Methods to account for uncertainties in exposure assessment in studies of environmental exposures. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

You Wu, F Owen Hoffman, A Iulian Apostoaei, Deukwoo Kwon, Brian A Thomas, Racquel Glass, Lydia B Zablotska

ABSTRACT

BACKGROUND: Accurate exposure estimation in environmental epidemiological studies is crucial for health risk assessment. Failure to account for uncertainties in exposure estimation could lead to biased results in exposure-response analyses. Assessment of the effects of uncertainties in exposure estimation on risk estimates received a lot of attention in radiation epidemiology and in several studies of diet and air pollution. The objective of this narrative review is to examine the commonly used statistical approaches to account for exposure estimation errors in risk analyses and to suggest how each could be applied in environmental epidemiological studies. MAIN TEXT: We review two main error types in estimating exposures in epidemiological studies: shared and unshared errors and their subtypes. We describe the four main statistical approaches to adjust for exposure estimation uncertainties (regression calibration, simulation-extrapolation, Monte Carlo maximum likelihood and Bayesian model averaging) along with examples to give readers better understanding of their advantages and limitations. We also explain the advantages of using a 2-dimensional Monte-Carlo (2DMC) simulation method to quantify the effect of uncertainties in exposure estimates using full-likelihood methods. For exposures that are estimated independently between subjects and are more likely to introduce unshared errors, regression calibration and SIMEX methods are able to adequately account for exposure uncertainties in risk analyses. When an uncalibrated measuring device is used or estimation parameters with uncertain mean values are applied to a group of people, shared errors could potentially be large. In this case, Monte Carlo maximum likelihood and Bayesian model averaging methods based on estimates of exposure from the 2DMC simulations would work well. The majority of reviewed studies show relatively moderate changes (within 100%) in risk estimates after accounting for uncertainties in exposure estimates, except for the two studies which doubled/tripled naïve estimates. CONCLUSIONS: In this paper, we demonstrate various statistical methods to account for uncertain exposure estimates in risk analyses. The differences in the results of various adjustment methods could be due to various error structures in datasets and whether or not a proper statistical method was applied. Epidemiological studies of environmental exposures should include exposure-response analyses accounting for uncertainties in exposure estimates. More... »

PAGES

31

References to SciGraph publications

  • 2007-12. Measurement error adjustment in essential fatty acid intake from a food frequency questionnaire: alternative approaches and methods in BMC MEDICAL RESEARCH METHODOLOGY
  • 2017-03. Measurement Error and Environmental Epidemiology: a Policy Perspective in CURRENT ENVIRONMENTAL HEALTH REPORTS
  • 2017-12. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology in BMC MEDICAL RESEARCH METHODOLOGY
  • 2015-08. Simulation–extrapolation method to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates, 1950–2003 in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2004-09. Two dimensions of measurement error: Classical and Berkson error in residential radon exposure assessment in JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY
  • 2011-03. Multi-model inference of adult and childhood leukaemia excess relative risks based on the Japanese A-bomb survivors mortality data (1950–2000) in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2012-05. Dose–responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2013-03. A method for determining weights for excess relative risk and excess absolute risk when applied in the calculation of lifetime risk of cancer from radiation exposure in RADIATION AND ENVIRONMENTAL BIOPHYSICS
  • 2009-11. A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study in EUROPEAN JOURNAL OF CLINICAL NUTRITION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4

    DOI

    http://dx.doi.org/10.1186/s12940-019-0468-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113300252

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30961632


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Amgen (United States)", 
              "id": "https://www.grid.ac/institutes/grid.417886.4", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA.", 
                "Center for Design and Analysis, Amgen, Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "You", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hoffman", 
            "givenName": "F Owen", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Apostoaei", 
            "givenName": "A Iulian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sylvester Comprehensive Cancer Center", 
              "id": "https://www.grid.ac/institutes/grid.419791.3", 
              "name": [
                "Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue, Miami, FL, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwon", 
            "givenName": "Deukwoo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "Brian A", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Francisco", 
              "id": "https://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glass", 
            "givenName": "Racquel", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Francisco", 
              "id": "https://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA. Lydia.Zablotska@ucsf.edu."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zablotska", 
            "givenName": "Lydia B", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pone.0085723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002794829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13791.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004024006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e3181adc3b1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e3181adc3b1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e3181adc3b1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13729.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008425321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-012-0441-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012313667", 
              "https://doi.org/10.1007/s00411-012-0441-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10807039.1999.9657762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013004591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e31829f3096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013224971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hp.0b013e31829f3096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013224971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0139826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014287327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejcn.2009.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014355166", 
              "https://doi.org/10.1038/ejcn.2009.80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejcn.2009.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014355166", 
              "https://doi.org/10.1038/ejcn.2009.80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.6095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015838172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwg091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023469652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/10408444.2011.563420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024327443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-012-0410-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024867034", 
              "https://doi.org/10.1007/s00411-012-0410-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025221636", 
              "https://doi.org/10.1038/sj.jea.7500332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.jea.7500332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025221636", 
              "https://doi.org/10.1038/sj.jea.7500332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13413.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026358284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1091.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029290583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djr189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031689138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.1409149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031813241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.4780080905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032437929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.4780080905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032437929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610918508812457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033324505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2288-7-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035498473", 
              "https://doi.org/10.1186/1471-2288-7-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr0677.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038693885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-010-0337-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038695282", 
              "https://doi.org/10.1007/s00411-010-0337-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.55.10.651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039707870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/oem.55.10.651", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039707870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.6635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039920187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1231.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045915235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00411-015-0594-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047853398", 
              "https://doi.org/10.1007/s00411-015-0594-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.201500238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048311762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bimj.201500238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048311762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwt198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048597465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.27547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049951730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.hp.0000314761.98655.dd", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051856454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.hp.0000314761.98655.dd", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051856454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aje/kwg092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052013407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr13794.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053238396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1557-4679.1281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053301531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1990.10474925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1990.10476213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058303992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1992.10475214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1994.10476871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1995.10476629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/57.1.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/69.2.331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059419184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxv048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059424727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/3046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068194944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1059.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068195151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1667/rr1063.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068195154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3577733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070380346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7326/0003-4819-146-1-200701020-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073709022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40572-017-0125-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074246656", 
              "https://doi.org/10.1007/s40572-017-0125-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40572-017-0125-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074246656", 
              "https://doi.org/10.1007/s40572-017-0125-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.aje.a115715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078785775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0174641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084509314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/112/1087101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089206777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12874-017-0421-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091862974", 
              "https://doi.org/10.1186/s12874-017-0421-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/acprof:oso/9780195141566.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098729253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0190792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100857356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109390729", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420010138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109390729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1536867x0300300407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110073306"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Accurate exposure estimation in environmental epidemiological studies is crucial for health risk assessment. Failure to account for uncertainties in exposure estimation could lead to biased results in exposure-response analyses. Assessment of the effects of uncertainties in exposure estimation on risk estimates received a lot of attention in radiation epidemiology and in several studies of diet and air pollution. The objective of this narrative review is to examine the commonly used statistical approaches to account for exposure estimation errors in risk analyses and to suggest how each could be applied in environmental epidemiological studies.\nMAIN TEXT: We review two main error types in estimating exposures in epidemiological studies: shared and unshared errors and their subtypes. We describe the four main statistical approaches to adjust for exposure estimation uncertainties (regression calibration, simulation-extrapolation, Monte Carlo maximum likelihood and Bayesian model averaging) along with examples to give readers better understanding of their advantages and limitations. We also explain the advantages of using a 2-dimensional Monte-Carlo (2DMC) simulation method to quantify the effect of uncertainties in exposure estimates using full-likelihood methods. For exposures that are estimated independently between subjects and are more likely to introduce unshared errors, regression calibration and SIMEX methods are able to adequately account for exposure uncertainties in risk analyses. When an uncalibrated measuring device is used or estimation parameters with uncertain mean values are applied to a group of people, shared errors could potentially be large. In this case, Monte Carlo maximum likelihood and Bayesian model averaging methods based on estimates of exposure from the 2DMC simulations would work well. The majority of reviewed studies show relatively moderate changes (within 100%) in risk estimates after accounting for uncertainties in exposure estimates, except for the two studies which doubled/tripled na\u00efve estimates.\nCONCLUSIONS: In this paper, we demonstrate various statistical methods to account for uncertain exposure estimates in risk analyses. The differences in the results of various adjustment methods could be due to various\u00a0error structures in datasets and whether or not a proper statistical method was applied. Epidemiological studies of environmental exposures should include exposure-response analyses accounting for uncertainties in exposure estimates.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12940-019-0468-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4897978", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327425", 
            "issn": [
              "1476-069X"
            ], 
            "name": "Environmental Health", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Methods to account for uncertainties in exposure assessment in studies of environmental exposures.", 
        "pagination": "31", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12940-019-0468-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113300252"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101147645"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30961632"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12940-019-0468-4", 
          "https://app.dimensions.ai/details/publication/pub.1113300252"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91428_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0468-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0468-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    297 TRIPLES      21 PREDICATES      86 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12940-019-0468-4 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Ned1c2599ec55426fa98ae2587a1124f9
    4 schema:citation sg:pub.10.1007/s00411-010-0337-6
    5 sg:pub.10.1007/s00411-012-0410-4
    6 sg:pub.10.1007/s00411-012-0441-x
    7 sg:pub.10.1007/s00411-015-0594-5
    8 sg:pub.10.1007/s40572-017-0125-4
    9 sg:pub.10.1038/ejcn.2009.80
    10 sg:pub.10.1038/sj.jea.7500332
    11 sg:pub.10.1186/1471-2288-7-41
    12 sg:pub.10.1186/s12874-017-0421-6
    13 https://app.dimensions.ai/details/publication/pub.1109390729
    14 https://doi.org/10.1002/bimj.201500238
    15 https://doi.org/10.1002/ijc.27547
    16 https://doi.org/10.1002/sim.4780080905
    17 https://doi.org/10.1002/sim.6095
    18 https://doi.org/10.1002/sim.6635
    19 https://doi.org/10.1080/01621459.1990.10474925
    20 https://doi.org/10.1080/01621459.1990.10476213
    21 https://doi.org/10.1080/01621459.1992.10475214
    22 https://doi.org/10.1080/01621459.1994.10476871
    23 https://doi.org/10.1080/01621459.1995.10476629
    24 https://doi.org/10.1080/03610918508812457
    25 https://doi.org/10.1080/10807039.1999.9657762
    26 https://doi.org/10.1090/conm/112/1087101
    27 https://doi.org/10.1093/acprof:oso/9780195141566.001.0001
    28 https://doi.org/10.1093/aje/kwg091
    29 https://doi.org/10.1093/aje/kwg092
    30 https://doi.org/10.1093/aje/kwt198
    31 https://doi.org/10.1093/biomet/57.1.97
    32 https://doi.org/10.1093/biomet/69.2.331
    33 https://doi.org/10.1093/biostatistics/kxv048
    34 https://doi.org/10.1093/jnci/djr189
    35 https://doi.org/10.1093/oxfordjournals.aje.a115715
    36 https://doi.org/10.1097/01.hp.0000314761.98655.dd
    37 https://doi.org/10.1097/hp.0b013e3181adc3b1
    38 https://doi.org/10.1097/hp.0b013e31829f3096
    39 https://doi.org/10.1136/oem.55.10.651
    40 https://doi.org/10.1177/1536867x0300300406
    41 https://doi.org/10.1177/1536867x0300300407
    42 https://doi.org/10.1201/9781420010138
    43 https://doi.org/10.1289/ehp.1409149
    44 https://doi.org/10.1371/journal.pone.0085723
    45 https://doi.org/10.1371/journal.pone.0139826
    46 https://doi.org/10.1371/journal.pone.0174641
    47 https://doi.org/10.1371/journal.pone.0190792
    48 https://doi.org/10.1667/3046
    49 https://doi.org/10.1667/rr0677.1
    50 https://doi.org/10.1667/rr1059.1
    51 https://doi.org/10.1667/rr1063.1
    52 https://doi.org/10.1667/rr1091.1
    53 https://doi.org/10.1667/rr1231.1
    54 https://doi.org/10.1667/rr13413.1
    55 https://doi.org/10.1667/rr13729.1
    56 https://doi.org/10.1667/rr13791.1
    57 https://doi.org/10.1667/rr13794.1
    58 https://doi.org/10.2202/1557-4679.1281
    59 https://doi.org/10.2307/3577733
    60 https://doi.org/10.3109/10408444.2011.563420
    61 https://doi.org/10.7326/0003-4819-146-1-200701020-00004
    62 schema:datePublished 2019-12
    63 schema:datePublishedReg 2019-12-01
    64 schema:description BACKGROUND: Accurate exposure estimation in environmental epidemiological studies is crucial for health risk assessment. Failure to account for uncertainties in exposure estimation could lead to biased results in exposure-response analyses. Assessment of the effects of uncertainties in exposure estimation on risk estimates received a lot of attention in radiation epidemiology and in several studies of diet and air pollution. The objective of this narrative review is to examine the commonly used statistical approaches to account for exposure estimation errors in risk analyses and to suggest how each could be applied in environmental epidemiological studies. MAIN TEXT: We review two main error types in estimating exposures in epidemiological studies: shared and unshared errors and their subtypes. We describe the four main statistical approaches to adjust for exposure estimation uncertainties (regression calibration, simulation-extrapolation, Monte Carlo maximum likelihood and Bayesian model averaging) along with examples to give readers better understanding of their advantages and limitations. We also explain the advantages of using a 2-dimensional Monte-Carlo (2DMC) simulation method to quantify the effect of uncertainties in exposure estimates using full-likelihood methods. For exposures that are estimated independently between subjects and are more likely to introduce unshared errors, regression calibration and SIMEX methods are able to adequately account for exposure uncertainties in risk analyses. When an uncalibrated measuring device is used or estimation parameters with uncertain mean values are applied to a group of people, shared errors could potentially be large. In this case, Monte Carlo maximum likelihood and Bayesian model averaging methods based on estimates of exposure from the 2DMC simulations would work well. The majority of reviewed studies show relatively moderate changes (within 100%) in risk estimates after accounting for uncertainties in exposure estimates, except for the two studies which doubled/tripled naïve estimates. CONCLUSIONS: In this paper, we demonstrate various statistical methods to account for uncertain exposure estimates in risk analyses. The differences in the results of various adjustment methods could be due to various error structures in datasets and whether or not a proper statistical method was applied. Epidemiological studies of environmental exposures should include exposure-response analyses accounting for uncertainties in exposure estimates.
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree false
    68 schema:isPartOf N115c49fb072244ec87019ffbd5efe3cb
    69 N5ef1cd283da34e6699cc6006818bf635
    70 sg:journal.1327425
    71 schema:name Methods to account for uncertainties in exposure assessment in studies of environmental exposures.
    72 schema:pagination 31
    73 schema:productId N01427d47c6354bf8beef7face7a3b6b0
    74 N9c74cc54bd744ed1ac7c64f6ca14247d
    75 Na206d103deb846a8bd466ef484a7766f
    76 Nc56d220ec1f449b0adfa75150e54d392
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113300252
    78 https://doi.org/10.1186/s12940-019-0468-4
    79 schema:sdDatePublished 2019-04-15T08:58
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N8128d5cf7131412c949a1745c539064e
    82 schema:url https://ehjournal.biomedcentral.com/articles/10.1186/s12940-019-0468-4
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N01427d47c6354bf8beef7face7a3b6b0 schema:name pubmed_id
    87 schema:value 30961632
    88 rdf:type schema:PropertyValue
    89 N115c49fb072244ec87019ffbd5efe3cb schema:volumeNumber 18
    90 rdf:type schema:PublicationVolume
    91 N179d89c2e4b148268d8e4aa7426dd571 schema:affiliation https://www.grid.ac/institutes/grid.419791.3
    92 schema:familyName Kwon
    93 schema:givenName Deukwoo
    94 rdf:type schema:Person
    95 N17aedd7e5c5c455280dbad861c68e9fb schema:affiliation N3921bcf15996444ea81baccd331a7afe
    96 schema:familyName Hoffman
    97 schema:givenName F Owen
    98 rdf:type schema:Person
    99 N1a6d41a5db4a4209a676c059b6478d54 rdf:first N179d89c2e4b148268d8e4aa7426dd571
    100 rdf:rest N1ce0e2df5f37472fab5366071ec47db7
    101 N1b6e42dd19894845bb4e281330289ecf schema:affiliation Nd4fe0d28fd7247fcbec8a324e232463f
    102 schema:familyName Apostoaei
    103 schema:givenName A Iulian
    104 rdf:type schema:Person
    105 N1ce0e2df5f37472fab5366071ec47db7 rdf:first N559d1e3f4ef04f299956c16e4a04eabb
    106 rdf:rest N285a79274e104bb18705be9b493e46ba
    107 N1d4e2ace2b664088a5cc6ad48e1e2d4b rdf:first Nccd2e71c15a34a67bbf483bcdf4e3050
    108 rdf:rest rdf:nil
    109 N285a79274e104bb18705be9b493e46ba rdf:first Nc06d1e9302ea4fcdb16806f375eea8fd
    110 rdf:rest N1d4e2ace2b664088a5cc6ad48e1e2d4b
    111 N3921bcf15996444ea81baccd331a7afe schema:name Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA.
    112 rdf:type schema:Organization
    113 N559d1e3f4ef04f299956c16e4a04eabb schema:affiliation Nbbe41eb25ab941f4b2c70d8f6675232c
    114 schema:familyName Thomas
    115 schema:givenName Brian A
    116 rdf:type schema:Person
    117 N5ef1cd283da34e6699cc6006818bf635 schema:issueNumber 1
    118 rdf:type schema:PublicationIssue
    119 N7b800af9c2a842cd947c934139098e9a rdf:first N1b6e42dd19894845bb4e281330289ecf
    120 rdf:rest N1a6d41a5db4a4209a676c059b6478d54
    121 N7db1da1b16da4d0d8183817c1757907f rdf:first N17aedd7e5c5c455280dbad861c68e9fb
    122 rdf:rest N7b800af9c2a842cd947c934139098e9a
    123 N8128d5cf7131412c949a1745c539064e schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 N9c74cc54bd744ed1ac7c64f6ca14247d schema:name nlm_unique_id
    126 schema:value 101147645
    127 rdf:type schema:PropertyValue
    128 Na206d103deb846a8bd466ef484a7766f schema:name doi
    129 schema:value 10.1186/s12940-019-0468-4
    130 rdf:type schema:PropertyValue
    131 Nbbe41eb25ab941f4b2c70d8f6675232c schema:name Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA.
    132 rdf:type schema:Organization
    133 Nc06d1e9302ea4fcdb16806f375eea8fd schema:affiliation https://www.grid.ac/institutes/grid.266102.1
    134 schema:familyName Glass
    135 schema:givenName Racquel
    136 rdf:type schema:Person
    137 Nc56d220ec1f449b0adfa75150e54d392 schema:name dimensions_id
    138 schema:value pub.1113300252
    139 rdf:type schema:PropertyValue
    140 Nccd2e71c15a34a67bbf483bcdf4e3050 schema:affiliation https://www.grid.ac/institutes/grid.266102.1
    141 schema:familyName Zablotska
    142 schema:givenName Lydia B
    143 rdf:type schema:Person
    144 Nd0563994138f49e6bf66f84adfed733f schema:affiliation https://www.grid.ac/institutes/grid.417886.4
    145 schema:familyName Wu
    146 schema:givenName You
    147 rdf:type schema:Person
    148 Nd4fe0d28fd7247fcbec8a324e232463f schema:name Oak Ridge Center for Risk Analysis, Inc., 102 Donner Drive, Oak Ridge, TN, USA.
    149 rdf:type schema:Organization
    150 Ned1c2599ec55426fa98ae2587a1124f9 rdf:first Nd0563994138f49e6bf66f84adfed733f
    151 rdf:rest N7db1da1b16da4d0d8183817c1757907f
    152 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Mathematical Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Statistics
    157 rdf:type schema:DefinedTerm
    158 sg:grant.4897978 http://pending.schema.org/fundedItem sg:pub.10.1186/s12940-019-0468-4
    159 rdf:type schema:MonetaryGrant
    160 sg:journal.1327425 schema:issn 1476-069X
    161 schema:name Environmental Health
    162 rdf:type schema:Periodical
    163 sg:pub.10.1007/s00411-010-0337-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038695282
    164 https://doi.org/10.1007/s00411-010-0337-6
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00411-012-0410-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024867034
    167 https://doi.org/10.1007/s00411-012-0410-4
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00411-012-0441-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012313667
    170 https://doi.org/10.1007/s00411-012-0441-x
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00411-015-0594-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047853398
    173 https://doi.org/10.1007/s00411-015-0594-5
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s40572-017-0125-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074246656
    176 https://doi.org/10.1007/s40572-017-0125-4
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/ejcn.2009.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014355166
    179 https://doi.org/10.1038/ejcn.2009.80
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/sj.jea.7500332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025221636
    182 https://doi.org/10.1038/sj.jea.7500332
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1186/1471-2288-7-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035498473
    185 https://doi.org/10.1186/1471-2288-7-41
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1186/s12874-017-0421-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091862974
    188 https://doi.org/10.1186/s12874-017-0421-6
    189 rdf:type schema:CreativeWork
    190 https://app.dimensions.ai/details/publication/pub.1109390729 schema:CreativeWork
    191 https://doi.org/10.1002/bimj.201500238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048311762
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1002/ijc.27547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049951730
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1002/sim.4780080905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032437929
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/sim.6095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015838172
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1002/sim.6635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039920187
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1080/01621459.1990.10474925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303865
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1080/01621459.1990.10476213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303992
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1080/01621459.1992.10475214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304243
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1080/01621459.1994.10476871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304735
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1080/01621459.1995.10476629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304912
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1080/03610918508812457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033324505
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1080/10807039.1999.9657762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013004591
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1090/conm/112/1087101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089206777
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/acprof:oso/9780195141566.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098729253
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/aje/kwg091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023469652
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/aje/kwg092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052013407
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1093/aje/kwt198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048597465
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1093/biomet/69.2.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419184
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/biostatistics/kxv048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424727
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/jnci/djr189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031689138
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/oxfordjournals.aje.a115715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078785775
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1097/01.hp.0000314761.98655.dd schema:sameAs https://app.dimensions.ai/details/publication/pub.1051856454
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1097/hp.0b013e3181adc3b1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743866
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1097/hp.0b013e31829f3096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013224971
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1136/oem.55.10.651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039707870
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1177/1536867x0300300406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110073305
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1177/1536867x0300300407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110073306
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1201/9781420010138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109390729
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1289/ehp.1409149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031813241
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1371/journal.pone.0085723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002794829
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1371/journal.pone.0139826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287327
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1371/journal.pone.0174641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084509314
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1371/journal.pone.0190792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100857356
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1667/3046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068194944
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1667/rr0677.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038693885
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1667/rr1059.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068195151
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1667/rr1063.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068195154
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1667/rr1091.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029290583
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1667/rr1231.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045915235
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1667/rr13413.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026358284
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1667/rr13729.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008425321
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1667/rr13791.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004024006
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1667/rr13794.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053238396
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.2202/1557-4679.1281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053301531
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.2307/3577733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070380346
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.3109/10408444.2011.563420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024327443
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.7326/0003-4819-146-1-200701020-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073709022
    286 rdf:type schema:CreativeWork
    287 https://www.grid.ac/institutes/grid.266102.1 schema:alternateName University of California, San Francisco
    288 schema:name Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA.
    289 Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA. Lydia.Zablotska@ucsf.edu.
    290 rdf:type schema:Organization
    291 https://www.grid.ac/institutes/grid.417886.4 schema:alternateName Amgen (United States)
    292 schema:name Center for Design and Analysis, Amgen, Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
    293 Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, 2nd floor, Box 0560, San Francisco, CA, 94143, USA.
    294 rdf:type schema:Organization
    295 https://www.grid.ac/institutes/grid.419791.3 schema:alternateName Sylvester Comprehensive Cancer Center
    296 schema:name Sylvester Comprehensive Cancer Center, University of Miami, 1475 NW 12th Avenue, Miami, FL, USA.
    297 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...