Methods to account for uncertainties in exposure assessment in studies of environmental exposures. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

You Wu, F Owen Hoffman, A Iulian Apostoaei, Deukwoo Kwon, Brian A Thomas, Racquel Glass, Lydia B Zablotska

ABSTRACT

BACKGROUND: Accurate exposure estimation in environmental epidemiological studies is crucial for health risk assessment. Failure to account for uncertainties in exposure estimation could lead to biased results in exposure-response analyses. Assessment of the effects of uncertainties in exposure estimation on risk estimates received a lot of attention in radiation epidemiology and in several studies of diet and air pollution. The objective of this narrative review is to examine the commonly used statistical approaches to account for exposure estimation errors in risk analyses and to suggest how each could be applied in environmental epidemiological studies. MAIN TEXT: We review two main error types in estimating exposures in epidemiological studies: shared and unshared errors and their subtypes. We describe the four main statistical approaches to adjust for exposure estimation uncertainties (regression calibration, simulation-extrapolation, Monte Carlo maximum likelihood and Bayesian model averaging) along with examples to give readers better understanding of their advantages and limitations. We also explain the advantages of using a 2-dimensional Monte-Carlo (2DMC) simulation method to quantify the effect of uncertainties in exposure estimates using full-likelihood methods. For exposures that are estimated independently between subjects and are more likely to introduce unshared errors, regression calibration and SIMEX methods are able to adequately account for exposure uncertainties in risk analyses. When an uncalibrated measuring device is used or estimation parameters with uncertain mean values are applied to a group of people, shared errors could potentially be large. In this case, Monte Carlo maximum likelihood and Bayesian model averaging methods based on estimates of exposure from the 2DMC simulations would work well. The majority of reviewed studies show relatively moderate changes (within 100%) in risk estimates after accounting for uncertainties in exposure estimates, except for the two studies which doubled/tripled naïve estimates. CONCLUSIONS: In this paper, we demonstrate various statistical methods to account for uncertain exposure estimates in risk analyses. The differences in the results of various adjustment methods could be due to various error structures in datasets and whether or not a proper statistical method was applied. Epidemiological studies of environmental exposures should include exposure-response analyses accounting for uncertainties in exposure estimates. More... »

PAGES

31

References to SciGraph publications

  • 2007-12. Measurement error adjustment in essential fatty acid intake from a food frequency questionnaire: alternative approaches and methods in BMC MEDICAL RESEARCH METHODOLOGY
  • 2017-03. Measurement Error and Environmental Epidemiology: a Policy Perspective in CURRENT ENVIRONMENTAL HEALTH REPORTS
  • 2017-12. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology in BMC MEDICAL RESEARCH METHODOLOGY
  • 2015-08. Simulation–extrapolation method to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates, 1950–2003 in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2004-09. Two dimensions of measurement error: Classical and Berkson error in residential radon exposure assessment in JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY
  • 2011-03. Multi-model inference of adult and childhood leukaemia excess relative risks based on the Japanese A-bomb survivors mortality data (1950–2000) in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2012-05. Dose–responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2013-03. A method for determining weights for excess relative risk and excess absolute risk when applied in the calculation of lifetime risk of cancer from radiation exposure in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2009-11. A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study in EUROPEAN JOURNAL OF CLINICAL NUTRITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4

    DOI

    http://dx.doi.org/10.1186/s12940-019-0468-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113300252

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30961632


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Amgen (United States)", 
              "id": "https://www.grid.ac/institutes/grid.417886.4", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA.", 
                "Center for Design and Analysis, Amgen, Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "You", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoffman", 
            "givenName": "F Owen", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Apostoaei", 
            "givenName": "A Iulian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sylvester Comprehensive Cancer Center", 
              "id": "https://www.grid.ac/institutes/grid.419791.3", 
              "name": [
                "Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue, Miami, FL, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwon", 
            "givenName": "Deukwoo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "Brian A", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Francisco", 
              "id": "https://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glass", 
            "givenName": "Racquel", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Francisco", 
              "id": "https://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA. Lydia.Zablotska@ucsf.edu."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zablotska", 
            "givenName": "Lydia B", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pone.0085723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002794829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13791.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004024006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e3181adc3b1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e3181adc3b1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e3181adc3b1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13729.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008425321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-012-0441-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012313667", 
              "https://doi.org/10.1007/s00411-012-0441-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10807039.1999.9657762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013004591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e31829f3096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013224971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e31829f3096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013224971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0139826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014287327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejcn.2009.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014355166", 
              "https://doi.org/10.1038/ejcn.2009.80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejcn.2009.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014355166", 
              "https://doi.org/10.1038/ejcn.2009.80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.6095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015838172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwg091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023469652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/10408444.2011.563420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024327443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-012-0410-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024867034", 
              "https://doi.org/10.1007/s00411-012-0410-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025221636", 
              "https://doi.org/10.1038/sj.jea.7500332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025221636", 
              "https://doi.org/10.1038/sj.jea.7500332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13413.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026358284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1091.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029290583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djr189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031689138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.1409149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031813241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.4780080905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032437929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.4780080905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032437929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610918508812457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033324505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2288-7-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035498473", 
              "https://doi.org/10.1186/1471-2288-7-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr0677.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038693885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-010-0337-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038695282", 
              "https://doi.org/10.1007/s00411-010-0337-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.55.10.651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039707870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.55.10.651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039707870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.6635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039920187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1231.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045915235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-015-0594-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047853398", 
              "https://doi.org/10.1007/s00411-015-0594-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.201500238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048311762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.201500238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048311762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwt198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048597465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.27547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049951730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.hp.0000314761.98655.dd", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051856454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.hp.0000314761.98655.dd", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051856454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwg092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052013407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13794.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053238396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1557-4679.1281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053301531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1990.10474925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1990.10476213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1992.10475214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1994.10476871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1995.10476629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/57.1.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/69.2.331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059419184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxv048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059424727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/3046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068194944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1059.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068195151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1063.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068195154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3577733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070380346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7326/0003-4819-146-1-200701020-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073709022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40572-017-0125-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074246656", 
              "https://doi.org/10.1007/s40572-017-0125-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40572-017-0125-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074246656", 
              "https://doi.org/10.1007/s40572-017-0125-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.aje.a115715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078785775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0174641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084509314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/112/1087101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089206777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12874-017-0421-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091862974", 
              "https://doi.org/10.1186/s12874-017-0421-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780195141566.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098729253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0190792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100857356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109390729", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420010138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109390729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073306"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Accurate exposure estimation in environmental epidemiological studies is crucial for health risk assessment. Failure to account for uncertainties in exposure estimation could lead to biased results in exposure-response analyses. Assessment of the effects of uncertainties in exposure estimation on risk estimates received a lot of attention in radiation epidemiology and in several studies of diet and air pollution. The objective of this narrative review is to examine the commonly used statistical approaches to account for exposure estimation errors in risk analyses and to suggest how each could be applied in environmental epidemiological studies.\nMAIN TEXT: We review two main error types in estimating exposures in epidemiological studies: shared and unshared errors and their subtypes. We describe the four main statistical approaches to adjust for exposure estimation uncertainties (regression calibration, simulation-extrapolation, Monte Carlo maximum likelihood and Bayesian model averaging) along with examples to give readers better understanding of their advantages and limitations. We also explain the advantages of using a 2-dimensional Monte-Carlo (2DMC) simulation method to quantify the effect of uncertainties in exposure estimates using full-likelihood methods. For exposures that are estimated independently between subjects and are more likely to introduce unshared errors, regression calibration and SIMEX methods are able to adequately account for exposure uncertainties in risk analyses. When an uncalibrated measuring device is used or estimation parameters with uncertain mean values are applied to a group of people, shared errors could potentially be large. In this case, Monte Carlo maximum likelihood and Bayesian model averaging methods based on estimates of exposure from the 2DMC simulations would work well. The majority of reviewed studies show relatively moderate changes (within 100%) in risk estimates after accounting for uncertainties in exposure estimates, except for the two studies which doubled/tripled na\u00efve estimates.\nCONCLUSIONS: In this paper, we demonstrate various statistical methods to account for uncertain exposure estimates in risk analyses. The differences in the results of various adjustment methods could be due to various\u00a0error structures in datasets and whether or not a proper statistical method was applied. Epidemiological studies of environmental exposures should include exposure-response analyses accounting for uncertainties in exposure estimates.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12940-019-0468-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4897978", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327425", 
            "issn": [
              "1476-069X"
            ], 
            "name": "Environmental Health", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Methods to account for uncertainties in exposure assessment in studies of environmental exposures.", 
        "pagination": "31", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12940-019-0468-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113300252"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101147645"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30961632"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12940-019-0468-4", 
          "https://app.dimensions.ai/details/publication/pub.1113300252"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91428_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0468-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      21 PREDICATES      86 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12940-019-0468-4 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Na37e7f45aa3c492db555b919d1dc3ebe
    4 schema:citation sg:pub.10.1007/s00411-010-0337-6
    5 sg:pub.10.1007/s00411-012-0410-4
    6 sg:pub.10.1007/s00411-012-0441-x
    7 sg:pub.10.1007/s00411-015-0594-5
    8 sg:pub.10.1007/s40572-017-0125-4
    9 sg:pub.10.1038/ejcn.2009.80
    10 sg:pub.10.1038/sj.jea.7500332
    11 sg:pub.10.1186/1471-2288-7-41
    12 sg:pub.10.1186/s12874-017-0421-6
    13 https://app.dimensions.ai/details/publication/pub.1109390729
    14 https://doi.org/10.1002/bimj.201500238
    15 https://doi.org/10.1002/ijc.27547
    16 https://doi.org/10.1002/sim.4780080905
    17 https://doi.org/10.1002/sim.6095
    18 https://doi.org/10.1002/sim.6635
    19 https://doi.org/10.1080/01621459.1990.10474925
    20 https://doi.org/10.1080/01621459.1990.10476213
    21 https://doi.org/10.1080/01621459.1992.10475214
    22 https://doi.org/10.1080/01621459.1994.10476871
    23 https://doi.org/10.1080/01621459.1995.10476629
    24 https://doi.org/10.1080/03610918508812457
    25 https://doi.org/10.1080/10807039.1999.9657762
    26 https://doi.org/10.1090/conm/112/1087101
    27 https://doi.org/10.1093/acprof:oso/9780195141566.001.0001
    28 https://doi.org/10.1093/aje/kwg091
    29 https://doi.org/10.1093/aje/kwg092
    30 https://doi.org/10.1093/aje/kwt198
    31 https://doi.org/10.1093/biomet/57.1.97
    32 https://doi.org/10.1093/biomet/69.2.331
    33 https://doi.org/10.1093/biostatistics/kxv048
    34 https://doi.org/10.1093/jnci/djr189
    35 https://doi.org/10.1093/oxfordjournals.aje.a115715
    36 https://doi.org/10.1097/01.hp.0000314761.98655.dd
    37 https://doi.org/10.1097/hp.0b013e3181adc3b1
    38 https://doi.org/10.1097/hp.0b013e31829f3096
    39 https://doi.org/10.1136/oem.55.10.651
    40 https://doi.org/10.1177/1536867x0300300406
    41 https://doi.org/10.1177/1536867x0300300407
    42 https://doi.org/10.1201/9781420010138
    43 https://doi.org/10.1289/ehp.1409149
    44 https://doi.org/10.1371/journal.pone.0085723
    45 https://doi.org/10.1371/journal.pone.0139826
    46 https://doi.org/10.1371/journal.pone.0174641
    47 https://doi.org/10.1371/journal.pone.0190792
    48 https://doi.org/10.1667/3046
    49 https://doi.org/10.1667/rr0677.1
    50 https://doi.org/10.1667/rr1059.1
    51 https://doi.org/10.1667/rr1063.1
    52 https://doi.org/10.1667/rr1091.1
    53 https://doi.org/10.1667/rr1231.1
    54 https://doi.org/10.1667/rr13413.1
    55 https://doi.org/10.1667/rr13729.1
    56 https://doi.org/10.1667/rr13791.1
    57 https://doi.org/10.1667/rr13794.1
    58 https://doi.org/10.2202/1557-4679.1281
    59 https://doi.org/10.2307/3577733
    60 https://doi.org/10.3109/10408444.2011.563420
    61 https://doi.org/10.7326/0003-4819-146-1-200701020-00004
    62 schema:datePublished 2019-12
    63 schema:datePublishedReg 2019-12-01
    64 schema:description BACKGROUND: Accurate exposure estimation in environmental epidemiological studies is crucial for health risk assessment. Failure to account for uncertainties in exposure estimation could lead to biased results in exposure-response analyses. Assessment of the effects of uncertainties in exposure estimation on risk estimates received a lot of attention in radiation epidemiology and in several studies of diet and air pollution. The objective of this narrative review is to examine the commonly used statistical approaches to account for exposure estimation errors in risk analyses and to suggest how each could be applied in environmental epidemiological studies. MAIN TEXT: We review two main error types in estimating exposures in epidemiological studies: shared and unshared errors and their subtypes. We describe the four main statistical approaches to adjust for exposure estimation uncertainties (regression calibration, simulation-extrapolation, Monte Carlo maximum likelihood and Bayesian model averaging) along with examples to give readers better understanding of their advantages and limitations. We also explain the advantages of using a 2-dimensional Monte-Carlo (2DMC) simulation method to quantify the effect of uncertainties in exposure estimates using full-likelihood methods. For exposures that are estimated independently between subjects and are more likely to introduce unshared errors, regression calibration and SIMEX methods are able to adequately account for exposure uncertainties in risk analyses. When an uncalibrated measuring device is used or estimation parameters with uncertain mean values are applied to a group of people, shared errors could potentially be large. In this case, Monte Carlo maximum likelihood and Bayesian model averaging methods based on estimates of exposure from the 2DMC simulations would work well. The majority of reviewed studies show relatively moderate changes (within 100%) in risk estimates after accounting for uncertainties in exposure estimates, except for the two studies which doubled/tripled naïve estimates. CONCLUSIONS: In this paper, we demonstrate various statistical methods to account for uncertain exposure estimates in risk analyses. The differences in the results of various adjustment methods could be due to various error structures in datasets and whether or not a proper statistical method was applied. Epidemiological studies of environmental exposures should include exposure-response analyses accounting for uncertainties in exposure estimates.
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree false
    68 schema:isPartOf Na23f4190b65245f499c1249c3c252ec4
    69 Nb2bcac1c76634e8094c430b033d5da7c
    70 sg:journal.1327425
    71 schema:name Methods to account for uncertainties in exposure assessment in studies of environmental exposures.
    72 schema:pagination 31
    73 schema:productId N012a2489023a491e88e3ab06bd164be2
    74 N73aeb90cc1ce4ef1a5384fab680a5d15
    75 Nb0de4c5ad639433e867894d136c5d3f4
    76 Nb7bda3d90a5b41feb1cab2363a122095
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300252
    78 https://doi.org/10.1186/s12940-019-0468-4
    79 schema:sdDatePublished 2019-04-15T08:58
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N06cfa925cefc45409f48d48078a9835d
    82 schema:url https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0468-4
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N012a2489023a491e88e3ab06bd164be2 schema:name pubmed_id
    87 schema:value 30961632
    88 rdf:type schema:PropertyValue
    89 N06cfa925cefc45409f48d48078a9835d schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 N071b516f4c6d4798bfb7109c33af00db schema:affiliation Na41daf148598421fb5af687516cf017f
    92 schema:familyName Hoffman
    93 schema:givenName F Owen
    94 rdf:type schema:Person
    95 N10d7d101fa6e46869115e0b31eca7f53 rdf:first N071b516f4c6d4798bfb7109c33af00db
    96 rdf:rest Ne025a912d5ff4978adf5d0659cbebd6f
    97 N11ed72e44ba8432a9908c92f262b886d schema:affiliation https://www.grid.ac/institutes/grid.419791.3
    98 schema:familyName Kwon
    99 schema:givenName Deukwoo
    100 rdf:type schema:Person
    101 N1f26bd5c24094c69853d26e7f1c80d7c schema:affiliation Ne1aa09fb02d44f088f21fc05d150612f
    102 schema:familyName Thomas
    103 schema:givenName Brian A
    104 rdf:type schema:Person
    105 N50a5106e99c441df9c284ff24fbefcf0 schema:name Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA.
    106 rdf:type schema:Organization
    107 N55f1567d8c8742c1b2414d303cd05f25 rdf:first N1f26bd5c24094c69853d26e7f1c80d7c
    108 rdf:rest Nc333171fb7954c6484f6b4fd104f81e5
    109 N73aeb90cc1ce4ef1a5384fab680a5d15 schema:name dimensions_id
    110 schema:value pub.1113300252
    111 rdf:type schema:PropertyValue
    112 N850e8023c5ce4d5c851f9b04f07112c3 rdf:first Nb41e1d302fce4db5bc307d3e8520b813
    113 rdf:rest rdf:nil
    114 N97cfe826ead6449598fd58df671e6b90 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
    115 schema:familyName Glass
    116 schema:givenName Racquel
    117 rdf:type schema:Person
    118 Na14acd1a801a4aebbcedcaa67b55ce7f schema:affiliation N50a5106e99c441df9c284ff24fbefcf0
    119 schema:familyName Apostoaei
    120 schema:givenName A Iulian
    121 rdf:type schema:Person
    122 Na23f4190b65245f499c1249c3c252ec4 schema:volumeNumber 18
    123 rdf:type schema:PublicationVolume
    124 Na37e7f45aa3c492db555b919d1dc3ebe rdf:first Naa176f6c1c5d42d79eb13b4e722de106
    125 rdf:rest N10d7d101fa6e46869115e0b31eca7f53
    126 Na41daf148598421fb5af687516cf017f schema:name Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA.
    127 rdf:type schema:Organization
    128 Naa176f6c1c5d42d79eb13b4e722de106 schema:affiliation https://www.grid.ac/institutes/grid.417886.4
    129 schema:familyName Wu
    130 schema:givenName You
    131 rdf:type schema:Person
    132 Nb0de4c5ad639433e867894d136c5d3f4 schema:name nlm_unique_id
    133 schema:value 101147645
    134 rdf:type schema:PropertyValue
    135 Nb2bcac1c76634e8094c430b033d5da7c schema:issueNumber 1
    136 rdf:type schema:PublicationIssue
    137 Nb41e1d302fce4db5bc307d3e8520b813 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
    138 schema:familyName Zablotska
    139 schema:givenName Lydia B
    140 rdf:type schema:Person
    141 Nb7bda3d90a5b41feb1cab2363a122095 schema:name doi
    142 schema:value 10.1186/s12940-019-0468-4
    143 rdf:type schema:PropertyValue
    144 Nc333171fb7954c6484f6b4fd104f81e5 rdf:first N97cfe826ead6449598fd58df671e6b90
    145 rdf:rest N850e8023c5ce4d5c851f9b04f07112c3
    146 Ne025a912d5ff4978adf5d0659cbebd6f rdf:first Na14acd1a801a4aebbcedcaa67b55ce7f
    147 rdf:rest Nec2cb2e9ad8847ed915fbef337ce02ee
    148 Ne1aa09fb02d44f088f21fc05d150612f schema:name Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA.
    149 rdf:type schema:Organization
    150 Nec2cb2e9ad8847ed915fbef337ce02ee rdf:first N11ed72e44ba8432a9908c92f262b886d
    151 rdf:rest N55f1567d8c8742c1b2414d303cd05f25
    152 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Mathematical Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Statistics
    157 rdf:type schema:DefinedTerm
    158 sg:grant.4897978 http://pending.schema.org/fundedItem sg:pub.10.1186/s12940-019-0468-4
    159 rdf:type schema:MonetaryGrant
    160 sg:journal.1327425 schema:issn 1476-069X
    161 schema:name Environmental Health
    162 rdf:type schema:Periodical
    163 sg:pub.10.1007/s00411-010-0337-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038695282
    164 https://doi.org/10.1007/s00411-010-0337-6
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00411-012-0410-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024867034
    167 https://doi.org/10.1007/s00411-012-0410-4
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00411-012-0441-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012313667
    170 https://doi.org/10.1007/s00411-012-0441-x
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00411-015-0594-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047853398
    173 https://doi.org/10.1007/s00411-015-0594-5
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s40572-017-0125-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074246656
    176 https://doi.org/10.1007/s40572-017-0125-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/ejcn.2009.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014355166
    179 https://doi.org/10.1038/ejcn.2009.80
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/sj.jea.7500332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025221636
    182 https://doi.org/10.1038/sj.jea.7500332
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1186/1471-2288-7-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035498473
    185 https://doi.org/10.1186/1471-2288-7-41
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1186/s12874-017-0421-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091862974
    188 https://doi.org/10.1186/s12874-017-0421-6
    189 rdf:type schema:CreativeWork
    190 https://app.dimensions.ai/details/publication/pub.1109390729 schema:CreativeWork
    191 https://doi.org/10.1002/bimj.201500238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048311762
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1002/ijc.27547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049951730
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1002/sim.4780080905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032437929
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/sim.6095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015838172
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1002/sim.6635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039920187
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1080/01621459.1990.10474925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303865
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1080/01621459.1990.10476213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303992
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1080/01621459.1992.10475214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304243
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1080/01621459.1994.10476871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304735
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1080/01621459.1995.10476629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304912
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1080/03610918508812457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033324505
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1080/10807039.1999.9657762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013004591
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1090/conm/112/1087101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089206777
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/acprof:oso/9780195141566.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098729253
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/aje/kwg091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023469652
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/aje/kwg092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052013407
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1093/aje/kwt198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048597465
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1093/biomet/69.2.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419184
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/biostatistics/kxv048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424727
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/jnci/djr189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031689138
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/oxfordjournals.aje.a115715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078785775
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1097/01.hp.0000314761.98655.dd schema:sameAs https://app.dimensions.ai/details/publication/pub.1051856454
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1097/hp.0b013e3181adc3b1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743866
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1097/hp.0b013e31829f3096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013224971
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1136/oem.55.10.651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039707870
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1177/1536867x0300300406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110073305
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1177/1536867x0300300407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110073306
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1201/9781420010138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109390729
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1289/ehp.1409149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031813241
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1371/journal.pone.0085723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002794829
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1371/journal.pone.0139826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287327
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1371/journal.pone.0174641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084509314
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1371/journal.pone.0190792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100857356
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1667/3046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068194944
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1667/rr0677.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038693885
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1667/rr1059.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068195151
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1667/rr1063.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068195154
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1667/rr1091.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029290583
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1667/rr1231.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045915235
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1667/rr13413.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026358284
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1667/rr13729.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008425321
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1667/rr13791.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004024006
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1667/rr13794.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053238396
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.2202/1557-4679.1281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053301531
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.2307/3577733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070380346
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.3109/10408444.2011.563420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024327443
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.7326/0003-4819-146-1-200701020-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709022
    286 rdf:type schema:CreativeWork
    287 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
    288 schema:name Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA.
    289 Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA. Lydia.Zablotska@ucsf.edu.
    290 rdf:type schema:Organization
    291 https://www.grid.ac/institutes/grid.417886.4 schema:alternateName Amgen (United States)
    292 schema:name Center for Design and Analysis, Amgen, Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
    293 Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA.
    294 rdf:type schema:Organization
    295 https://www.grid.ac/institutes/grid.419791.3 schema:alternateName Sylvester Comprehensive Cancer Center
    296 schema:name Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue, Miami, FL, USA.
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...