Air pollution in the week prior to delivery and preterm birth in 24 Canadian cities: a time to event analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

David M. Stieb, Eric Lavigne, Li Chen, Lauren Pinault, Antonio Gasparrini, Michael Tjepkema

ABSTRACT

BACKGROUND: Numerous studies have examined the association between air pollution and preterm birth (< 37 weeks gestation) but findings have been inconsistent. These associations may be more difficult to detect than associations with other adverse birth outcomes because of the different duration of exposure in preterm vs. term births, and the existence of seasonal cycles in incidence of preterm birth. METHODS: We analyzed data pertaining to 1,001,700 singleton births occurring between 1999 and 2008 in 24 Canadian cities where daily air pollution data were available from government monitoring sites. In the first stage, data were analyzed in each city employing Cox proportional hazards models using gestational age in days as the time scale, obtaining city-specific hazard ratios (HRs) with their 95% confidence intervals (CIs) expressed per interquartile range (IQR) of each air pollutant. Effects were examined using distributed lag functions for lags of 0-6 days prior to delivery, as well as cumulative lags from two to six days. We accounted for the potential nonlinear effect of daily mean ambient temperature using a cubic B-spline with three internal knots. In the second stage, we pooled the estimated city-specific hazard ratios using a random effects model. RESULTS: Pooled estimates across 24 cities indicated that an IQR increase in ozone (O3, 13.3 ppb) 0-3 days prior to delivery was associated with a hazard ratio of 1.036 (95% CI 1.005, 1.067) for preterm birth, adjusting for infant sex, maternal age, marital status and country of birth, neighbourhood socioeconomic status (SES) and visible minority, temperature, year and season of birth, and a natural spline function of day of year. There was some evidence of effect modification by gestational age and season. Associations with carbon monoxide, nitrogen dioxide, particulate matter, and sulphur dioxide were inconsistent. CONCLUSIONS: We observed associations between daily O3 in the week before delivery and preterm birth in an analysis of approximately 1 million births in 24 Canadian cities between 1999 and 2008. Our analysis is one of a limited number which have examined these short term associations employing Cox proportional hazards models to account for the different exposure durations of preterm vs. term births. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8

DOI

http://dx.doi.org/10.1186/s12940-018-0440-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111097093

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30606207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "Environmental Health Science and Research Bureau, Health Canada, 101 Tunney\u2019s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada", 
            "School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stieb", 
        "givenName": "David M.", 
        "id": "sg:person.01017471715.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017471715.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Canada", 
          "id": "https://www.grid.ac/institutes/grid.57544.37", 
          "name": [
            "School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada", 
            "Water and Air Quality Bureau, Health Canada, 269 Laurier Avenue W, K1A 0K9, Mail Stop 4903B, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavigne", 
        "givenName": "Eric", 
        "id": "sg:person.0740222044.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740222044.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Canada", 
          "id": "https://www.grid.ac/institutes/grid.57544.37", 
          "name": [
            "Environmental Health Science and Research Bureau, Health Canada, 101 Tunney\u2019s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li", 
        "id": "sg:person.01152716445.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152716445.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Statistics Canada", 
          "id": "https://www.grid.ac/institutes/grid.413850.b", 
          "name": [
            "Health Analysis Division, Statistics Canada, 100 Tunney\u2019s Pasture Driveway, K1A 0T6, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinault", 
        "givenName": "Lauren", 
        "id": "sg:person.0600131473.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600131473.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, Room 213, 15-17 Tavistock Place, WC1H 9SH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gasparrini", 
        "givenName": "Antonio", 
        "id": "sg:person.01221570054.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221570054.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Statistics Canada", 
          "id": "https://www.grid.ac/institutes/grid.413850.b", 
          "name": [
            "Health Analysis Division, Statistics Canada, 100 Tunney\u2019s Pasture Driveway, K1A 0T6, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tjepkema", 
        "givenName": "Michael", 
        "id": "sg:person.01030203522.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030203522.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1289/ehp.7646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/rep-16-0453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002446668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2012.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003883925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.5963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010172683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jri.2016.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010876395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1205575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013159979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2013.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014417794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12884-015-0738-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014780214", 
          "https://doi.org/10.1186/s12884-015-0738-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1408995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019734981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024200910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2015.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027231569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-010-0106-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027741908", 
          "https://doi.org/10.1007/s11869-010-0106-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-010-0106-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027741908", 
          "https://doi.org/10.1007/s11869-010-0106-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2012.01774.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028906149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2007.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032691007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036346194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2014.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039831592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1510266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040729243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/901017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041898272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-014-3458-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043670493", 
          "https://doi.org/10.1007/s11356-014-3458-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2016.08.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045623313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a66e96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a66e96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a66e96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1104049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046442577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a7128f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051239804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a7128f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051239804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a7128f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051239804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1307456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053332830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kww141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059381312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxu060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059424687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.00108419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v043.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5620/eht.e2015011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073055273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm-2016-0250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083533539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083762958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083762958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aji.12653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084209695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2017.03.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085091901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-9363-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086035801", 
          "https://doi.org/10.1007/s11356-017-9363-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-9363-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086035801", 
          "https://doi.org/10.1007/s11356-017-9363-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.2017-1881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092595182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-0692-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099696117", 
          "https://doi.org/10.1007/s11356-017-0692-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105982177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105982177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2018.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107086888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2018.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107086888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Numerous studies have examined the association between air pollution and preterm birth (<\u200937\u2009weeks gestation) but findings have been inconsistent. These associations may be more difficult to detect than associations with other adverse birth outcomes because of the different duration of exposure in preterm vs. term births, and the existence of seasonal cycles in incidence of preterm birth.\nMETHODS: We analyzed data pertaining to 1,001,700 singleton births occurring between 1999 and 2008 in 24 Canadian cities where daily air pollution data were available from government monitoring sites. In the first stage, data were analyzed in each city employing Cox proportional hazards models using gestational age in days as the time scale, obtaining city-specific hazard ratios (HRs) with their 95% confidence intervals (CIs) expressed per interquartile range (IQR) of each air pollutant. Effects were examined using distributed lag functions for lags of 0-6\u2009days prior to delivery, as well as cumulative lags from two to six days. We accounted for the potential nonlinear effect of daily mean ambient temperature using a cubic B-spline with three internal knots. In the second stage, we pooled the estimated city-specific hazard ratios using a random effects model.\nRESULTS: Pooled estimates across 24 cities indicated that an IQR increase in ozone (O3, 13.3\u2009ppb) 0-3\u2009days prior to delivery was associated with a hazard ratio of 1.036 (95% CI 1.005, 1.067) for preterm birth, adjusting for infant sex, maternal age, marital status and country of birth, neighbourhood socioeconomic status (SES) and visible minority, temperature, year and season of birth, and a natural spline function of day of year. There was some evidence of effect modification by gestational age and season. Associations with carbon monoxide, nitrogen dioxide, particulate matter, and sulphur dioxide were inconsistent.\nCONCLUSIONS: We observed associations between daily O3 in the week before delivery and preterm birth in an analysis of approximately 1 million births in 24 Canadian cities between 1999 and 2008.\u00a0Our analysis is one of a limited number which have examined these short term associations employing Cox proportional hazards models to account for the different exposure durations of preterm vs. term births.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12940-018-0440-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327425", 
        "issn": [
          "1476-069X"
        ], 
        "name": "Environmental Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Air pollution in the week prior to delivery and preterm birth in 24 Canadian cities: a time to event analysis", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7769ba55c37576d851b802b49ca7a45c4d9305b1a42e05575bdaa47ef989d861"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30606207"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147645"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12940-018-0440-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111097093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12940-018-0440-8", 
      "https://app.dimensions.ai/details/publication/pub.1111097093"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55835_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12940-018-0440-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12940-018-0440-8 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Ndff4afd4e3594a68bd29330de2719fde
4 schema:citation sg:pub.10.1007/s11356-014-3458-7
5 sg:pub.10.1007/s11356-017-0692-9
6 sg:pub.10.1007/s11356-017-9363-0
7 sg:pub.10.1007/s11869-010-0106-3
8 sg:pub.10.1186/s12884-015-0738-2
9 https://doi.org/10.1002/sim.5963
10 https://doi.org/10.1016/0197-2456(86)90046-2
11 https://doi.org/10.1016/j.envint.2013.09.005
12 https://doi.org/10.1016/j.envint.2015.12.013
13 https://doi.org/10.1016/j.envint.2017.01.023
14 https://doi.org/10.1016/j.envint.2018.09.021
15 https://doi.org/10.1016/j.envpol.2016.08.069
16 https://doi.org/10.1016/j.envpol.2017.03.055
17 https://doi.org/10.1016/j.envres.2007.10.003
18 https://doi.org/10.1016/j.envres.2012.05.007
19 https://doi.org/10.1016/j.envres.2014.09.014
20 https://doi.org/10.1016/j.envres.2016.04.025
21 https://doi.org/10.1016/j.envres.2016.04.026
22 https://doi.org/10.1016/j.jri.2016.11.008
23 https://doi.org/10.1093/aje/kwq327
24 https://doi.org/10.1093/aje/kww141
25 https://doi.org/10.1093/biostatistics/kxu060
26 https://doi.org/10.1097/ede.0000000000000573
27 https://doi.org/10.1097/ede.0b013e3181a66e96
28 https://doi.org/10.1097/ede.0b013e3181a7128f
29 https://doi.org/10.1111/aji.12653
30 https://doi.org/10.1111/j.1541-0420.2012.01774.x
31 https://doi.org/10.1155/2014/901017
32 https://doi.org/10.1289/ehp.00108419
33 https://doi.org/10.1289/ehp.1104049
34 https://doi.org/10.1289/ehp.1205575
35 https://doi.org/10.1289/ehp.1307456
36 https://doi.org/10.1289/ehp.1408995
37 https://doi.org/10.1289/ehp.1510266
38 https://doi.org/10.1289/ehp.7646
39 https://doi.org/10.1289/ehp2535
40 https://doi.org/10.1530/rep-16-0453
41 https://doi.org/10.1542/peds.2017-1881
42 https://doi.org/10.18637/jss.v043.i08
43 https://doi.org/10.2217/bmm-2016-0250
44 https://doi.org/10.5620/eht.e2015011
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description BACKGROUND: Numerous studies have examined the association between air pollution and preterm birth (< 37 weeks gestation) but findings have been inconsistent. These associations may be more difficult to detect than associations with other adverse birth outcomes because of the different duration of exposure in preterm vs. term births, and the existence of seasonal cycles in incidence of preterm birth. METHODS: We analyzed data pertaining to 1,001,700 singleton births occurring between 1999 and 2008 in 24 Canadian cities where daily air pollution data were available from government monitoring sites. In the first stage, data were analyzed in each city employing Cox proportional hazards models using gestational age in days as the time scale, obtaining city-specific hazard ratios (HRs) with their 95% confidence intervals (CIs) expressed per interquartile range (IQR) of each air pollutant. Effects were examined using distributed lag functions for lags of 0-6 days prior to delivery, as well as cumulative lags from two to six days. We accounted for the potential nonlinear effect of daily mean ambient temperature using a cubic B-spline with three internal knots. In the second stage, we pooled the estimated city-specific hazard ratios using a random effects model. RESULTS: Pooled estimates across 24 cities indicated that an IQR increase in ozone (O3, 13.3 ppb) 0-3 days prior to delivery was associated with a hazard ratio of 1.036 (95% CI 1.005, 1.067) for preterm birth, adjusting for infant sex, maternal age, marital status and country of birth, neighbourhood socioeconomic status (SES) and visible minority, temperature, year and season of birth, and a natural spline function of day of year. There was some evidence of effect modification by gestational age and season. Associations with carbon monoxide, nitrogen dioxide, particulate matter, and sulphur dioxide were inconsistent. CONCLUSIONS: We observed associations between daily O3 in the week before delivery and preterm birth in an analysis of approximately 1 million births in 24 Canadian cities between 1999 and 2008. Our analysis is one of a limited number which have examined these short term associations employing Cox proportional hazards models to account for the different exposure durations of preterm vs. term births.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf Nf4d89d375ef84e4e920bdbe3e81b7240
52 Nf5bf17c9754d44349baee9efa7f1f826
53 sg:journal.1327425
54 schema:name Air pollution in the week prior to delivery and preterm birth in 24 Canadian cities: a time to event analysis
55 schema:pagination 1
56 schema:productId N2410298be3b5481d8a59e2459dcf5073
57 N28e3adaa8f1a42fc922e29c5c82d04bd
58 N2eb48678d3f7400e95f8aa710f52353d
59 N48fb09ecf6624f9397622427813eb216
60 N4c3c4783b43e4268b30f83d80bf1109d
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111097093
62 https://doi.org/10.1186/s12940-018-0440-8
63 schema:sdDatePublished 2019-04-11T08:36
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Na7c30ee0e2904faaa4a61ffa6c7d1e44
66 schema:url https://link.springer.com/10.1186%2Fs12940-018-0440-8
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N1d078191415344679db535a81234466a rdf:first sg:person.0740222044.60
71 rdf:rest N7fe0827c8ca1439bb1e301c36f6225ed
72 N2410298be3b5481d8a59e2459dcf5073 schema:name dimensions_id
73 schema:value pub.1111097093
74 rdf:type schema:PropertyValue
75 N28e3adaa8f1a42fc922e29c5c82d04bd schema:name nlm_unique_id
76 schema:value 101147645
77 rdf:type schema:PropertyValue
78 N2eb48678d3f7400e95f8aa710f52353d schema:name doi
79 schema:value 10.1186/s12940-018-0440-8
80 rdf:type schema:PropertyValue
81 N48fb09ecf6624f9397622427813eb216 schema:name readcube_id
82 schema:value 7769ba55c37576d851b802b49ca7a45c4d9305b1a42e05575bdaa47ef989d861
83 rdf:type schema:PropertyValue
84 N4c3c4783b43e4268b30f83d80bf1109d schema:name pubmed_id
85 schema:value 30606207
86 rdf:type schema:PropertyValue
87 N607feffd94e54c92a30ba50f65336c8d rdf:first sg:person.0600131473.87
88 rdf:rest Ne0de6c12ae494111b4871c9c62dd7352
89 N68d0b9e484f046469385cc6839d551a3 rdf:first sg:person.01030203522.07
90 rdf:rest rdf:nil
91 N7fe0827c8ca1439bb1e301c36f6225ed rdf:first sg:person.01152716445.59
92 rdf:rest N607feffd94e54c92a30ba50f65336c8d
93 Na7c30ee0e2904faaa4a61ffa6c7d1e44 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ndff4afd4e3594a68bd29330de2719fde rdf:first sg:person.01017471715.10
96 rdf:rest N1d078191415344679db535a81234466a
97 Ne0de6c12ae494111b4871c9c62dd7352 rdf:first sg:person.01221570054.38
98 rdf:rest N68d0b9e484f046469385cc6839d551a3
99 Nf4d89d375ef84e4e920bdbe3e81b7240 schema:volumeNumber 18
100 rdf:type schema:PublicationVolume
101 Nf5bf17c9754d44349baee9efa7f1f826 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
107 schema:name Public Health and Health Services
108 rdf:type schema:DefinedTerm
109 sg:journal.1327425 schema:issn 1476-069X
110 schema:name Environmental Health
111 rdf:type schema:Periodical
112 sg:person.01017471715.10 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
113 schema:familyName Stieb
114 schema:givenName David M.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017471715.10
116 rdf:type schema:Person
117 sg:person.01030203522.07 schema:affiliation https://www.grid.ac/institutes/grid.413850.b
118 schema:familyName Tjepkema
119 schema:givenName Michael
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030203522.07
121 rdf:type schema:Person
122 sg:person.01152716445.59 schema:affiliation https://www.grid.ac/institutes/grid.57544.37
123 schema:familyName Chen
124 schema:givenName Li
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152716445.59
126 rdf:type schema:Person
127 sg:person.01221570054.38 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
128 schema:familyName Gasparrini
129 schema:givenName Antonio
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221570054.38
131 rdf:type schema:Person
132 sg:person.0600131473.87 schema:affiliation https://www.grid.ac/institutes/grid.413850.b
133 schema:familyName Pinault
134 schema:givenName Lauren
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600131473.87
136 rdf:type schema:Person
137 sg:person.0740222044.60 schema:affiliation https://www.grid.ac/institutes/grid.57544.37
138 schema:familyName Lavigne
139 schema:givenName Eric
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740222044.60
141 rdf:type schema:Person
142 sg:pub.10.1007/s11356-014-3458-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043670493
143 https://doi.org/10.1007/s11356-014-3458-7
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11356-017-0692-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696117
146 https://doi.org/10.1007/s11356-017-0692-9
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11356-017-9363-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086035801
149 https://doi.org/10.1007/s11356-017-9363-0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11869-010-0106-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027741908
152 https://doi.org/10.1007/s11869-010-0106-3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/s12884-015-0738-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014780214
155 https://doi.org/10.1186/s12884-015-0738-2
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/sim.5963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010172683
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0197-2456(86)90046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034546744
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.envint.2013.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014417794
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.envint.2015.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027231569
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.envint.2017.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083762958
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.envint.2018.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107086888
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.envpol.2016.08.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045623313
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.envpol.2017.03.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085091901
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.envres.2007.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032691007
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.envres.2012.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003883925
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.envres.2014.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039831592
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.envres.2016.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024200910
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.envres.2016.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036346194
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jri.2016.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010876395
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/aje/kwq327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645311
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/aje/kww141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059381312
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/biostatistics/kxu060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424687
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/ede.0000000000000573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050986294
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/ede.0b013e3181a66e96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045939301
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1097/ede.0b013e3181a7128f schema:sameAs https://app.dimensions.ai/details/publication/pub.1051239804
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/aji.12653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084209695
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1541-0420.2012.01774.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028906149
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1155/2014/901017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041898272
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1289/ehp.00108419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737032
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1289/ehp.1104049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046442577
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1289/ehp.1205575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013159979
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1289/ehp.1307456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053332830
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1289/ehp.1408995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019734981
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1289/ehp.1510266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040729243
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1289/ehp.7646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131708
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1289/ehp2535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105982177
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1530/rep-16-0453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002446668
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1542/peds.2017-1881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092595182
222 rdf:type schema:CreativeWork
223 https://doi.org/10.18637/jss.v043.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672651
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2217/bmm-2016-0250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083533539
226 rdf:type schema:CreativeWork
227 https://doi.org/10.5620/eht.e2015011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073055273
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
230 schema:name Environmental Health Science and Research Bureau, Health Canada, 101 Tunney’s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada
231 School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.413850.b schema:alternateName Statistics Canada
234 schema:name Health Analysis Division, Statistics Canada, 100 Tunney’s Pasture Driveway, K1A 0T6, Ottawa, ON, Canada
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.57544.37 schema:alternateName Health Canada
237 schema:name Environmental Health Science and Research Bureau, Health Canada, 101 Tunney’s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada
238 School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada
239 Water and Air Quality Bureau, Health Canada, 269 Laurier Avenue W, K1A 0K9, Mail Stop 4903B, Ottawa, ON, Canada
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
242 schema:name Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, Room 213, 15-17 Tavistock Place, WC1H 9SH, London, UK
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...