Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Nida Dusturia, Seong Wook Choi, Kwang Soup Song, Ki Moo Lim

ABSTRACT

BACKGROUND: The heart wall exhibits three layers of different thicknesses: the outer epicardium, mid-myocardium, and inner endocardium. Among these layers, the mid-myocardium is typically the thickest. As indicated by preliminary studies, heart-wall layers exhibit various characteristics with regard to electrophysiology, pharmacology, and pathology. Construction of an accurate three-dimensional (3D) model of the heart is important for predicting physiological behaviors. However, the wide variability of myocardial shapes and the unclear edges between the epicardium and soft tissues are major challenges in the 3D model segmentation approach for identifying the boundaries of the epicardium, mid-myocardium, and endocardium. Therefore, this results in possible variations in the heterogeneity ratios between the epicardium, mid-myocardium, and endocardium. The objective of this study was to observe the effects of different thickness ratios of the epicardium, mid-myocardium, and endocardium on cardiac arrhythmogenesis, reentry instability, and mechanical responses during arrhythmia. METHODS: We used a computational method and simulated three heterogeneous ventricular models: Model 1 had the thickest M cell layer and thinnest epicardium and endocardium. Model 2 had intermediate layer thicknesses. Model 3 exhibited the thinnest mid-myocardium and thickest epicardium and endocardium. Electrical and mechanical simulations of the three heterogeneous models were performed under normal sinus rhythm and reentry conditions. RESULTS: Model 1 exhibited the highest probability of terminating reentrant waves, and Model 3 exhibited to experience greater cardiac arrhythmia. In the reentry simulation, at 8 s, Model 3 generated the largest number of rotors (eight), while Models 1 and 2 produced five and seven rotors, respectively. There was no significant difference in the cardiac output obtained during the sinus rhythm. Under the reentry condition, the highest cardiac output was generated by Model 1 (19 mL/s), followed by Model 2 (9 mL/s) and Model 3 (7 mL/s). CONCLUSIONS: A thicker mid-myocardium led to improvements in the pumping efficacy and contractility and reduced the probability of cardiac arrhythmia. Conversely, thinner M cell layers generated more unstable reentrant spiral waves and hindered the ventricular pumping. More... »

PAGES

23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12938-019-0640-7

DOI

http://dx.doi.org/10.1186/s12938-019-0640-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112761115

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30871548


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kumoh National Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.418997.a", 
          "name": [
            "Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, 39253, Gumi, Gyeongbuk, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dusturia", 
        "givenName": "Nida", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kangwon National University", 
          "id": "https://www.grid.ac/institutes/grid.412010.6", 
          "name": [
            "Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Seong Wook", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kumoh National Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.418997.a", 
          "name": [
            "Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Kwang Soup", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kumoh National Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.418997.a", 
          "name": [
            "Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, 39253, Gumi, Gyeongbuk, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Ki Moo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12576-014-0353-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001451564", 
          "https://doi.org/10.1007/s12576-014-0353-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12576-014-0353-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001451564", 
          "https://doi.org/10.1007/s12576-014-0353-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.811033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001606594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.82.10.1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006277114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(92)90069-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008739142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.30.2.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009518652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.107.119487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014015172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2009/983794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015306879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.98.18.1921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016877562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02364118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016912083", 
          "https://doi.org/10.1007/bf02364118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02364118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016912083", 
          "https://doi.org/10.1007/bf02364118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc1002.105231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017173921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(94)00174-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022497867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hrthm.2011.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023245919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelectrocard.2015.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023407631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9212-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023446162", 
          "https://doi.org/10.1007/s10439-006-9212-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9212-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023446162", 
          "https://doi.org/10.1007/s10439-006-9212-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.684357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024134877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00887.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00791-002-0081-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030465469", 
          "https://doi.org/10.1007/s00791-002-0081-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00794.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030842476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(92)81615-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031322121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-010-0235-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032580362", 
          "https://doi.org/10.1007/s10237-010-0235-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2013.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032627060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12576-011-0180-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033498152", 
          "https://doi.org/10.1007/s12576-011-0180-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelectrocard.2008.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040455953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010883920374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043457097", 
          "https://doi.org/10.1023/a:1010883920374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1540.8167.90314.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045106616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1540.8167.90314.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045106616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wsbm.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046984201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00324.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050713672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(79)85165-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050768585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/51/23/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2006.871772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2226242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219519409002894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062997293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.23736/s0026-4725.17.04362-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083848573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12576-017-0541-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085731284", 
          "https://doi.org/10.1007/s12576-017-0541-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cnm.2970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101241536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cnm.2970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101241536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jtehm.2018.2804947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105237699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphys.2018.00926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105908193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2018.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106814550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2018.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106814550"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The heart wall exhibits three layers of different thicknesses: the outer epicardium, mid-myocardium, and inner endocardium. Among these layers, the mid-myocardium is typically the thickest. As indicated by preliminary studies, heart-wall layers exhibit various characteristics with regard to electrophysiology, pharmacology, and pathology. Construction of an accurate three-dimensional (3D) model of the heart is important for predicting physiological behaviors. However, the wide variability of myocardial shapes and the unclear edges between the epicardium and soft tissues are major challenges in the 3D model segmentation approach for identifying the boundaries of the epicardium, mid-myocardium, and endocardium. Therefore, this results in possible variations in the heterogeneity ratios between the epicardium, mid-myocardium, and endocardium. The objective of this study was to observe the effects of different thickness ratios of the epicardium, mid-myocardium, and endocardium on cardiac arrhythmogenesis, reentry instability, and mechanical responses during arrhythmia.\nMETHODS: We used a computational method and simulated three heterogeneous ventricular models: Model 1 had the thickest M cell layer and thinnest epicardium and endocardium. Model 2 had intermediate layer thicknesses. Model 3 exhibited the thinnest mid-myocardium and thickest epicardium and endocardium. Electrical and mechanical simulations of the three heterogeneous models were performed under normal sinus rhythm and reentry conditions.\nRESULTS: Model 1 exhibited the highest probability of terminating reentrant waves, and Model 3 exhibited to experience greater cardiac arrhythmia. In the reentry simulation, at 8\u00a0s, Model 3 generated the largest number of rotors (eight), while Models 1 and 2 produced five and seven rotors, respectively. There was no significant difference in the cardiac output obtained during the sinus rhythm. Under the reentry condition, the highest cardiac output was generated by Model 1 (19\u00a0mL/s), followed by Model 2 (9\u00a0mL/s) and Model 3 (7\u00a0mL/s).\nCONCLUSIONS: A thicker mid-myocardium led to improvements in the pumping efficacy and contractility and reduced the probability of cardiac arrhythmia. Conversely, thinner M cell layers generated more unstable reentrant spiral waves and hindered the ventricular pumping.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12938-019-0640-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7454889", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study", 
    "pagination": "23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "42b24631e50eb5a894a25499840260ab96169c049fc4d9e18fcadcdaff124d92"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30871548"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12938-019-0640-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112761115"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12938-019-0640-7", 
      "https://app.dimensions.ai/details/publication/pub.1112761115"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12938-019-0640-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0640-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0640-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0640-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0640-7'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12938-019-0640-7 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N2c31e7ba5ff44d44a720a267f9742a7b
4 schema:citation sg:pub.10.1007/bf02364118
5 sg:pub.10.1007/s00791-002-0081-9
6 sg:pub.10.1007/s10237-010-0235-5
7 sg:pub.10.1007/s10439-006-9212-7
8 sg:pub.10.1007/s12576-011-0180-9
9 sg:pub.10.1007/s12576-014-0353-4
10 sg:pub.10.1007/s12576-017-0541-0
11 sg:pub.10.1023/a:1010883920374
12 https://doi.org/10.1002/cnm.2970
13 https://doi.org/10.1002/wsbm.76
14 https://doi.org/10.1016/0021-9290(92)90069-d
15 https://doi.org/10.1016/0021-9290(94)00174-3
16 https://doi.org/10.1016/j.cmpb.2013.11.013
17 https://doi.org/10.1016/j.hrthm.2011.01.026
18 https://doi.org/10.1016/j.jelectrocard.2008.12.003
19 https://doi.org/10.1016/j.jelectrocard.2015.08.036
20 https://doi.org/10.1016/j.media.2018.09.001
21 https://doi.org/10.1016/s0006-3495(79)85165-6
22 https://doi.org/10.1016/s0006-3495(92)81615-6
23 https://doi.org/10.1046/j.1540.8167.90314.x
24 https://doi.org/10.1088/0031-9155/51/23/014
25 https://doi.org/10.1109/jproc.2006.871772
26 https://doi.org/10.1109/jtehm.2018.2804947
27 https://doi.org/10.1109/tbme.2012.2226242
28 https://doi.org/10.1117/12.811033
29 https://doi.org/10.1142/s0219519409002894
30 https://doi.org/10.1152/ajpheart.00324.2011
31 https://doi.org/10.1152/ajpheart.00794.2003
32 https://doi.org/10.1152/ajpheart.00887.2009
33 https://doi.org/10.1155/2009/983794
34 https://doi.org/10.1161/01.cir.98.18.1921
35 https://doi.org/10.1161/01.res.30.2.244
36 https://doi.org/10.1161/01.res.82.10.1063
37 https://doi.org/10.1161/circulationaha.106.684357
38 https://doi.org/10.1161/hc1002.105231
39 https://doi.org/10.1529/biophysj.107.119487
40 https://doi.org/10.23736/s0026-4725.17.04362-6
41 https://doi.org/10.3389/fphys.2018.00926
42 schema:datePublished 2019-12
43 schema:datePublishedReg 2019-12-01
44 schema:description BACKGROUND: The heart wall exhibits three layers of different thicknesses: the outer epicardium, mid-myocardium, and inner endocardium. Among these layers, the mid-myocardium is typically the thickest. As indicated by preliminary studies, heart-wall layers exhibit various characteristics with regard to electrophysiology, pharmacology, and pathology. Construction of an accurate three-dimensional (3D) model of the heart is important for predicting physiological behaviors. However, the wide variability of myocardial shapes and the unclear edges between the epicardium and soft tissues are major challenges in the 3D model segmentation approach for identifying the boundaries of the epicardium, mid-myocardium, and endocardium. Therefore, this results in possible variations in the heterogeneity ratios between the epicardium, mid-myocardium, and endocardium. The objective of this study was to observe the effects of different thickness ratios of the epicardium, mid-myocardium, and endocardium on cardiac arrhythmogenesis, reentry instability, and mechanical responses during arrhythmia. METHODS: We used a computational method and simulated three heterogeneous ventricular models: Model 1 had the thickest M cell layer and thinnest epicardium and endocardium. Model 2 had intermediate layer thicknesses. Model 3 exhibited the thinnest mid-myocardium and thickest epicardium and endocardium. Electrical and mechanical simulations of the three heterogeneous models were performed under normal sinus rhythm and reentry conditions. RESULTS: Model 1 exhibited the highest probability of terminating reentrant waves, and Model 3 exhibited to experience greater cardiac arrhythmia. In the reentry simulation, at 8 s, Model 3 generated the largest number of rotors (eight), while Models 1 and 2 produced five and seven rotors, respectively. There was no significant difference in the cardiac output obtained during the sinus rhythm. Under the reentry condition, the highest cardiac output was generated by Model 1 (19 mL/s), followed by Model 2 (9 mL/s) and Model 3 (7 mL/s). CONCLUSIONS: A thicker mid-myocardium led to improvements in the pumping efficacy and contractility and reduced the probability of cardiac arrhythmia. Conversely, thinner M cell layers generated more unstable reentrant spiral waves and hindered the ventricular pumping.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N93dac6aeb8f4454f8d727fed5a2ae7af
49 N94afa867cd4448eba043cc6d5bd33d60
50 sg:journal.1031014
51 schema:name Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study
52 schema:pagination 23
53 schema:productId N21fda435021a45c0b347420916913e05
54 N3de8c7a5fc1948578186742969583ccb
55 N8f0f3ab68d9f44329f46b09e83fd0124
56 Nc0a545f11efa472e97622224c4352017
57 Ncfafed6f7a0e49b6830d833e526497fa
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112761115
59 https://doi.org/10.1186/s12938-019-0640-7
60 schema:sdDatePublished 2019-04-11T13:17
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N907c37e3f5ad4fc6ad5fd6789eb9f429
63 schema:url https://link.springer.com/10.1186%2Fs12938-019-0640-7
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N13d6e686da234cba8e197eccabc7af6f rdf:first N47dd631c506e43699362d06077555b33
68 rdf:rest Ndd9275aa447f454aa0b94914b997bfe9
69 N154fc7f61f734a679c2ae17bbfadfb18 schema:affiliation https://www.grid.ac/institutes/grid.418997.a
70 schema:familyName Lim
71 schema:givenName Ki Moo
72 rdf:type schema:Person
73 N21fda435021a45c0b347420916913e05 schema:name doi
74 schema:value 10.1186/s12938-019-0640-7
75 rdf:type schema:PropertyValue
76 N2c31e7ba5ff44d44a720a267f9742a7b rdf:first N4bc9131ad1844c52b0f55870db3a89cf
77 rdf:rest N13d6e686da234cba8e197eccabc7af6f
78 N3de8c7a5fc1948578186742969583ccb schema:name readcube_id
79 schema:value 42b24631e50eb5a894a25499840260ab96169c049fc4d9e18fcadcdaff124d92
80 rdf:type schema:PropertyValue
81 N47dd631c506e43699362d06077555b33 schema:affiliation https://www.grid.ac/institutes/grid.412010.6
82 schema:familyName Choi
83 schema:givenName Seong Wook
84 rdf:type schema:Person
85 N4bc9131ad1844c52b0f55870db3a89cf schema:affiliation https://www.grid.ac/institutes/grid.418997.a
86 schema:familyName Dusturia
87 schema:givenName Nida
88 rdf:type schema:Person
89 N518df4ee17f4469f8d7f1ca4117e71ee rdf:first N154fc7f61f734a679c2ae17bbfadfb18
90 rdf:rest rdf:nil
91 N8f0f3ab68d9f44329f46b09e83fd0124 schema:name pubmed_id
92 schema:value 30871548
93 rdf:type schema:PropertyValue
94 N907c37e3f5ad4fc6ad5fd6789eb9f429 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N93dac6aeb8f4454f8d727fed5a2ae7af schema:volumeNumber 18
97 rdf:type schema:PublicationVolume
98 N94afa867cd4448eba043cc6d5bd33d60 schema:issueNumber 1
99 rdf:type schema:PublicationIssue
100 Nc0a545f11efa472e97622224c4352017 schema:name dimensions_id
101 schema:value pub.1112761115
102 rdf:type schema:PropertyValue
103 Ncfafed6f7a0e49b6830d833e526497fa schema:name nlm_unique_id
104 schema:value 101147518
105 rdf:type schema:PropertyValue
106 Ndd9275aa447f454aa0b94914b997bfe9 rdf:first Nf5972a623fb2476e906e5cd7dc54e382
107 rdf:rest N518df4ee17f4469f8d7f1ca4117e71ee
108 Nf5972a623fb2476e906e5cd7dc54e382 schema:affiliation https://www.grid.ac/institutes/grid.418997.a
109 schema:familyName Song
110 schema:givenName Kwang Soup
111 rdf:type schema:Person
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
116 schema:name Cardiorespiratory Medicine and Haematology
117 rdf:type schema:DefinedTerm
118 sg:grant.7454889 http://pending.schema.org/fundedItem sg:pub.10.1186/s12938-019-0640-7
119 rdf:type schema:MonetaryGrant
120 sg:journal.1031014 schema:issn 1475-925X
121 schema:name BioMedical Engineering OnLine
122 rdf:type schema:Periodical
123 sg:pub.10.1007/bf02364118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016912083
124 https://doi.org/10.1007/bf02364118
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00791-002-0081-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030465469
127 https://doi.org/10.1007/s00791-002-0081-9
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10237-010-0235-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032580362
130 https://doi.org/10.1007/s10237-010-0235-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10439-006-9212-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023446162
133 https://doi.org/10.1007/s10439-006-9212-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s12576-011-0180-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033498152
136 https://doi.org/10.1007/s12576-011-0180-9
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s12576-014-0353-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001451564
139 https://doi.org/10.1007/s12576-014-0353-4
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s12576-017-0541-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085731284
142 https://doi.org/10.1007/s12576-017-0541-0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1023/a:1010883920374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043457097
145 https://doi.org/10.1023/a:1010883920374
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/cnm.2970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101241536
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/wsbm.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046984201
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0021-9290(92)90069-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1008739142
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0021-9290(94)00174-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022497867
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.cmpb.2013.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032627060
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.hrthm.2011.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023245919
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jelectrocard.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040455953
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jelectrocard.2015.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023407631
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.media.2018.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106814550
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0006-3495(79)85165-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050768585
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0006-3495(92)81615-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031322121
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1046/j.1540.8167.90314.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045106616
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0031-9155/51/23/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026342
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/jproc.2006.871772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296587
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/jtehm.2018.2804947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105237699
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tbme.2012.2226242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529020
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1117/12.811033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001606594
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1142/s0219519409002894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062997293
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1152/ajpheart.00324.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050713672
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1152/ajpheart.00794.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030842476
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1152/ajpheart.00887.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304426
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1155/2009/983794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015306879
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1161/01.cir.98.18.1921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016877562
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1161/01.res.30.2.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009518652
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1161/01.res.82.10.1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006277114
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1161/circulationaha.106.684357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024134877
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1161/hc1002.105231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017173921
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1529/biophysj.107.119487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014015172
202 rdf:type schema:CreativeWork
203 https://doi.org/10.23736/s0026-4725.17.04362-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083848573
204 rdf:type schema:CreativeWork
205 https://doi.org/10.3389/fphys.2018.00926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105908193
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.412010.6 schema:alternateName Kangwon National University
208 schema:name Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.418997.a schema:alternateName Kumoh National Institute of Technology
211 schema:name Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, 39253, Gumi, Gyeongbuk, Republic of Korea
212 Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...