Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-02

AUTHORS

Kun Peng, Xinyang Cui, Aike Qiao, Yongliang Mu

ABSTRACT

BACKGROUND: Biodegradable stents display insufficient scaffold performance due to their poor Young's Modulus. In addition, the corresponding biodegradable materials harbor weakened structures during degradation processes. Consequently, such stents have not been extensively applied in clinical therapy. In this study, the scaffold performance of a patented stent and its ability to reshape damaged vessels during degradation process were evaluated. METHODS: A common stent was chosen as a control to assess the mechanical behavior of the patented stent. Finite element analysis was used to simulate stent deployment into a 40% stenotic vessel. A material corrosion model involving uniform and stress corrosion was implemented within the finite element framework to update the stress state following degradation. RESULTS: The results showed that radial recoiling ratio and mass loss ratio of the patented stent is 7.19% and 3.1%, respectively, which are definitely lower than those of the common stent with the corresponding values of 22.6% and 14.1%, respectively. Moreover, the patented stent displayed stronger scaffold performance in a corrosive environment and the plaque treated with patented stents had a larger and flatter lumen. CONCLUSION: Owing to its improved mechanical performance, the novel biodegradable zinc alloy stent reported here has high potential as an alternative choice in surgery. More... »

PAGES

39

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12938-019-0661-2

DOI

http://dx.doi.org/10.1186/s12938-019-0661-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113179485

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30940146


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alloys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Corrosion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Finite Element Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Materials Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Mechanical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zinc", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Kun", 
        "id": "sg:person.011267026363.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267026363.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Xinyang", 
        "id": "sg:person.016374665370.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016374665370.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China", 
          "id": "http://www.grid.ac/institutes/grid.28703.3e", 
          "name": [
            "College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiao", 
        "givenName": "Aike", 
        "id": "sg:person.015046644067.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046644067.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University, Shenyang, 110819 Liaoning China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "Northeastern University, Shenyang, 110819 Liaoning China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mu", 
        "givenName": "Yongliang", 
        "id": "sg:person.016365316355.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016365316355.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10439-010-0057-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032229560", 
          "https://doi.org/10.1007/s10439-010-0057-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-015-1413-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013466841", 
          "https://doi.org/10.1007/s10439-015-1413-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12872-016-0207-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042692126", 
          "https://doi.org/10.1186/s12872-016-0207-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-009-0432-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048592373", 
          "https://doi.org/10.1007/s11517-009-0432-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-015-1761-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011275172", 
          "https://doi.org/10.1007/s11837-015-1761-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-017-1806-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083534993", 
          "https://doi.org/10.1007/s10439-017-1806-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "BACKGROUND: Biodegradable stents display insufficient scaffold performance due to their poor Young's Modulus. In addition, the corresponding biodegradable materials harbor weakened structures during degradation processes. Consequently, such stents have not been extensively applied in clinical therapy. In this study, the scaffold performance of a patented stent and its ability to reshape damaged vessels during degradation process were evaluated.\nMETHODS: A common stent was chosen as a control to assess the mechanical behavior of the patented stent. Finite element analysis was used to simulate stent deployment into a 40% stenotic vessel. A material corrosion model involving uniform and stress corrosion was implemented within the finite element framework to update the stress state following degradation.\nRESULTS: The results showed that radial recoiling ratio and mass loss ratio of the patented stent is 7.19% and 3.1%, respectively, which are definitely lower than those of the common stent with the corresponding values of 22.6% and 14.1%, respectively. Moreover, the patented stent displayed stronger scaffold performance in a corrosive environment and the plaque treated with patented stents had a larger and flatter lumen.\nCONCLUSION: Owing to its improved mechanical performance, the novel biodegradable zinc alloy stent reported here has high potential as an alternative choice in surgery.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12938-019-0661-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "biodegradable zinc alloys", 
      "scaffold performance", 
      "zinc alloy", 
      "improved mechanical performance", 
      "finite element analysis", 
      "finite element framework", 
      "mass loss ratio", 
      "degradation process", 
      "stress corrosion", 
      "corrosive environment", 
      "mechanical performance", 
      "mechanical behavior", 
      "corrosion model", 
      "element analysis", 
      "element framework", 
      "Young's modulus", 
      "common stent", 
      "mechanical analysis", 
      "stress state", 
      "biodegradable materials", 
      "degradation model", 
      "alloy", 
      "biodegradable stents", 
      "modulus", 
      "performance", 
      "high potential", 
      "corrosion", 
      "such stents", 
      "loss ratio", 
      "materials", 
      "process", 
      "ratio", 
      "uniform", 
      "model", 
      "stent deployment", 
      "stenotic vessels", 
      "corresponding values", 
      "degradation", 
      "behavior", 
      "structure", 
      "stents", 
      "vessels", 
      "deployment", 
      "alternative choice", 
      "analysis", 
      "results", 
      "environment", 
      "values", 
      "control", 
      "potential", 
      "addition", 
      "framework", 
      "state", 
      "ability", 
      "study", 
      "choice", 
      "clinical therapy", 
      "lumen", 
      "surgery", 
      "plaques", 
      "therapy", 
      "insufficient scaffold performance", 
      "poor Young's Modulus", 
      "corresponding biodegradable materials", 
      "material corrosion model", 
      "radial recoiling ratio", 
      "recoiling ratio", 
      "stronger scaffold performance", 
      "flatter lumen", 
      "novel biodegradable zinc alloy"
    ], 
    "name": "Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model", 
    "pagination": "39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113179485"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12938-019-0661-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30940146"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12938-019-0661-2", 
      "https://app.dimensions.ai/details/publication/pub.1113179485"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_800.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12938-019-0661-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0661-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0661-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0661-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0661-2'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      22 PREDICATES      110 URIs      96 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12938-019-0661-2 schema:about N36b3ed06e3994e37a02452bf95b40b48
2 N9a89a17acac44efa878c37e1984f58b3
3 Na43f01b361b9471d834a86d11b514fad
4 Nabcf341a669c4a07972e49c3245f1a09
5 Nd854c0c36d9f4fee8ab0a2ee416c26ad
6 Ne82cf88a2c464efa8af593bfd37c0234
7 Nea29d35c92d1481d88cee39fd5358e67
8 Nf4169912ded644bebdceee80b33f940d
9 anzsrc-for:09
10 anzsrc-for:0912
11 schema:author N9f2ca8cf895345bfa62a5f293c3c25ac
12 schema:citation sg:pub.10.1007/s10439-010-0057-8
13 sg:pub.10.1007/s10439-015-1413-5
14 sg:pub.10.1007/s10439-017-1806-8
15 sg:pub.10.1007/s11517-009-0432-5
16 sg:pub.10.1007/s11837-015-1761-5
17 sg:pub.10.1186/s12872-016-0207-5
18 schema:datePublished 2019-04-02
19 schema:datePublishedReg 2019-04-02
20 schema:description BACKGROUND: Biodegradable stents display insufficient scaffold performance due to their poor Young's Modulus. In addition, the corresponding biodegradable materials harbor weakened structures during degradation processes. Consequently, such stents have not been extensively applied in clinical therapy. In this study, the scaffold performance of a patented stent and its ability to reshape damaged vessels during degradation process were evaluated. METHODS: A common stent was chosen as a control to assess the mechanical behavior of the patented stent. Finite element analysis was used to simulate stent deployment into a 40% stenotic vessel. A material corrosion model involving uniform and stress corrosion was implemented within the finite element framework to update the stress state following degradation. RESULTS: The results showed that radial recoiling ratio and mass loss ratio of the patented stent is 7.19% and 3.1%, respectively, which are definitely lower than those of the common stent with the corresponding values of 22.6% and 14.1%, respectively. Moreover, the patented stent displayed stronger scaffold performance in a corrosive environment and the plaque treated with patented stents had a larger and flatter lumen. CONCLUSION: Owing to its improved mechanical performance, the novel biodegradable zinc alloy stent reported here has high potential as an alternative choice in surgery.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N26437570705341abbf8307700e572f52
25 N8f076b71295e4c818f0d2c8ecbcadf03
26 sg:journal.1031014
27 schema:keywords Young's modulus
28 ability
29 addition
30 alloy
31 alternative choice
32 analysis
33 behavior
34 biodegradable materials
35 biodegradable stents
36 biodegradable zinc alloys
37 choice
38 clinical therapy
39 common stent
40 control
41 corresponding biodegradable materials
42 corresponding values
43 corrosion
44 corrosion model
45 corrosive environment
46 degradation
47 degradation model
48 degradation process
49 deployment
50 element analysis
51 element framework
52 environment
53 finite element analysis
54 finite element framework
55 flatter lumen
56 framework
57 high potential
58 improved mechanical performance
59 insufficient scaffold performance
60 loss ratio
61 lumen
62 mass loss ratio
63 material corrosion model
64 materials
65 mechanical analysis
66 mechanical behavior
67 mechanical performance
68 model
69 modulus
70 novel biodegradable zinc alloy
71 performance
72 plaques
73 poor Young's Modulus
74 potential
75 process
76 radial recoiling ratio
77 ratio
78 recoiling ratio
79 results
80 scaffold performance
81 state
82 stenotic vessels
83 stent deployment
84 stents
85 stress corrosion
86 stress state
87 stronger scaffold performance
88 structure
89 study
90 such stents
91 surgery
92 therapy
93 uniform
94 values
95 vessels
96 zinc alloy
97 schema:name Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model
98 schema:pagination 39
99 schema:productId N005a42f926014012bcc127ef6e54e31e
100 N3c423a0b11a5432ab39ca31ebe0a2c40
101 N85f0a7683bc843409369ef8f16fc2636
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113179485
103 https://doi.org/10.1186/s12938-019-0661-2
104 schema:sdDatePublished 2021-12-01T19:44
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N5ad9a2e125bf43eca1cd1237cb767439
107 schema:url https://doi.org/10.1186/s12938-019-0661-2
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N005a42f926014012bcc127ef6e54e31e schema:name dimensions_id
112 schema:value pub.1113179485
113 rdf:type schema:PropertyValue
114 N26437570705341abbf8307700e572f52 schema:volumeNumber 18
115 rdf:type schema:PublicationVolume
116 N36b3ed06e3994e37a02452bf95b40b48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Materials Testing
118 rdf:type schema:DefinedTerm
119 N3c423a0b11a5432ab39ca31ebe0a2c40 schema:name doi
120 schema:value 10.1186/s12938-019-0661-2
121 rdf:type schema:PropertyValue
122 N5ad9a2e125bf43eca1cd1237cb767439 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N5df34237fe12460b8771c113bd5e2e09 rdf:first sg:person.016365316355.17
125 rdf:rest rdf:nil
126 N85f0a7683bc843409369ef8f16fc2636 schema:name pubmed_id
127 schema:value 30940146
128 rdf:type schema:PropertyValue
129 N8f076b71295e4c818f0d2c8ecbcadf03 schema:issueNumber 1
130 rdf:type schema:PublicationIssue
131 N9a89a17acac44efa878c37e1984f58b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Stents
133 rdf:type schema:DefinedTerm
134 N9f2ca8cf895345bfa62a5f293c3c25ac rdf:first sg:person.011267026363.60
135 rdf:rest Na18c0501cdc6461997563635ad99b3b6
136 Na18c0501cdc6461997563635ad99b3b6 rdf:first sg:person.016374665370.32
137 rdf:rest Ne6e98b75ac7c42c6b8c559855a28b327
138 Na43f01b361b9471d834a86d11b514fad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Corrosion
140 rdf:type schema:DefinedTerm
141 Nabcf341a669c4a07972e49c3245f1a09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Finite Element Analysis
143 rdf:type schema:DefinedTerm
144 Nd854c0c36d9f4fee8ab0a2ee416c26ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Zinc
146 rdf:type schema:DefinedTerm
147 Ne6e98b75ac7c42c6b8c559855a28b327 rdf:first sg:person.015046644067.08
148 rdf:rest N5df34237fe12460b8771c113bd5e2e09
149 Ne82cf88a2c464efa8af593bfd37c0234 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Mechanical Phenomena
151 rdf:type schema:DefinedTerm
152 Nea29d35c92d1481d88cee39fd5358e67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Stress, Mechanical
154 rdf:type schema:DefinedTerm
155 Nf4169912ded644bebdceee80b33f940d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Alloys
157 rdf:type schema:DefinedTerm
158 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
159 schema:name Engineering
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
162 schema:name Materials Engineering
163 rdf:type schema:DefinedTerm
164 sg:journal.1031014 schema:issn 1475-925X
165 schema:name BioMedical Engineering OnLine
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.011267026363.60 schema:affiliation grid-institutes:grid.28703.3e
169 schema:familyName Peng
170 schema:givenName Kun
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267026363.60
172 rdf:type schema:Person
173 sg:person.015046644067.08 schema:affiliation grid-institutes:grid.28703.3e
174 schema:familyName Qiao
175 schema:givenName Aike
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046644067.08
177 rdf:type schema:Person
178 sg:person.016365316355.17 schema:affiliation grid-institutes:grid.412252.2
179 schema:familyName Mu
180 schema:givenName Yongliang
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016365316355.17
182 rdf:type schema:Person
183 sg:person.016374665370.32 schema:affiliation grid-institutes:grid.28703.3e
184 schema:familyName Cui
185 schema:givenName Xinyang
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016374665370.32
187 rdf:type schema:Person
188 sg:pub.10.1007/s10439-010-0057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032229560
189 https://doi.org/10.1007/s10439-010-0057-8
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s10439-015-1413-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013466841
192 https://doi.org/10.1007/s10439-015-1413-5
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s10439-017-1806-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083534993
195 https://doi.org/10.1007/s10439-017-1806-8
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s11517-009-0432-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048592373
198 https://doi.org/10.1007/s11517-009-0432-5
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s11837-015-1761-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011275172
201 https://doi.org/10.1007/s11837-015-1761-5
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/s12872-016-0207-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042692126
204 https://doi.org/10.1186/s12872-016-0207-5
205 rdf:type schema:CreativeWork
206 grid-institutes:grid.28703.3e schema:alternateName College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China
207 schema:name College of Life Science and Bioengineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing, 100124 China
208 rdf:type schema:Organization
209 grid-institutes:grid.412252.2 schema:alternateName Northeastern University, Shenyang, 110819 Liaoning China
210 schema:name Northeastern University, Shenyang, 110819 Liaoning China
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...