhui Zhang, Yaqin Ni, Yi Liu, Lei Zhang, Meibian Zhang, Xinyan Fang, Zhangping Yang, Qiang Wang, Hao Li, Yuyong Xia, Yimin Zhu

ABSTRACT

BACKGROUND: The aim of this study was to screen for noise-induced hearing loss (NIHL)-associated single nucleotide polymorphisms (SNPs) and to construct genetic risk prediction models for NIHL in a Chinese population. METHODS: Four hundred seventy-six subjects with NIHL and 476 matched controls were recruited from a cross-sectional survey on NIHL in China. A total of 83 candidate SNPs were genotyped using nanofluidic dynamic arrays on a Fluidigm platform. NIHL-associated SNPs were screened with a multiple logistic model, and a genetic risk model was constructed based on the genetic risk score (GRS). The results were validated using a prospective cohort population. RESULTS: Seven SNPs in the CDH23, PCDH15, EYA4, MYO1A, KCNMA1, and OTOG genes were significantly (P < 0.05) associated with the risk of NIHL, whereas seven other SNPs were marginally (P > 0.05 and P < 0.1) associated with the risk of NIHL. A positive correlation was observed between GRS values and odds ratio (OR) for NIHL. Two SNPs, namely, rs212769 and rs7910544, were validated in the cohort study. Subjects with higher GRS (≧9) showed a higher risk of NIHL incidence with an OR of 2.00 (95% CI = 1.04, 3.86). CONCLUSIONS: Genetic susceptibility plays an important role in the incidence of NIHL. GRS values, which are based on NIHL-associated SNPs. GRS may be utilized in the evaluation of genetic risk for NIHL and in the determination of NIHL susceptibility. More... »

PAGES

30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9

DOI

http://dx.doi.org/10.1186/s12940-019-0471-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113184510

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30947719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuhui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ni", 
        "givenName": "Yaqin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang Center for Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.433871.a", 
          "name": [
            "Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Meibian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Yongkang Center for Disease Control and Prevention, Yongkang, 321304, People's Republic of China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Xinyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhangping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Yuyong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China. zhuym@zju.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yimin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/aud.0b013e3181987080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aud.0b013e3181987080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aud.0b013e3181987080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002708282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajim.20223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajim.20223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-5955(01)00250-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004937153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2015.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005441558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/8.7.1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005847694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80556-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008355029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/6.12.2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009853222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aud.0000191942.36672.f3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010591290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0089662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011297435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1116981109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014173666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2010.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023385197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029822535", 
          "https://doi.org/10.1007/s00335-009-9178-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029822535", 
          "https://doi.org/10.1007/s00335-009-9178-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-009-9178-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029822535", 
          "https://doi.org/10.1007/s00335-009-9178-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jhg.2016.93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030763140", 
          "https://doi.org/10.1038/jhg.2016.93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mrrev.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032925658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0402660101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036042854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddm135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038074607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2006.08.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038810150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2008.00499.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039806597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00521.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00521.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e3182a00332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041804091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e3182a00332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041804091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2014.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041994179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12940-015-0063-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042175382", 
          "https://doi.org/10.1186/s12940-015-0063-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajhb.20744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044173987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1047-06.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049073839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2009.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050157671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0297-186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052145139", 
          "https://doi.org/10.1038/ng0297-186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/14651858.cd006396.pub4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090367300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph14101139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091929252"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The aim of this study was to screen for noise-induced hearing loss (NIHL)-associated single nucleotide polymorphisms (SNPs) and to construct genetic risk prediction models for NIHL in a Chinese population.\nMETHODS: Four hundred seventy-six subjects with NIHL and 476 matched controls were recruited from a cross-sectional survey on NIHL in China. A total of 83 candidate SNPs were genotyped using nanofluidic dynamic arrays on a Fluidigm platform. NIHL-associated SNPs were screened with a multiple logistic model, and a genetic risk model was constructed based on the genetic risk score (GRS). The results were validated using a prospective cohort population.\nRESULTS: Seven SNPs in the CDH23, PCDH15, EYA4, MYO1A, KCNMA1, and OTOG genes were significantly (P\u2009<\u20090.05) associated with the risk of NIHL, whereas seven other SNPs were marginally (P\u2009>\u20090.05 and P\u2009<\u20090.1) associated with the risk of NIHL. A positive correlation was observed between GRS values and odds ratio (OR) for NIHL. Two SNPs, namely, rs212769 and rs7910544, were validated in the cohort study. Subjects with higher GRS (\u22679) showed a higher risk of NIHL incidence with an OR of 2.00 (95% CI\u2009=\u20091.04, 3.86).\nCONCLUSIONS: Genetic susceptibility plays an important role in the incidence of NIHL. GRS values, which are based on NIHL-associated SNPs. GRS may be utilized in the evaluation of genetic risk for NIHL and in the determination of NIHL susceptibility.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12940-019-0471-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327425", 
        "issn": [
          "1476-069X"
        ], 
        "name": "Environmental Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility.", 
    "pagination": "30", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12940-019-0471-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113184510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147645"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30947719"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12940-019-0471-9", 
      "https://app.dimensions.ai/details/publication/pub.1113184510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91433_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0471-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0471-9'


 

This table displays all metadata directly associated to this object as RDF triples.

224 TRIPLES      21 PREDICATES      56 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12940-019-0471-9 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N986855e48be04f7eb79cedd86dc54225
4 schema:citation sg:pub.10.1007/s00335-009-9178-5
5 sg:pub.10.1038/jhg.2016.93
6 sg:pub.10.1038/ng0297-186
7 sg:pub.10.1186/s12940-015-0063-2
8 https://doi.org/10.1001/jama.2010.119
9 https://doi.org/10.1002/14651858.cd006396.pub4
10 https://doi.org/10.1002/ajhb.20744
11 https://doi.org/10.1002/ajim.20223
12 https://doi.org/10.1016/j.atherosclerosis.2015.12.031
13 https://doi.org/10.1016/j.envres.2014.09.021
14 https://doi.org/10.1016/j.heares.2009.07.008
15 https://doi.org/10.1016/j.mrrev.2012.11.001
16 https://doi.org/10.1016/j.neuroscience.2006.08.060
17 https://doi.org/10.1016/s0092-8674(00)80556-5
18 https://doi.org/10.1016/s0378-5955(01)00250-7
19 https://doi.org/10.1073/pnas.0402660101
20 https://doi.org/10.1073/pnas.1116981109
21 https://doi.org/10.1093/hmg/6.12.2179
22 https://doi.org/10.1093/hmg/8.7.1321
23 https://doi.org/10.1093/hmg/ddm135
24 https://doi.org/10.1097/01.aud.0000191942.36672.f3
25 https://doi.org/10.1097/aud.0b013e3181987080
26 https://doi.org/10.1097/mao.0b013e3182a00332
27 https://doi.org/10.1111/j.1469-1809.2008.00499.x
28 https://doi.org/10.1111/j.1469-1809.2009.00521.x
29 https://doi.org/10.1371/journal.pone.0089662
30 https://doi.org/10.1523/jneurosci.1047-06.2006
31 https://doi.org/10.3390/ijerph14101139
32 schema:datePublished 2019-12
33 schema:datePublishedReg 2019-12-01
34 schema:description BACKGROUND: The aim of this study was to screen for noise-induced hearing loss (NIHL)-associated single nucleotide polymorphisms (SNPs) and to construct genetic risk prediction models for NIHL in a Chinese population. METHODS: Four hundred seventy-six subjects with NIHL and 476 matched controls were recruited from a cross-sectional survey on NIHL in China. A total of 83 candidate SNPs were genotyped using nanofluidic dynamic arrays on a Fluidigm platform. NIHL-associated SNPs were screened with a multiple logistic model, and a genetic risk model was constructed based on the genetic risk score (GRS). The results were validated using a prospective cohort population. RESULTS: Seven SNPs in the CDH23, PCDH15, EYA4, MYO1A, KCNMA1, and OTOG genes were significantly (P < 0.05) associated with the risk of NIHL, whereas seven other SNPs were marginally (P > 0.05 and P < 0.1) associated with the risk of NIHL. A positive correlation was observed between GRS values and odds ratio (OR) for NIHL. Two SNPs, namely, rs212769 and rs7910544, were validated in the cohort study. Subjects with higher GRS (≧9) showed a higher risk of NIHL incidence with an OR of 2.00 (95% CI = 1.04, 3.86). CONCLUSIONS: Genetic susceptibility plays an important role in the incidence of NIHL. GRS values, which are based on NIHL-associated SNPs. GRS may be utilized in the evaluation of genetic risk for NIHL and in the determination of NIHL susceptibility.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N73b44c57117c41759b620a559240e3fb
39 N82d624e301d645599666a7eb64958116
40 sg:journal.1327425
41 schema:name Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility.
42 schema:pagination 30
43 schema:productId N1b5d6a2c55b6474f9bd488b682628be5
44 Nc2641895e600405faea190f46b698039
45 Neac363ede1f144c98daff84ce2fd15d8
46 Nf6dccadc2aa24c59bad3cfb3ab8bf893
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113184510
48 https://doi.org/10.1186/s12940-019-0471-9
49 schema:sdDatePublished 2019-04-15T09:00
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N6568b17a787a466b9269d6cdbc71fdf2
52 schema:url https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0471-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N09b5f40def35419c90cfd73d9c03c7f8 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
57 schema:familyName Zhu
58 schema:givenName Yimin
59 rdf:type schema:Person
60 N09dd3d9580ec42fcbbfc20aafe576949 rdf:first N4bed5e17eadf434296bf8bd1d2481be2
61 rdf:rest Ne479d251d17342ff8695894c561d5df3
62 N1b5d6a2c55b6474f9bd488b682628be5 schema:name dimensions_id
63 schema:value pub.1113184510
64 rdf:type schema:PropertyValue
65 N25763397d25340839893e268d2adfe00 rdf:first N09b5f40def35419c90cfd73d9c03c7f8
66 rdf:rest rdf:nil
67 N3472690036dc4e89ac9f39651dc04242 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
68 schema:familyName Xia
69 schema:givenName Yuyong
70 rdf:type schema:Person
71 N3656e5d6b1984b128d7e58318032f042 rdf:first N391efe738d9f4b228f6b47c4046f882d
72 rdf:rest Nc2fe26be78f14d2c89b1b598518a8764
73 N391efe738d9f4b228f6b47c4046f882d schema:affiliation https://www.grid.ac/institutes/grid.433871.a
74 schema:familyName Zhang
75 schema:givenName Meibian
76 rdf:type schema:Person
77 N412e71b7650b4a318173ac52b05dbad3 schema:affiliation Ndbafa583ca3644d8b084b0f7d8bb26df
78 schema:familyName Zhang
79 schema:givenName Lei
80 rdf:type schema:Person
81 N4bed5e17eadf434296bf8bd1d2481be2 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
82 schema:familyName Ni
83 schema:givenName Yaqin
84 rdf:type schema:Person
85 N6568b17a787a466b9269d6cdbc71fdf2 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N7384146d8c0a4e3dbeb56031f8d2a624 rdf:first N3472690036dc4e89ac9f39651dc04242
88 rdf:rest N25763397d25340839893e268d2adfe00
89 N73b44c57117c41759b620a559240e3fb schema:volumeNumber 18
90 rdf:type schema:PublicationVolume
91 N82d624e301d645599666a7eb64958116 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N888e5e0d28394f9d98a7a8f416f5624c schema:affiliation https://www.grid.ac/institutes/grid.198530.6
94 schema:familyName Yang
95 schema:givenName Zhangping
96 rdf:type schema:Person
97 N8aa8aba0f32940b2ab53b1792ba199f3 rdf:first Ndf5f984aaa4c4a14b86b10cc0cfe5766
98 rdf:rest N7384146d8c0a4e3dbeb56031f8d2a624
99 N8d6c4425c0814b358d50b56351f13419 rdf:first N412e71b7650b4a318173ac52b05dbad3
100 rdf:rest N3656e5d6b1984b128d7e58318032f042
101 N986855e48be04f7eb79cedd86dc54225 rdf:first Nea1378c0bf6f4d0eaac280326c42a02d
102 rdf:rest N09dd3d9580ec42fcbbfc20aafe576949
103 Na2cbc6917e0b4c908c919fd4c5027c6e schema:affiliation https://www.grid.ac/institutes/grid.13402.34
104 schema:familyName Liu
105 schema:givenName Yi
106 rdf:type schema:Person
107 Nb463d0df9d4e41f0acb471024427170f rdf:first Ndbcc6856a44e48459af33913b6cacae2
108 rdf:rest N8aa8aba0f32940b2ab53b1792ba199f3
109 Nc2641895e600405faea190f46b698039 schema:name pubmed_id
110 schema:value 30947719
111 rdf:type schema:PropertyValue
112 Nc2fe26be78f14d2c89b1b598518a8764 rdf:first Nec1f44111d0443069e6f16098cdcfaa8
113 rdf:rest Nd7e0921f6db34c22ab18b3b24d786f51
114 Nd7e0921f6db34c22ab18b3b24d786f51 rdf:first N888e5e0d28394f9d98a7a8f416f5624c
115 rdf:rest Nb463d0df9d4e41f0acb471024427170f
116 Ndbafa583ca3644d8b084b0f7d8bb26df schema:name Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China.
117 rdf:type schema:Organization
118 Ndbcc6856a44e48459af33913b6cacae2 schema:affiliation Nfbb4f8a8726c4bb49ff57fb46dd1b5e0
119 schema:familyName Wang
120 schema:givenName Qiang
121 rdf:type schema:Person
122 Ndf5f984aaa4c4a14b86b10cc0cfe5766 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
123 schema:familyName Li
124 schema:givenName Hao
125 rdf:type schema:Person
126 Ne479d251d17342ff8695894c561d5df3 rdf:first Na2cbc6917e0b4c908c919fd4c5027c6e
127 rdf:rest N8d6c4425c0814b358d50b56351f13419
128 Ne64a7c6893a1492882df6d97ac2d22d5 schema:name Yongkang Center for Disease Control and Prevention, Yongkang, 321304, People's Republic of China.
129 rdf:type schema:Organization
130 Nea1378c0bf6f4d0eaac280326c42a02d schema:affiliation https://www.grid.ac/institutes/grid.198530.6
131 schema:familyName Zhang
132 schema:givenName Xuhui
133 rdf:type schema:Person
134 Neac363ede1f144c98daff84ce2fd15d8 schema:name nlm_unique_id
135 schema:value 101147645
136 rdf:type schema:PropertyValue
137 Nec1f44111d0443069e6f16098cdcfaa8 schema:affiliation Ne64a7c6893a1492882df6d97ac2d22d5
138 schema:familyName Fang
139 schema:givenName Xinyan
140 rdf:type schema:Person
141 Nf6dccadc2aa24c59bad3cfb3ab8bf893 schema:name doi
142 schema:value 10.1186/s12940-019-0471-9
143 rdf:type schema:PropertyValue
144 Nfbb4f8a8726c4bb49ff57fb46dd1b5e0 schema:name Hangzhou Hospital for Prevention and Treatment of Occupational Disease, Hangzhou, 310014, Zhejiang, China.
145 rdf:type schema:Organization
146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biological Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
150 schema:name Genetics
151 rdf:type schema:DefinedTerm
152 sg:journal.1327425 schema:issn 1476-069X
153 schema:name Environmental Health
154 rdf:type schema:Periodical
155 sg:pub.10.1007/s00335-009-9178-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029822535
156 https://doi.org/10.1007/s00335-009-9178-5
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/jhg.2016.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030763140
159 https://doi.org/10.1038/jhg.2016.93
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ng0297-186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052145139
162 https://doi.org/10.1038/ng0297-186
163 rdf:type schema:CreativeWork
164 sg:pub.10.1186/s12940-015-0063-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042175382
165 https://doi.org/10.1186/s12940-015-0063-2
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1001/jama.2010.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023385197
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/14651858.cd006396.pub4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090367300
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/ajhb.20744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044173987
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/ajim.20223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003813964
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.atherosclerosis.2015.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005441558
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.envres.2014.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994179
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.heares.2009.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050157671
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.mrrev.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032925658
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neuroscience.2006.08.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038810150
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0092-8674(00)80556-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008355029
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0378-5955(01)00250-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004937153
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.0402660101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036042854
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1073/pnas.1116981109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014173666
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/hmg/6.12.2179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009853222
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/hmg/8.7.1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005847694
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/hmg/ddm135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038074607
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/01.aud.0000191942.36672.f3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010591290
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/aud.0b013e3181987080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002708282
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1097/mao.0b013e3182a00332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041804091
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1469-1809.2008.00499.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039806597
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1469-1809.2009.00521.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403313
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1371/journal.pone.0089662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011297435
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1523/jneurosci.1047-06.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049073839
212 rdf:type schema:CreativeWork
213 https://doi.org/10.3390/ijerph14101139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091929252
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
216 schema:name Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China.
217 Department of Epidemiology and Biostatistics, Department of Respiratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, People's Republic of China. zhuym@zju.edu.cn.
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.198530.6 schema:alternateName Chinese Center For Disease Control and Prevention
220 schema:name Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, Zhejiang, China.
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.433871.a schema:alternateName Zhejiang Center for Disease Control and Prevention
223 schema:name Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China.
224 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...