Bayesian network-based framework for exposure-response study design and interpretation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Nur H. Orak, Mitchell J. Small, Marek J. Druzdzel

ABSTRACT

Conventional environmental-health risk-assessment methods are often limited in their ability to account for uncertainty in contaminant exposure, chemical toxicity and resulting human health risk. Exposure levels and toxicity are both subject to significant measurement errors, and many predicted risks are well below those distinguishable from background incident rates in target populations. To address these issues methods are needed to characterize uncertainties in observations and inferences, including the ability to interpret the influence of improved measurements and larger datasets. Here we develop a Bayesian network (BN) model to quantify the joint effects of measurement errors and different sample sizes on an illustrative exposure-response system. Categorical variables are included in the network to describe measurement accuracies, actual and measured exposures, actual and measured response, and the true strength of the exposure-response relationship. Network scenarios are developed by fixing combinations of the exposure-response strength of relationship (none, medium or strong) and the accuracy of exposure and response measurements (low, high, perfect). Multiple cases are simulated for each scenario, corresponding to a synthetic exposure response study sampled from the known scenario population. A learn-from-cases algorithm is then used to assimilate the synthetic observations into an uninformed prior network, yielding updated probabilities for the strength of relationship. Ten replicate studies are simulated for each scenario and sample size, and results are presented for individual trials and their mean prediction. The model as parameterized yields little-to-no convergence when low accuracy measurements are used, though progressively faster convergence when employing high accuracy or perfect measurements. The inferences from the model are particularly efficient when the true strength of relationship is none or strong with smaller sample sizes. The tool developed in this study can help in the screening and design of exposure-response studies to better anticipate where such outcomes can occur under different levels of measurement error. It may also serve to inform methods of analysis for other network models that consider multiple streams of evidence from multiple studies of cumulative exposure and effects. More... »

PAGES

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12940-019-0461-y

DOI

http://dx.doi.org/10.1186/s12940-019-0461-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112948968

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30902096


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duzce University", 
          "id": "https://www.grid.ac/institutes/grid.412121.5", 
          "name": [
            "Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA", 
            "Department of Environmental Engineering, Duzce University, Duzce, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orak", 
        "givenName": "Nur H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA", 
            "Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Small", 
        "givenName": "Mitchell J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bialystok University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.446127.2", 
          "name": [
            "School of Computing and Information Sciences, University of Pittsburgh, Pittsburgh, PA, USA", 
            "Faculty of Computer Science, Bialystok University of Technology, Bia\u0142ystok, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Druzdzel", 
        "givenName": "Marek J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01890546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000307885", 
          "https://doi.org/10.1007/bf01890546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01890546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000307885", 
          "https://doi.org/10.1007/bf01890546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1539-6924.2008.01134.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002261980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004816646", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2748-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004816646", 
          "https://doi.org/10.1007/978-1-4612-2748-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2748-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004816646", 
          "https://doi.org/10.1007/978-1-4612-2748-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2006.00787_8.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008447274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2010.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008618439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0381-6-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016250242", 
          "https://doi.org/10.1186/1756-0381-6-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1539-6924.2011.01667.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017696281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2015.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018919861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijar.2015.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019170186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2015.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020413357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10408444.2011.563420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024327443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-009-0325-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027517690", 
          "https://doi.org/10.1007/s10646-009-0325-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10646-009-0325-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027517690", 
          "https://doi.org/10.1007/s10646-009-0325-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0160-4120(99)00053-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028347531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2013.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032523662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwm165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033364676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1539-6924.2012.01888.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033446517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12874-016-0159-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033606227", 
          "https://doi.org/10.1186/s12874-016-0159-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1308062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035500879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203502761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037689386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280212441965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038033577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0962280212441965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038033577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfn255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038291421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2016.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040359728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2016.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040359728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2016.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040359728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2016.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040359728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041146877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041146877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x06-238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042291637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2015.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045535421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es981216s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055520870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es981216s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055520870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610926.2011.630769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058329685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2006.13.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7771/1932-6246.1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074046329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyx027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083932276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyx027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083932276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fct.2017.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084074353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.2017.303771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085471141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwx248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086005858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwx248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086005858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40572-017-0160-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092087975", 
          "https://doi.org/10.1007/s40572-017-0160-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610918.2017.1387664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092143931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03610918.2017.1387664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092143931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oemed-2017-104609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092464876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oemed-2017-104609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092464876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/978-1-59904-141-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096031640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109390729", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420010138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109390729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109503070", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109503070", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000340181.65092.ab", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112572494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000340181.65092.ab", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112572494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.ede.0000340181.65092.ab", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112572494"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Conventional environmental-health risk-assessment methods are often limited in their ability to account for uncertainty in contaminant exposure, chemical toxicity and resulting human health risk. Exposure levels and toxicity are both subject to significant measurement errors, and many predicted risks are well below those distinguishable from background incident rates in target populations. To address these issues methods are needed to characterize uncertainties in observations and inferences, including the ability to interpret the influence of improved measurements and larger datasets. Here we develop a Bayesian network (BN) model to quantify the joint effects of measurement errors and different sample sizes on an illustrative exposure-response system. Categorical variables are included in the network to describe measurement accuracies, actual and measured exposures, actual and measured response, and the true strength of the exposure-response relationship. Network scenarios are developed by fixing combinations of the exposure-response strength of relationship (none, medium or strong) and the accuracy of exposure and response measurements (low, high, perfect). Multiple cases are simulated for each scenario, corresponding to a synthetic exposure response study sampled from the known scenario population. A learn-from-cases algorithm is then used to assimilate the synthetic observations into an uninformed prior network, yielding updated probabilities for the strength of relationship. Ten replicate studies are simulated for each scenario and sample size, and results are presented for individual trials and their mean prediction. The model as parameterized yields little-to-no convergence when low accuracy measurements are used, though progressively faster convergence when employing high accuracy or perfect measurements. The inferences from the model are particularly efficient when the true strength of relationship is none or strong with smaller sample sizes. The tool developed in this study can help in the screening and design of exposure-response studies to better anticipate where such outcomes can occur under different levels of measurement error. It may also serve to inform methods of analysis for other network models that consider multiple streams of evidence from multiple studies of cumulative exposure and effects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12940-019-0461-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327425", 
        "issn": [
          "1476-069X"
        ], 
        "name": "Environmental Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Bayesian network-based framework for exposure-response study design and interpretation", 
    "pagination": "23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df4f7d8600c3c7a1ab7a63b58d9c90ef20d1301da386238585786b160932f350"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30902096"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147645"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12940-019-0461-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112948968"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12940-019-0461-y", 
      "https://app.dimensions.ai/details/publication/pub.1112948968"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117117_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12940-019-0461-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0461-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0461-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0461-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12940-019-0461-y'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12940-019-0461-y schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N3303821d529843e894104c59327d3174
4 schema:citation sg:pub.10.1007/978-1-4612-2748-9
5 sg:pub.10.1007/bf01890546
6 sg:pub.10.1007/s10646-009-0325-2
7 sg:pub.10.1007/s40572-017-0160-1
8 sg:pub.10.1186/1756-0381-6-6
9 sg:pub.10.1186/s12874-016-0159-6
10 https://app.dimensions.ai/details/publication/pub.1004816646
11 https://app.dimensions.ai/details/publication/pub.1109390729
12 https://app.dimensions.ai/details/publication/pub.1109503070
13 https://doi.org/10.1002/sim.2192
14 https://doi.org/10.1016/j.engappai.2010.06.002
15 https://doi.org/10.1016/j.envint.2015.03.013
16 https://doi.org/10.1016/j.envint.2015.09.008
17 https://doi.org/10.1016/j.envint.2016.12.005
18 https://doi.org/10.1016/j.fct.2017.03.012
19 https://doi.org/10.1016/j.ijar.2015.11.003
20 https://doi.org/10.1016/j.jenvman.2013.03.018
21 https://doi.org/10.1016/j.jenvman.2015.09.024
22 https://doi.org/10.1016/s0160-4120(99)00053-7
23 https://doi.org/10.1021/es981216s
24 https://doi.org/10.1080/03610918.2017.1387664
25 https://doi.org/10.1080/03610926.2011.630769
26 https://doi.org/10.1089/cmb.2006.13.165
27 https://doi.org/10.1093/aje/kwm165
28 https://doi.org/10.1093/aje/kwx248
29 https://doi.org/10.1093/ije/dyx027
30 https://doi.org/10.1093/toxsci/kfn255
31 https://doi.org/10.1097/01.ede.0000340181.65092.ab
32 https://doi.org/10.1111/j.1539-6924.2008.01134.x
33 https://doi.org/10.1111/j.1539-6924.2011.01667.x
34 https://doi.org/10.1111/j.1539-6924.2012.01888.x
35 https://doi.org/10.1111/j.1541-0420.2006.00787_8.x
36 https://doi.org/10.1136/oemed-2017-104609
37 https://doi.org/10.1139/x06-238
38 https://doi.org/10.1177/0962280212441965
39 https://doi.org/10.1201/9780203502761
40 https://doi.org/10.1201/9781420010138
41 https://doi.org/10.1289/ehp.1308062
42 https://doi.org/10.2105/ajph.2017.303771
43 https://doi.org/10.3109/10408444.2011.563420
44 https://doi.org/10.4018/978-1-59904-141-4
45 https://doi.org/10.7771/1932-6246.1167
46 schema:datePublished 2019-12
47 schema:datePublishedReg 2019-12-01
48 schema:description Conventional environmental-health risk-assessment methods are often limited in their ability to account for uncertainty in contaminant exposure, chemical toxicity and resulting human health risk. Exposure levels and toxicity are both subject to significant measurement errors, and many predicted risks are well below those distinguishable from background incident rates in target populations. To address these issues methods are needed to characterize uncertainties in observations and inferences, including the ability to interpret the influence of improved measurements and larger datasets. Here we develop a Bayesian network (BN) model to quantify the joint effects of measurement errors and different sample sizes on an illustrative exposure-response system. Categorical variables are included in the network to describe measurement accuracies, actual and measured exposures, actual and measured response, and the true strength of the exposure-response relationship. Network scenarios are developed by fixing combinations of the exposure-response strength of relationship (none, medium or strong) and the accuracy of exposure and response measurements (low, high, perfect). Multiple cases are simulated for each scenario, corresponding to a synthetic exposure response study sampled from the known scenario population. A learn-from-cases algorithm is then used to assimilate the synthetic observations into an uninformed prior network, yielding updated probabilities for the strength of relationship. Ten replicate studies are simulated for each scenario and sample size, and results are presented for individual trials and their mean prediction. The model as parameterized yields little-to-no convergence when low accuracy measurements are used, though progressively faster convergence when employing high accuracy or perfect measurements. The inferences from the model are particularly efficient when the true strength of relationship is none or strong with smaller sample sizes. The tool developed in this study can help in the screening and design of exposure-response studies to better anticipate where such outcomes can occur under different levels of measurement error. It may also serve to inform methods of analysis for other network models that consider multiple streams of evidence from multiple studies of cumulative exposure and effects.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N3ff76e05565441cb93a6021094fafec3
53 N8d8defb9392f472eb88a10347be6b232
54 sg:journal.1327425
55 schema:name Bayesian network-based framework for exposure-response study design and interpretation
56 schema:pagination 23
57 schema:productId N0e53ecee634a44b68f80edc6895b03ea
58 N81dd048839bf42f88acaca78f2625922
59 N96dc4f8957564543a18b0298dcf8b3df
60 Nf18ea62b85d3422b98e10310c2f3e5ab
61 Nf1a2027a1209492189de7d73c0d4be27
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112948968
63 https://doi.org/10.1186/s12940-019-0461-y
64 schema:sdDatePublished 2019-04-11T14:19
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ndc30487952e241929d8d906be0cd468c
67 schema:url https://link.springer.com/10.1186%2Fs12940-019-0461-y
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0e53ecee634a44b68f80edc6895b03ea schema:name dimensions_id
72 schema:value pub.1112948968
73 rdf:type schema:PropertyValue
74 N1fd73ae909f64949a61ebe92064e420c rdf:first N612c320ad2154325925b1e15b51b910c
75 rdf:rest rdf:nil
76 N3303821d529843e894104c59327d3174 rdf:first Nbce3548b052f49cfa895b51b3283238e
77 rdf:rest N4c78767c7af04d17b3526a2c06366265
78 N3ff76e05565441cb93a6021094fafec3 schema:volumeNumber 18
79 rdf:type schema:PublicationVolume
80 N4c78767c7af04d17b3526a2c06366265 rdf:first N6ed3d4ff09d94fb4bd42b3a534aa1fee
81 rdf:rest N1fd73ae909f64949a61ebe92064e420c
82 N612c320ad2154325925b1e15b51b910c schema:affiliation https://www.grid.ac/institutes/grid.446127.2
83 schema:familyName Druzdzel
84 schema:givenName Marek J.
85 rdf:type schema:Person
86 N6ed3d4ff09d94fb4bd42b3a534aa1fee schema:affiliation https://www.grid.ac/institutes/grid.147455.6
87 schema:familyName Small
88 schema:givenName Mitchell J.
89 rdf:type schema:Person
90 N81dd048839bf42f88acaca78f2625922 schema:name readcube_id
91 schema:value df4f7d8600c3c7a1ab7a63b58d9c90ef20d1301da386238585786b160932f350
92 rdf:type schema:PropertyValue
93 N8d8defb9392f472eb88a10347be6b232 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N96dc4f8957564543a18b0298dcf8b3df schema:name doi
96 schema:value 10.1186/s12940-019-0461-y
97 rdf:type schema:PropertyValue
98 Nbce3548b052f49cfa895b51b3283238e schema:affiliation https://www.grid.ac/institutes/grid.412121.5
99 schema:familyName Orak
100 schema:givenName Nur H.
101 rdf:type schema:Person
102 Ndc30487952e241929d8d906be0cd468c schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nf18ea62b85d3422b98e10310c2f3e5ab schema:name nlm_unique_id
105 schema:value 101147645
106 rdf:type schema:PropertyValue
107 Nf1a2027a1209492189de7d73c0d4be27 schema:name pubmed_id
108 schema:value 30902096
109 rdf:type schema:PropertyValue
110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
111 schema:name Medical and Health Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
114 schema:name Public Health and Health Services
115 rdf:type schema:DefinedTerm
116 sg:journal.1327425 schema:issn 1476-069X
117 schema:name Environmental Health
118 rdf:type schema:Periodical
119 sg:pub.10.1007/978-1-4612-2748-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004816646
120 https://doi.org/10.1007/978-1-4612-2748-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01890546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000307885
123 https://doi.org/10.1007/bf01890546
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10646-009-0325-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027517690
126 https://doi.org/10.1007/s10646-009-0325-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s40572-017-0160-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092087975
129 https://doi.org/10.1007/s40572-017-0160-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1186/1756-0381-6-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016250242
132 https://doi.org/10.1186/1756-0381-6-6
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/s12874-016-0159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033606227
135 https://doi.org/10.1186/s12874-016-0159-6
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1004816646 schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1109390729 schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1109503070 schema:CreativeWork
140 https://doi.org/10.1002/sim.2192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041146877
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.engappai.2010.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008618439
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.envint.2015.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018919861
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.envint.2015.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045535421
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.envint.2016.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040359728
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.fct.2017.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084074353
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ijar.2015.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019170186
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jenvman.2013.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032523662
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jenvman.2015.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020413357
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0160-4120(99)00053-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028347531
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/es981216s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055520870
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/03610918.2017.1387664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092143931
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/03610926.2011.630769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058329685
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1089/cmb.2006.13.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245459
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/aje/kwm165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033364676
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/aje/kwx248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086005858
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/ije/dyx027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083932276
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/toxsci/kfn255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038291421
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1097/01.ede.0000340181.65092.ab schema:sameAs https://app.dimensions.ai/details/publication/pub.1112572494
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1539-6924.2008.01134.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002261980
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/j.1539-6924.2011.01667.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017696281
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/j.1539-6924.2012.01888.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033446517
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1541-0420.2006.00787_8.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008447274
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1136/oemed-2017-104609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092464876
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1139/x06-238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042291637
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1177/0962280212441965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038033577
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1201/9780203502761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037689386
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1201/9781420010138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109390729
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1289/ehp.1308062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035500879
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2105/ajph.2017.303771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085471141
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3109/10408444.2011.563420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024327443
201 rdf:type schema:CreativeWork
202 https://doi.org/10.4018/978-1-59904-141-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096031640
203 rdf:type schema:CreativeWork
204 https://doi.org/10.7771/1932-6246.1167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074046329
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
207 schema:name Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
208 Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.412121.5 schema:alternateName Duzce University
211 schema:name Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
212 Department of Environmental Engineering, Duzce University, Duzce, Turkey
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.446127.2 schema:alternateName Bialystok University of Technology
215 schema:name Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland
216 School of Computing and Information Sciences, University of Pittsburgh, Pittsburgh, PA, USA
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...