Air pollution in the week prior to delivery and preterm birth in 24 Canadian cities: a time to event analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

David M. Stieb, Eric Lavigne, Li Chen, Lauren Pinault, Antonio Gasparrini, Michael Tjepkema

ABSTRACT

BACKGROUND: Numerous studies have examined the association between air pollution and preterm birth (< 37 weeks gestation) but findings have been inconsistent. These associations may be more difficult to detect than associations with other adverse birth outcomes because of the different duration of exposure in preterm vs. term births, and the existence of seasonal cycles in incidence of preterm birth. METHODS: We analyzed data pertaining to 1,001,700 singleton births occurring between 1999 and 2008 in 24 Canadian cities where daily air pollution data were available from government monitoring sites. In the first stage, data were analyzed in each city employing Cox proportional hazards models using gestational age in days as the time scale, obtaining city-specific hazard ratios (HRs) with their 95% confidence intervals (CIs) expressed per interquartile range (IQR) of each air pollutant. Effects were examined using distributed lag functions for lags of 0-6 days prior to delivery, as well as cumulative lags from two to six days. We accounted for the potential nonlinear effect of daily mean ambient temperature using a cubic B-spline with three internal knots. In the second stage, we pooled the estimated city-specific hazard ratios using a random effects model. RESULTS: Pooled estimates across 24 cities indicated that an IQR increase in ozone (O3, 13.3 ppb) 0-3 days prior to delivery was associated with a hazard ratio of 1.036 (95% CI 1.005, 1.067) for preterm birth, adjusting for infant sex, maternal age, marital status and country of birth, neighbourhood socioeconomic status (SES) and visible minority, temperature, year and season of birth, and a natural spline function of day of year. There was some evidence of effect modification by gestational age and season. Associations with carbon monoxide, nitrogen dioxide, particulate matter, and sulphur dioxide were inconsistent. CONCLUSIONS: We observed associations between daily O3 in the week before delivery and preterm birth in an analysis of approximately 1 million births in 24 Canadian cities between 1999 and 2008. Our analysis is one of a limited number which have examined these short term associations employing Cox proportional hazards models to account for the different exposure durations of preterm vs. term births. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8

DOI

http://dx.doi.org/10.1186/s12940-018-0440-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111097093

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30606207


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "Environmental Health Science and Research Bureau, Health Canada, 101 Tunney\u2019s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada", 
            "School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stieb", 
        "givenName": "David M.", 
        "id": "sg:person.01017471715.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017471715.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Canada", 
          "id": "https://www.grid.ac/institutes/grid.57544.37", 
          "name": [
            "School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada", 
            "Water and Air Quality Bureau, Health Canada, 269 Laurier Avenue W, K1A 0K9, Mail Stop 4903B, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavigne", 
        "givenName": "Eric", 
        "id": "sg:person.0740222044.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740222044.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Canada", 
          "id": "https://www.grid.ac/institutes/grid.57544.37", 
          "name": [
            "Environmental Health Science and Research Bureau, Health Canada, 101 Tunney\u2019s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li", 
        "id": "sg:person.01152716445.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152716445.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Statistics Canada", 
          "id": "https://www.grid.ac/institutes/grid.413850.b", 
          "name": [
            "Health Analysis Division, Statistics Canada, 100 Tunney\u2019s Pasture Driveway, K1A 0T6, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinault", 
        "givenName": "Lauren", 
        "id": "sg:person.0600131473.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600131473.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, Room 213, 15-17 Tavistock Place, WC1H 9SH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gasparrini", 
        "givenName": "Antonio", 
        "id": "sg:person.01221570054.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221570054.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Statistics Canada", 
          "id": "https://www.grid.ac/institutes/grid.413850.b", 
          "name": [
            "Health Analysis Division, Statistics Canada, 100 Tunney\u2019s Pasture Driveway, K1A 0T6, Ottawa, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tjepkema", 
        "givenName": "Michael", 
        "id": "sg:person.01030203522.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030203522.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1289/ehp.7646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001131708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/rep-16-0453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002446668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2012.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003883925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.5963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010172683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jri.2016.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010876395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1205575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013159979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2013.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014417794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12884-015-0738-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014780214", 
          "https://doi.org/10.1186/s12884-015-0738-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1408995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019734981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024200910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2015.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027231569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-010-0106-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027741908", 
          "https://doi.org/10.1007/s11869-010-0106-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11869-010-0106-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027741908", 
          "https://doi.org/10.1007/s11869-010-0106-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2012.01774.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028906149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2007.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032691007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-2456(86)90046-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034546744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036346194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2014.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039831592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1510266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040729243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/901017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041898272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-014-3458-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043670493", 
          "https://doi.org/10.1007/s11356-014-3458-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2016.08.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045623313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a66e96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a66e96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a66e96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045939301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1104049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046442577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0000000000000573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050986294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a7128f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051239804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a7128f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051239804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ede.0b013e3181a7128f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051239804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwq327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1307456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053332830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kww141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059381312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxu060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059424687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.00108419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064737032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v043.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5620/eht.e2015011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073055273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/bmm-2016-0250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083533539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083762958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2017.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083762958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aji.12653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084209695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2017.03.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085091901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-9363-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086035801", 
          "https://doi.org/10.1007/s11356-017-9363-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-9363-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086035801", 
          "https://doi.org/10.1007/s11356-017-9363-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.2017-1881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092595182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-017-0692-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099696117", 
          "https://doi.org/10.1007/s11356-017-0692-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105982177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp2535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105982177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2018.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107086888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2018.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107086888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Numerous studies have examined the association between air pollution and preterm birth (<\u200937\u2009weeks gestation) but findings have been inconsistent. These associations may be more difficult to detect than associations with other adverse birth outcomes because of the different duration of exposure in preterm vs. term births, and the existence of seasonal cycles in incidence of preterm birth.\nMETHODS: We analyzed data pertaining to 1,001,700 singleton births occurring between 1999 and 2008 in 24 Canadian cities where daily air pollution data were available from government monitoring sites. In the first stage, data were analyzed in each city employing Cox proportional hazards models using gestational age in days as the time scale, obtaining city-specific hazard ratios (HRs) with their 95% confidence intervals (CIs) expressed per interquartile range (IQR) of each air pollutant. Effects were examined using distributed lag functions for lags of 0-6\u2009days prior to delivery, as well as cumulative lags from two to six days. We accounted for the potential nonlinear effect of daily mean ambient temperature using a cubic B-spline with three internal knots. In the second stage, we pooled the estimated city-specific hazard ratios using a random effects model.\nRESULTS: Pooled estimates across 24 cities indicated that an IQR increase in ozone (O3, 13.3\u2009ppb) 0-3\u2009days prior to delivery was associated with a hazard ratio of 1.036 (95% CI 1.005, 1.067) for preterm birth, adjusting for infant sex, maternal age, marital status and country of birth, neighbourhood socioeconomic status (SES) and visible minority, temperature, year and season of birth, and a natural spline function of day of year. There was some evidence of effect modification by gestational age and season. Associations with carbon monoxide, nitrogen dioxide, particulate matter, and sulphur dioxide were inconsistent.\nCONCLUSIONS: We observed associations between daily O3 in the week before delivery and preterm birth in an analysis of approximately 1 million births in 24 Canadian cities between 1999 and 2008.\u00a0Our analysis is one of a limited number which have examined these short term associations employing Cox proportional hazards models to account for the different exposure durations of preterm vs. term births.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12940-018-0440-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327425", 
        "issn": [
          "1476-069X"
        ], 
        "name": "Environmental Health", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Air pollution in the week prior to delivery and preterm birth in 24 Canadian cities: a time to event analysis", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7769ba55c37576d851b802b49ca7a45c4d9305b1a42e05575bdaa47ef989d861"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30606207"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147645"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12940-018-0440-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111097093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12940-018-0440-8", 
      "https://app.dimensions.ai/details/publication/pub.1111097093"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55835_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12940-018-0440-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12940-018-0440-8'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12940-018-0440-8 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N02c790c5024c47798578ef18cae31055
4 schema:citation sg:pub.10.1007/s11356-014-3458-7
5 sg:pub.10.1007/s11356-017-0692-9
6 sg:pub.10.1007/s11356-017-9363-0
7 sg:pub.10.1007/s11869-010-0106-3
8 sg:pub.10.1186/s12884-015-0738-2
9 https://doi.org/10.1002/sim.5963
10 https://doi.org/10.1016/0197-2456(86)90046-2
11 https://doi.org/10.1016/j.envint.2013.09.005
12 https://doi.org/10.1016/j.envint.2015.12.013
13 https://doi.org/10.1016/j.envint.2017.01.023
14 https://doi.org/10.1016/j.envint.2018.09.021
15 https://doi.org/10.1016/j.envpol.2016.08.069
16 https://doi.org/10.1016/j.envpol.2017.03.055
17 https://doi.org/10.1016/j.envres.2007.10.003
18 https://doi.org/10.1016/j.envres.2012.05.007
19 https://doi.org/10.1016/j.envres.2014.09.014
20 https://doi.org/10.1016/j.envres.2016.04.025
21 https://doi.org/10.1016/j.envres.2016.04.026
22 https://doi.org/10.1016/j.jri.2016.11.008
23 https://doi.org/10.1093/aje/kwq327
24 https://doi.org/10.1093/aje/kww141
25 https://doi.org/10.1093/biostatistics/kxu060
26 https://doi.org/10.1097/ede.0000000000000573
27 https://doi.org/10.1097/ede.0b013e3181a66e96
28 https://doi.org/10.1097/ede.0b013e3181a7128f
29 https://doi.org/10.1111/aji.12653
30 https://doi.org/10.1111/j.1541-0420.2012.01774.x
31 https://doi.org/10.1155/2014/901017
32 https://doi.org/10.1289/ehp.00108419
33 https://doi.org/10.1289/ehp.1104049
34 https://doi.org/10.1289/ehp.1205575
35 https://doi.org/10.1289/ehp.1307456
36 https://doi.org/10.1289/ehp.1408995
37 https://doi.org/10.1289/ehp.1510266
38 https://doi.org/10.1289/ehp.7646
39 https://doi.org/10.1289/ehp2535
40 https://doi.org/10.1530/rep-16-0453
41 https://doi.org/10.1542/peds.2017-1881
42 https://doi.org/10.18637/jss.v043.i08
43 https://doi.org/10.2217/bmm-2016-0250
44 https://doi.org/10.5620/eht.e2015011
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description BACKGROUND: Numerous studies have examined the association between air pollution and preterm birth (< 37 weeks gestation) but findings have been inconsistent. These associations may be more difficult to detect than associations with other adverse birth outcomes because of the different duration of exposure in preterm vs. term births, and the existence of seasonal cycles in incidence of preterm birth. METHODS: We analyzed data pertaining to 1,001,700 singleton births occurring between 1999 and 2008 in 24 Canadian cities where daily air pollution data were available from government monitoring sites. In the first stage, data were analyzed in each city employing Cox proportional hazards models using gestational age in days as the time scale, obtaining city-specific hazard ratios (HRs) with their 95% confidence intervals (CIs) expressed per interquartile range (IQR) of each air pollutant. Effects were examined using distributed lag functions for lags of 0-6 days prior to delivery, as well as cumulative lags from two to six days. We accounted for the potential nonlinear effect of daily mean ambient temperature using a cubic B-spline with three internal knots. In the second stage, we pooled the estimated city-specific hazard ratios using a random effects model. RESULTS: Pooled estimates across 24 cities indicated that an IQR increase in ozone (O3, 13.3 ppb) 0-3 days prior to delivery was associated with a hazard ratio of 1.036 (95% CI 1.005, 1.067) for preterm birth, adjusting for infant sex, maternal age, marital status and country of birth, neighbourhood socioeconomic status (SES) and visible minority, temperature, year and season of birth, and a natural spline function of day of year. There was some evidence of effect modification by gestational age and season. Associations with carbon monoxide, nitrogen dioxide, particulate matter, and sulphur dioxide were inconsistent. CONCLUSIONS: We observed associations between daily O3 in the week before delivery and preterm birth in an analysis of approximately 1 million births in 24 Canadian cities between 1999 and 2008. Our analysis is one of a limited number which have examined these short term associations employing Cox proportional hazards models to account for the different exposure durations of preterm vs. term births.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N15ac8d4b1db04640b5a21464beb83f9b
52 N56eb31dfc9eb4344a53c45a600f7c58d
53 sg:journal.1327425
54 schema:name Air pollution in the week prior to delivery and preterm birth in 24 Canadian cities: a time to event analysis
55 schema:pagination 1
56 schema:productId N2ccb00a43ac54306b2e884756e90c2d4
57 N8155bd6763fa41e38d7106ac3eab896d
58 Nb4d36a93d24d42e6bdf31cc6a7d1a1b2
59 Nb74e871904104ea2adb5f92e5f7e4801
60 Nb99b458f059e4af1bac571ad813847fc
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111097093
62 https://doi.org/10.1186/s12940-018-0440-8
63 schema:sdDatePublished 2019-04-11T08:36
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N3f1d6eaff76f440990d189de2711934a
66 schema:url https://link.springer.com/10.1186%2Fs12940-018-0440-8
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N02c790c5024c47798578ef18cae31055 rdf:first sg:person.01017471715.10
71 rdf:rest N6518c925e6c84cdb98499e7c7e1cb5fb
72 N15ac8d4b1db04640b5a21464beb83f9b schema:volumeNumber 18
73 rdf:type schema:PublicationVolume
74 N1ac25a55b56546408fe795676678d8a5 rdf:first sg:person.01030203522.07
75 rdf:rest rdf:nil
76 N2ccb00a43ac54306b2e884756e90c2d4 schema:name nlm_unique_id
77 schema:value 101147645
78 rdf:type schema:PropertyValue
79 N3f1d6eaff76f440990d189de2711934a schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N56eb31dfc9eb4344a53c45a600f7c58d schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N5d02485a892245b78c60fbe5cca5111e rdf:first sg:person.0600131473.87
84 rdf:rest Ncdd92a848f4b47fca3487184be6c73e0
85 N6518c925e6c84cdb98499e7c7e1cb5fb rdf:first sg:person.0740222044.60
86 rdf:rest Nafb8aad8e917454babca38ac417a061a
87 N8155bd6763fa41e38d7106ac3eab896d schema:name pubmed_id
88 schema:value 30606207
89 rdf:type schema:PropertyValue
90 Nafb8aad8e917454babca38ac417a061a rdf:first sg:person.01152716445.59
91 rdf:rest N5d02485a892245b78c60fbe5cca5111e
92 Nb4d36a93d24d42e6bdf31cc6a7d1a1b2 schema:name doi
93 schema:value 10.1186/s12940-018-0440-8
94 rdf:type schema:PropertyValue
95 Nb74e871904104ea2adb5f92e5f7e4801 schema:name dimensions_id
96 schema:value pub.1111097093
97 rdf:type schema:PropertyValue
98 Nb99b458f059e4af1bac571ad813847fc schema:name readcube_id
99 schema:value 7769ba55c37576d851b802b49ca7a45c4d9305b1a42e05575bdaa47ef989d861
100 rdf:type schema:PropertyValue
101 Ncdd92a848f4b47fca3487184be6c73e0 rdf:first sg:person.01221570054.38
102 rdf:rest N1ac25a55b56546408fe795676678d8a5
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
107 schema:name Public Health and Health Services
108 rdf:type schema:DefinedTerm
109 sg:journal.1327425 schema:issn 1476-069X
110 schema:name Environmental Health
111 rdf:type schema:Periodical
112 sg:person.01017471715.10 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
113 schema:familyName Stieb
114 schema:givenName David M.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017471715.10
116 rdf:type schema:Person
117 sg:person.01030203522.07 schema:affiliation https://www.grid.ac/institutes/grid.413850.b
118 schema:familyName Tjepkema
119 schema:givenName Michael
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030203522.07
121 rdf:type schema:Person
122 sg:person.01152716445.59 schema:affiliation https://www.grid.ac/institutes/grid.57544.37
123 schema:familyName Chen
124 schema:givenName Li
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152716445.59
126 rdf:type schema:Person
127 sg:person.01221570054.38 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
128 schema:familyName Gasparrini
129 schema:givenName Antonio
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221570054.38
131 rdf:type schema:Person
132 sg:person.0600131473.87 schema:affiliation https://www.grid.ac/institutes/grid.413850.b
133 schema:familyName Pinault
134 schema:givenName Lauren
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600131473.87
136 rdf:type schema:Person
137 sg:person.0740222044.60 schema:affiliation https://www.grid.ac/institutes/grid.57544.37
138 schema:familyName Lavigne
139 schema:givenName Eric
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740222044.60
141 rdf:type schema:Person
142 sg:pub.10.1007/s11356-014-3458-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043670493
143 https://doi.org/10.1007/s11356-014-3458-7
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11356-017-0692-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696117
146 https://doi.org/10.1007/s11356-017-0692-9
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11356-017-9363-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086035801
149 https://doi.org/10.1007/s11356-017-9363-0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11869-010-0106-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027741908
152 https://doi.org/10.1007/s11869-010-0106-3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/s12884-015-0738-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014780214
155 https://doi.org/10.1186/s12884-015-0738-2
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/sim.5963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010172683
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0197-2456(86)90046-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034546744
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.envint.2013.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014417794
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.envint.2015.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027231569
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.envint.2017.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083762958
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.envint.2018.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107086888
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.envpol.2016.08.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045623313
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.envpol.2017.03.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085091901
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.envres.2007.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032691007
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.envres.2012.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003883925
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.envres.2014.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039831592
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.envres.2016.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024200910
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.envres.2016.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036346194
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jri.2016.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010876395
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/aje/kwq327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645311
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/aje/kww141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059381312
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/biostatistics/kxu060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424687
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1097/ede.0000000000000573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050986294
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1097/ede.0b013e3181a66e96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045939301
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1097/ede.0b013e3181a7128f schema:sameAs https://app.dimensions.ai/details/publication/pub.1051239804
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/aji.12653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084209695
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1541-0420.2012.01774.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028906149
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1155/2014/901017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041898272
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1289/ehp.00108419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064737032
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1289/ehp.1104049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046442577
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1289/ehp.1205575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013159979
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1289/ehp.1307456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053332830
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1289/ehp.1408995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019734981
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1289/ehp.1510266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040729243
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1289/ehp.7646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131708
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1289/ehp2535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105982177
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1530/rep-16-0453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002446668
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1542/peds.2017-1881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092595182
222 rdf:type schema:CreativeWork
223 https://doi.org/10.18637/jss.v043.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672651
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2217/bmm-2016-0250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083533539
226 rdf:type schema:CreativeWork
227 https://doi.org/10.5620/eht.e2015011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073055273
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
230 schema:name Environmental Health Science and Research Bureau, Health Canada, 101 Tunney’s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada
231 School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.413850.b schema:alternateName Statistics Canada
234 schema:name Health Analysis Division, Statistics Canada, 100 Tunney’s Pasture Driveway, K1A 0T6, Ottawa, ON, Canada
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.57544.37 schema:alternateName Health Canada
237 schema:name Environmental Health Science and Research Bureau, Health Canada, 101 Tunney’s Pasture Driveway, K1A 0K9, Ottawa, ON, Canada
238 School of Epidemiology and Public Health, University of Ottawa, Room 101, 600 Peter Morand Crescent, K1G 5Z3, Ottawa, ON, Canada
239 Water and Air Quality Bureau, Health Canada, 269 Laurier Avenue W, K1A 0K9, Mail Stop 4903B, Ottawa, ON, Canada
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
242 schema:name Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, Room 213, 15-17 Tavistock Place, WC1H 9SH, London, UK
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...