Evaluation of corneal elastic modulus based on Corneal Visualization Scheimpflug Technology. View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xiao Qin, Lei Tian, Haixia Zhang, Xinyan Chen, Lin Li

ABSTRACT

BACKGROUND: Corneal biomechanical properties are important for the diagnosis of corneal diseases, individualized design and prognosis of corneal surgery. Clinical available devices such as Ocular Response Analyzer (ORA) and Corneal Visualization Scheimpflug Technology (Corvis ST) can provide corneal biomechanics related parameters, while corneal elastic modulus cannot be extracted directly from them at present. The aim of this study is to suggest a method to determine corneal elastic modulus based on the results of Corvis ST test according to Reissner's theory on the relation between stress and small displacement in shallow spherical shell. RESULTS: Five rabbits (10 eyes) and 10 healthy humans (20 eyes) were measured with Corvis ST to obtain the normal range of corneal elastic modulus. Results showed Corneal elastic modulus of rabbit was 0.16 MPa to 0.35 MPa, human corneal elastic modulus was 0.16-0.30 MPa. Rabbit corneas were also measured at different intraocular pressures (IOP), and results showed corneal elastic modulus, first applanation time (A1T) and stiffness parameter (SP-A1) were positively correlated with IOP. Deformation amplitude (DA), the second applanations time (A2T), and peak distance (PD) were negatively correlated with IOP. Finite element method was used to simulate the Corvis measurements according to the calculated elastic modulus and the simulated corneal apical displacements were agreement with experimental results in general. CONCLUSIONS: The method to determine corneal elastic modulus based on Corvis test according to the relationship between force and displacements of shallow spherical shell is convenient and effective. More... »

PAGES

42

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12938-019-0662-1

DOI

http://dx.doi.org/10.1186/s12938-019-0662-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113184524

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30947733


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1113", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ophthalmology and Optometry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.", 
            "School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Xiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.", 
            "School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Haixia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.", 
            "School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xinyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China. lil@ccmu.edu.cn.", 
            "School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China. lil@ccmu.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3109/02713683.2014.978479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000379673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clae.2016.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002786781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrs.2014.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003029434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aos.12066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004266056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrs.2013.08.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005652722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.transproceed.2016.01.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015799603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/opo.12240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016934342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.exer.2015.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017341318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ico.0000000000000434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017584068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ico.0000000000000434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017584068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0104904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022810105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/7840284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026531697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.07-1321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027553541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cxo.12211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029382024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cxo.12230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029659017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sapm194625180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032434846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ico.0b013e318041f073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035212337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/ico.0b013e318041f073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035212337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultras.2016.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035300843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbio.201500245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036113220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0886-3350(03)00407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039357893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0886-3350(03)00407-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039357893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmbbm.2014.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051899516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10384-014-0344-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052546386", 
          "https://doi.org/10.1007/s10384-014-0344-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2014.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053284311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02713680601077145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058314019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3161953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062104663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3928/1081597x-20090710-01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071726992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3928/1081597x-20090710-01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071726992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3928/1081597x-20140212-02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071727604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077513117", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3928/1081-597x-20071001-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077513117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18240/ijo.2017.02.06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083983454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3928/1081597x-20161221-03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084838650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.exer.2017.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085939987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/3684971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091203889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/4315238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091497022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmbbm.2017.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091735370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/5410143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092573983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfo.2017.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfo.2017.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219519417501184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099880953"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Corneal biomechanical properties are important for the diagnosis of corneal diseases, individualized design and prognosis of corneal surgery. Clinical available devices such as Ocular Response Analyzer (ORA) and Corneal Visualization Scheimpflug Technology (Corvis ST) can provide corneal biomechanics related parameters, while corneal elastic modulus cannot be extracted directly from them at present. The aim of this study is to suggest a method to determine corneal elastic modulus based on the results of Corvis ST test according to Reissner's theory on the relation between stress and small displacement in shallow spherical shell.\nRESULTS: Five rabbits (10 eyes) and 10 healthy humans (20 eyes) were measured with Corvis ST to obtain the normal range of corneal elastic modulus. Results showed Corneal elastic modulus of rabbit was 0.16\u00a0MPa to 0.35\u00a0MPa, human corneal elastic modulus was 0.16-0.30\u00a0MPa. Rabbit corneas were also measured at different intraocular pressures (IOP), and results showed corneal elastic modulus, first applanation time (A1T) and stiffness parameter (SP-A1) were positively correlated with IOP. Deformation amplitude (DA), the second applanations time (A2T), and peak distance (PD) were negatively correlated with IOP. Finite element method was used to simulate the Corvis measurements according to the calculated elastic modulus and the simulated corneal apical displacements were agreement with experimental results in general.\nCONCLUSIONS: The method to determine corneal elastic modulus based on Corvis test according to the relationship between force and displacements of shallow spherical shell is convenient and effective.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12938-019-0662-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Evaluation of corneal elastic modulus based on Corneal Visualization Scheimpflug Technology.", 
    "pagination": "42", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12938-019-0662-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113184524"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30947733"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12938-019-0662-1", 
      "https://app.dimensions.ai/details/publication/pub.1113184524"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91429_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0662-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0662-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0662-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0662-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0662-1'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      65 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12938-019-0662-1 schema:about anzsrc-for:11
2 anzsrc-for:1113
3 schema:author N5131982323f94deebc83fe2ca2730184
4 schema:citation sg:pub.10.1007/s10384-014-0344-2
5 https://app.dimensions.ai/details/publication/pub.1077513117
6 https://doi.org/10.1002/jbio.201500245
7 https://doi.org/10.1002/sapm194625180
8 https://doi.org/10.1016/j.clae.2016.12.003
9 https://doi.org/10.1016/j.exer.2015.05.018
10 https://doi.org/10.1016/j.exer.2017.05.015
11 https://doi.org/10.1016/j.jbiomech.2014.11.009
12 https://doi.org/10.1016/j.jcrs.2013.08.065
13 https://doi.org/10.1016/j.jcrs.2014.02.032
14 https://doi.org/10.1016/j.jfo.2017.06.006
15 https://doi.org/10.1016/j.jmbbm.2014.11.006
16 https://doi.org/10.1016/j.jmbbm.2017.05.042
17 https://doi.org/10.1016/j.transproceed.2016.01.056
18 https://doi.org/10.1016/j.ultras.2016.05.011
19 https://doi.org/10.1016/s0886-3350(03)00407-3
20 https://doi.org/10.1080/02713680601077145
21 https://doi.org/10.1097/ico.0000000000000434
22 https://doi.org/10.1097/ico.0b013e318041f073
23 https://doi.org/10.1111/aos.12066
24 https://doi.org/10.1111/cxo.12211
25 https://doi.org/10.1111/cxo.12230
26 https://doi.org/10.1111/opo.12240
27 https://doi.org/10.1115/1.3161953
28 https://doi.org/10.1142/s0219519417501184
29 https://doi.org/10.1155/2016/7840284
30 https://doi.org/10.1155/2017/3684971
31 https://doi.org/10.1155/2017/4315238
32 https://doi.org/10.1155/2017/5410143
33 https://doi.org/10.1167/iovs.07-1321
34 https://doi.org/10.1371/journal.pone.0104904
35 https://doi.org/10.18240/ijo.2017.02.06
36 https://doi.org/10.3109/02713683.2014.978479
37 https://doi.org/10.3928/1081-597x-20071001-11
38 https://doi.org/10.3928/1081597x-20090710-01
39 https://doi.org/10.3928/1081597x-20140212-02
40 https://doi.org/10.3928/1081597x-20161221-03
41 schema:datePublished 2019-12
42 schema:datePublishedReg 2019-12-01
43 schema:description BACKGROUND: Corneal biomechanical properties are important for the diagnosis of corneal diseases, individualized design and prognosis of corneal surgery. Clinical available devices such as Ocular Response Analyzer (ORA) and Corneal Visualization Scheimpflug Technology (Corvis ST) can provide corneal biomechanics related parameters, while corneal elastic modulus cannot be extracted directly from them at present. The aim of this study is to suggest a method to determine corneal elastic modulus based on the results of Corvis ST test according to Reissner's theory on the relation between stress and small displacement in shallow spherical shell. RESULTS: Five rabbits (10 eyes) and 10 healthy humans (20 eyes) were measured with Corvis ST to obtain the normal range of corneal elastic modulus. Results showed Corneal elastic modulus of rabbit was 0.16 MPa to 0.35 MPa, human corneal elastic modulus was 0.16-0.30 MPa. Rabbit corneas were also measured at different intraocular pressures (IOP), and results showed corneal elastic modulus, first applanation time (A1T) and stiffness parameter (SP-A1) were positively correlated with IOP. Deformation amplitude (DA), the second applanations time (A2T), and peak distance (PD) were negatively correlated with IOP. Finite element method was used to simulate the Corvis measurements according to the calculated elastic modulus and the simulated corneal apical displacements were agreement with experimental results in general. CONCLUSIONS: The method to determine corneal elastic modulus based on Corvis test according to the relationship between force and displacements of shallow spherical shell is convenient and effective.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N8a40be98cd2c4cd8bec02b39e38d1b98
48 Nb474d47a0528454bb78a82292031d496
49 sg:journal.1031014
50 schema:name Evaluation of corneal elastic modulus based on Corneal Visualization Scheimpflug Technology.
51 schema:pagination 42
52 schema:productId N146892e639b74035a3a0a836af497631
53 N50e422d1ae214c03b7772bb62a5f8905
54 N6467f4ef252b4d4bb44278a6e12fd15b
55 Nfb9b8ac0595947a5b805a9950fdc0163
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113184524
57 https://doi.org/10.1186/s12938-019-0662-1
58 schema:sdDatePublished 2019-04-15T08:59
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nfd2c412611584514a29b82e8e6b3029d
61 schema:url https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0662-1
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0704538964c04d4d89c8a06031e577a5 rdf:first N82bcffd3445d43a28b531fcd3862c81e
66 rdf:rest Nc2d708e13b294e1d844526463484e7d9
67 N146892e639b74035a3a0a836af497631 schema:name nlm_unique_id
68 schema:value 101147518
69 rdf:type schema:PropertyValue
70 N50e422d1ae214c03b7772bb62a5f8905 schema:name doi
71 schema:value 10.1186/s12938-019-0662-1
72 rdf:type schema:PropertyValue
73 N5131982323f94deebc83fe2ca2730184 rdf:first Nb71b6b00cf42459ca551cd4e6d8000d7
74 rdf:rest Nd3c8297b219448b28904228fa40a1dd8
75 N5e75f3a47a1f416b93d25b691112b047 rdf:first N627b689432e547eda46475c4859843db
76 rdf:rest N0704538964c04d4d89c8a06031e577a5
77 N627b689432e547eda46475c4859843db schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
78 schema:familyName Zhang
79 schema:givenName Haixia
80 rdf:type schema:Person
81 N6467f4ef252b4d4bb44278a6e12fd15b schema:name pubmed_id
82 schema:value 30947733
83 rdf:type schema:PropertyValue
84 N7ed961c8ee4f43d98c1ece22c3520af0 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
85 schema:familyName Li
86 schema:givenName Lin
87 rdf:type schema:Person
88 N82bcffd3445d43a28b531fcd3862c81e schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
89 schema:familyName Chen
90 schema:givenName Xinyan
91 rdf:type schema:Person
92 N8a40be98cd2c4cd8bec02b39e38d1b98 schema:volumeNumber 18
93 rdf:type schema:PublicationVolume
94 Nb474d47a0528454bb78a82292031d496 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 Nb71b6b00cf42459ca551cd4e6d8000d7 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
97 schema:familyName Qin
98 schema:givenName Xiao
99 rdf:type schema:Person
100 Nc2ca4c06b76c493c8900e278baa2c138 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
101 schema:familyName Tian
102 schema:givenName Lei
103 rdf:type schema:Person
104 Nc2d708e13b294e1d844526463484e7d9 rdf:first N7ed961c8ee4f43d98c1ece22c3520af0
105 rdf:rest rdf:nil
106 Nd3c8297b219448b28904228fa40a1dd8 rdf:first Nc2ca4c06b76c493c8900e278baa2c138
107 rdf:rest N5e75f3a47a1f416b93d25b691112b047
108 Nfb9b8ac0595947a5b805a9950fdc0163 schema:name dimensions_id
109 schema:value pub.1113184524
110 rdf:type schema:PropertyValue
111 Nfd2c412611584514a29b82e8e6b3029d schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
114 schema:name Medical and Health Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:1113 schema:inDefinedTermSet anzsrc-for:
117 schema:name Ophthalmology and Optometry
118 rdf:type schema:DefinedTerm
119 sg:journal.1031014 schema:issn 1475-925X
120 schema:name BioMedical Engineering OnLine
121 rdf:type schema:Periodical
122 sg:pub.10.1007/s10384-014-0344-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052546386
123 https://doi.org/10.1007/s10384-014-0344-2
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1077513117 schema:CreativeWork
126 https://doi.org/10.1002/jbio.201500245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036113220
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/sapm194625180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032434846
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.clae.2016.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002786781
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.exer.2015.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017341318
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.exer.2017.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085939987
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jbiomech.2014.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053284311
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jcrs.2013.08.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005652722
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jcrs.2014.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003029434
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jfo.2017.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093061507
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jmbbm.2014.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051899516
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jmbbm.2017.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091735370
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.transproceed.2016.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015799603
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ultras.2016.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035300843
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0886-3350(03)00407-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039357893
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/02713680601077145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058314019
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1097/ico.0000000000000434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017584068
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1097/ico.0b013e318041f073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035212337
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/aos.12066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004266056
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/cxo.12211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029382024
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/cxo.12230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029659017
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1111/opo.12240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016934342
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1115/1.3161953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062104663
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1142/s0219519417501184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099880953
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1155/2016/7840284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026531697
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1155/2017/3684971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091203889
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1155/2017/4315238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091497022
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1155/2017/5410143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092573983
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1167/iovs.07-1321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027553541
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1371/journal.pone.0104904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022810105
183 rdf:type schema:CreativeWork
184 https://doi.org/10.18240/ijo.2017.02.06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083983454
185 rdf:type schema:CreativeWork
186 https://doi.org/10.3109/02713683.2014.978479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000379673
187 rdf:type schema:CreativeWork
188 https://doi.org/10.3928/1081-597x-20071001-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077513117
189 rdf:type schema:CreativeWork
190 https://doi.org/10.3928/1081597x-20090710-01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071726992
191 rdf:type schema:CreativeWork
192 https://doi.org/10.3928/1081597x-20140212-02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071727604
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3928/1081597x-20161221-03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084838650
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
197 schema:name Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China.
198 Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China. lil@ccmu.edu.cn.
199 Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
200 School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.
201 School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China. lil@ccmu.edu.cn.
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...