Vision-aided brain–machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yoon Jae Kim, Hyung Seok Nam, Woo Hyung Lee, Han Gil Seo, Ja-Ho Leigh, Byung-Mo Oh, Moon Suk Bang, Sungwan Kim

ABSTRACT

BACKGROUND: While spontaneous robotic arm control using motor imagery has been reported, most previous successful cases have used invasive approaches with advantages in spatial resolution. However, still many researchers continue to investigate methods for robotic arm control with noninvasive neural signal. Most of noninvasive control of robotic arm utilizes P300, steady state visually evoked potential, N2pc, and mental tasks differentiation. Even though these approaches demonstrated successful accuracy, they are limited in time efficiency and user intuition, and mostly require visual stimulation. Ultimately, velocity vector construction using electroencephalography activated by motion-related motor imagery can be considered as a substitution. In this study, a vision-aided brain-machine interface training system for robotic arm control is proposed and developed. METHODS: The proposed system uses a Microsoft Kinect to detect and estimates the 3D positions of the possible target objects. The predicted velocity vector for robot arm input is compensated using the artificial potential to follow an intended one among the possible targets. Two participants with cervical spinal cord injury trained with the system to explore its possible effects. RESULTS: In a situation with four possible targets, the proposed system significantly improved the distance error to the intended target compared to the unintended ones (p < 0.0001). Functional magnetic resonance imaging after five sessions of observation-based training with the developed system showed brain activation patterns with tendency of focusing to ipsilateral primary motor and sensory cortex, posterior parietal cortex, and contralateral cerebellum. However, shared control with blending parameter α less than 1 was not successful and success rate for touching an instructed target was less than the chance level (= 50%). CONCLUSIONS: The pilot clinical study utilizing the training system suggested potential beneficial effects in characterizing the brain activation patterns. More... »

PAGES

14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12938-019-0633-6

DOI

http://dx.doi.org/10.1186/s12938-019-0633-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112072059

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30744661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yoon Jae", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biomedical Engineering, Seoul National University College of Medicine, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nam", 
        "givenName": "Hyung Seok", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biomedical Engineering, Seoul National University College of Medicine, 03080, Seoul, South Korea", 
            "Department of Rehabilitation Medicine, Seoul National University College of Medicine, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Woo Hyung", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Rehabilitation Medicine, Seoul National University College of Medicine, 03080, Seoul, South Korea", 
            "Department of Rehabilitation Medicine, Seoul National University Hospital, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Han Gil", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Incheon St. Mary's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.464585.e", 
          "name": [
            "Department of Rehabilitation Medicine, Incheon St. Mary\u2019s Hospital, College of Medicine, The Catholic University of Korea, 21431, Incheon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leigh", 
        "givenName": "Ja-Ho", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Rehabilitation Medicine, Seoul National University College of Medicine, 03080, Seoul, South Korea", 
            "Department of Rehabilitation Medicine, Seoul National University Hospital, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Byung-Mo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Rehabilitation Medicine, Seoul National University College of Medicine, 03080, Seoul, South Korea", 
            "Department of Rehabilitation Medicine, Seoul National University Hospital, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bang", 
        "givenName": "Moon Suk", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Biomedical Engineering, Seoul National University College of Medicine, 03080, Seoul, South Korea", 
            "Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sungwan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1523/jneurosci.3423-08.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001646967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tins.2006.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002419719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-015-0033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004335529", 
          "https://doi.org/10.1007/s40846-015-0033-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40846-015-0033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004335529", 
          "https://doi.org/10.1007/s40846-015-0033-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0000042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006236159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2012.01.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007395241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(02)00057-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009858336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sc.2012.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010479623", 
          "https://doi.org/10.1038/sc.2012.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2013.00172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011664946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017695173", 
          "https://doi.org/10.1038/nature11076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020103242", 
          "https://doi.org/10.1038/nn947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020103242", 
          "https://doi.org/10.1038/nn947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.27.070203.144233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020297835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.09.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021483497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1221127110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022040072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.pbr.2016.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027252582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-014-1204-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031876041", 
          "https://doi.org/10.1007/s11517-014-1204-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12984-016-0134-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034595683", 
          "https://doi.org/10.1186/s12984-016-0134-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61816-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039465233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/9/1/013001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042376380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042808915", 
          "https://doi.org/10.1038/nature06996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12922-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043933116", 
          "https://doi.org/10.1007/978-3-319-12922-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12922-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043933116", 
          "https://doi.org/10.1007/978-3-319-12922-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnint.2015.00040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048679228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bb.02.060173.001105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049964214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-14-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052347240", 
          "https://doi.org/10.1186/1475-925x-14-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mra.2016.2605403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061419835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1977.10542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061443600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2006.870235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2010.2076364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2013.2294685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084012305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/s41598-016-0001-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085372625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/dscc2011-6143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092854852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icorr.2007.4428489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093280649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093997066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robio.2009.4913028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094139967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2012.6385667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094304545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095198604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aim.2013.6584090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095423639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smc.2014.6974124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095801203"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: While spontaneous robotic arm control using motor imagery has been reported, most previous successful cases have used invasive approaches with advantages in spatial resolution. However, still many researchers continue to investigate methods for robotic arm control with noninvasive neural signal. Most of noninvasive control of robotic arm utilizes P300, steady state visually evoked potential, N2pc, and mental tasks differentiation. Even though these approaches demonstrated successful accuracy, they are limited in time efficiency and user intuition, and mostly require visual stimulation. Ultimately, velocity vector construction using electroencephalography activated by motion-related motor imagery can be considered as a substitution. In this study, a vision-aided brain-machine interface training system for robotic arm control is proposed and developed.\nMETHODS: The proposed system uses a Microsoft Kinect to detect and estimates the 3D positions of the possible target objects. The predicted velocity vector for robot arm input is compensated using the artificial potential to follow an intended one among the possible targets. Two participants with cervical spinal cord injury trained with the system to explore its possible effects.\nRESULTS: In a situation with four possible targets, the proposed system significantly improved the distance error to the intended target compared to the unintended ones (p\u2009<\u20090.0001). Functional magnetic resonance imaging after five sessions of observation-based training with the developed system showed brain activation patterns with tendency of focusing to ipsilateral primary motor and sensory cortex, posterior parietal cortex, and contralateral cerebellum. However, shared control with blending parameter \u03b1 less than 1 was not successful and success rate for touching an instructed target was less than the chance level (=\u200950%).\nCONCLUSIONS: The pilot clinical study utilizing the training system suggested potential beneficial effects in characterizing the brain activation patterns.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12938-019-0633-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Vision-aided brain\u2013machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e36c012fff42763e3f7057d48114af186e2760642776a21863ae11a9b8044401"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30744661"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12938-019-0633-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112072059"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12938-019-0633-6", 
      "https://app.dimensions.ai/details/publication/pub.1112072059"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89814_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12938-019-0633-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0633-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0633-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0633-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0633-6'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12938-019-0633-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc5bd2c341b7e4e679afc6e6c47a7e3ef
4 schema:citation sg:pub.10.1007/978-3-319-12922-8
5 sg:pub.10.1007/s11517-014-1204-4
6 sg:pub.10.1007/s40846-015-0033-8
7 sg:pub.10.1038/nature06996
8 sg:pub.10.1038/nature11076
9 sg:pub.10.1038/nature14539
10 sg:pub.10.1038/nn947
11 sg:pub.10.1038/sc.2012.14
12 sg:pub.10.1186/1475-925x-14-1
13 sg:pub.10.1186/s12984-016-0134-9
14 https://doi.org/10.1002/hbm.23566
15 https://doi.org/10.1016/bs.pbr.2016.04.020
16 https://doi.org/10.1016/j.eswa.2012.01.110
17 https://doi.org/10.1016/j.neucom.2014.09.078
18 https://doi.org/10.1016/j.tins.2006.07.004
19 https://doi.org/10.1016/s0140-6736(12)61816-9
20 https://doi.org/10.1016/s1388-2457(02)00057-3
21 https://doi.org/10.1038/s41598-016-0001-8
22 https://doi.org/10.1073/pnas.1221127110
23 https://doi.org/10.1088/1741-2560/9/1/013001
24 https://doi.org/10.1109/aim.2013.6584090
25 https://doi.org/10.1109/cvpr.2005.177
26 https://doi.org/10.1109/cvpr.2006.119
27 https://doi.org/10.1109/icorr.2007.4428489
28 https://doi.org/10.1109/iros.2012.6385667
29 https://doi.org/10.1109/mra.2016.2605403
30 https://doi.org/10.1109/proc.1977.10542
31 https://doi.org/10.1109/robio.2009.4913028
32 https://doi.org/10.1109/smc.2014.6974124
33 https://doi.org/10.1109/tbme.2006.870235
34 https://doi.org/10.1109/tnsre.2010.2076364
35 https://doi.org/10.1109/tnsre.2013.2294685
36 https://doi.org/10.1115/dscc2011-6143
37 https://doi.org/10.1145/3065386
38 https://doi.org/10.1146/annurev.bb.02.060173.001105
39 https://doi.org/10.1146/annurev.neuro.27.070203.144233
40 https://doi.org/10.1371/journal.pbio.0000042
41 https://doi.org/10.1523/jneurosci.3423-08.2008
42 https://doi.org/10.3389/fnins.2013.00172
43 https://doi.org/10.3389/fnint.2015.00040
44 schema:datePublished 2019-12
45 schema:datePublishedReg 2019-12-01
46 schema:description BACKGROUND: While spontaneous robotic arm control using motor imagery has been reported, most previous successful cases have used invasive approaches with advantages in spatial resolution. However, still many researchers continue to investigate methods for robotic arm control with noninvasive neural signal. Most of noninvasive control of robotic arm utilizes P300, steady state visually evoked potential, N2pc, and mental tasks differentiation. Even though these approaches demonstrated successful accuracy, they are limited in time efficiency and user intuition, and mostly require visual stimulation. Ultimately, velocity vector construction using electroencephalography activated by motion-related motor imagery can be considered as a substitution. In this study, a vision-aided brain-machine interface training system for robotic arm control is proposed and developed. METHODS: The proposed system uses a Microsoft Kinect to detect and estimates the 3D positions of the possible target objects. The predicted velocity vector for robot arm input is compensated using the artificial potential to follow an intended one among the possible targets. Two participants with cervical spinal cord injury trained with the system to explore its possible effects. RESULTS: In a situation with four possible targets, the proposed system significantly improved the distance error to the intended target compared to the unintended ones (p < 0.0001). Functional magnetic resonance imaging after five sessions of observation-based training with the developed system showed brain activation patterns with tendency of focusing to ipsilateral primary motor and sensory cortex, posterior parietal cortex, and contralateral cerebellum. However, shared control with blending parameter α less than 1 was not successful and success rate for touching an instructed target was less than the chance level (= 50%). CONCLUSIONS: The pilot clinical study utilizing the training system suggested potential beneficial effects in characterizing the brain activation patterns.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N7853e164333941849d92343e00126f56
51 Nd336510f0fbf4a0ebe9ad1acd5cbdd03
52 sg:journal.1031014
53 schema:name Vision-aided brain–machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury
54 schema:pagination 14
55 schema:productId N1c68aab0447240dd86c175469305ee91
56 N36f5734b7c2045d4bd2fc675f30459fa
57 N446bda58e88b434c99d21d3bda19c763
58 N5dabf7d88fb9496ea5c2c1b9e72c1b01
59 N74a8ae7070154dd7a060e995fcccc96b
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112072059
61 https://doi.org/10.1186/s12938-019-0633-6
62 schema:sdDatePublished 2019-04-11T09:59
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N46e977427f7742b4b0a2e39bef8e0db5
65 schema:url https://link.springer.com/10.1186%2Fs12938-019-0633-6
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N1c68aab0447240dd86c175469305ee91 schema:name doi
70 schema:value 10.1186/s12938-019-0633-6
71 rdf:type schema:PropertyValue
72 N20aeb5645aac42bc881aee2fabfd25af schema:affiliation https://www.grid.ac/institutes/grid.31501.36
73 schema:familyName Kim
74 schema:givenName Sungwan
75 rdf:type schema:Person
76 N22cb75abb9524872b288699c201cb465 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
77 schema:familyName Lee
78 schema:givenName Woo Hyung
79 rdf:type schema:Person
80 N2ce88a4b97eb4589979dbf7eb4cdb742 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
81 schema:familyName Kim
82 schema:givenName Yoon Jae
83 rdf:type schema:Person
84 N36f5734b7c2045d4bd2fc675f30459fa schema:name nlm_unique_id
85 schema:value 101147518
86 rdf:type schema:PropertyValue
87 N446bda58e88b434c99d21d3bda19c763 schema:name readcube_id
88 schema:value e36c012fff42763e3f7057d48114af186e2760642776a21863ae11a9b8044401
89 rdf:type schema:PropertyValue
90 N46e977427f7742b4b0a2e39bef8e0db5 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N58dc6657896843cfa1451e90a125d347 rdf:first Nb0d50c99ff1d46a2ac7e5dcbeff27062
93 rdf:rest Nf3e3596272b64ae795f8faf4b7502aff
94 N5dabf7d88fb9496ea5c2c1b9e72c1b01 schema:name pubmed_id
95 schema:value 30744661
96 rdf:type schema:PropertyValue
97 N6fe16214d23a4fc78a9a38a1bbcfbd0b rdf:first N8b43ed4f704c4ff6922a23213797033f
98 rdf:rest Nfb5d510a863f4505a5be677b7f6365f6
99 N74a8ae7070154dd7a060e995fcccc96b schema:name dimensions_id
100 schema:value pub.1112072059
101 rdf:type schema:PropertyValue
102 N7853e164333941849d92343e00126f56 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 N8b43ed4f704c4ff6922a23213797033f schema:affiliation https://www.grid.ac/institutes/grid.412484.f
105 schema:familyName Bang
106 schema:givenName Moon Suk
107 rdf:type schema:Person
108 N9b8a211c3d75483c86ebe83015e8a158 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
109 schema:familyName Seo
110 schema:givenName Han Gil
111 rdf:type schema:Person
112 Nb0d50c99ff1d46a2ac7e5dcbeff27062 schema:affiliation https://www.grid.ac/institutes/grid.464585.e
113 schema:familyName Leigh
114 schema:givenName Ja-Ho
115 rdf:type schema:Person
116 Nbccb3f237d394d6caae47efa30be55c8 rdf:first N22cb75abb9524872b288699c201cb465
117 rdf:rest Nbf9f98c57be64190964c8728cc16c2d6
118 Nbf9f98c57be64190964c8728cc16c2d6 rdf:first N9b8a211c3d75483c86ebe83015e8a158
119 rdf:rest N58dc6657896843cfa1451e90a125d347
120 Nc5bd2c341b7e4e679afc6e6c47a7e3ef rdf:first N2ce88a4b97eb4589979dbf7eb4cdb742
121 rdf:rest Ndb7d53e57bcf4aa09e3d92138792ad42
122 Nd336510f0fbf4a0ebe9ad1acd5cbdd03 schema:volumeNumber 18
123 rdf:type schema:PublicationVolume
124 Ndb7d53e57bcf4aa09e3d92138792ad42 rdf:first Ne841ee477b0f41ceb7e19fb6bbb51937
125 rdf:rest Nbccb3f237d394d6caae47efa30be55c8
126 Ne39020cd7b8749c1891d6cdb5260adb2 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
127 schema:familyName Oh
128 schema:givenName Byung-Mo
129 rdf:type schema:Person
130 Ne841ee477b0f41ceb7e19fb6bbb51937 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
131 schema:familyName Nam
132 schema:givenName Hyung Seok
133 rdf:type schema:Person
134 Nf3e3596272b64ae795f8faf4b7502aff rdf:first Ne39020cd7b8749c1891d6cdb5260adb2
135 rdf:rest N6fe16214d23a4fc78a9a38a1bbcfbd0b
136 Nfb5d510a863f4505a5be677b7f6365f6 rdf:first N20aeb5645aac42bc881aee2fabfd25af
137 rdf:rest rdf:nil
138 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
139 schema:name Information and Computing Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
142 schema:name Artificial Intelligence and Image Processing
143 rdf:type schema:DefinedTerm
144 sg:journal.1031014 schema:issn 1475-925X
145 schema:name BioMedical Engineering OnLine
146 rdf:type schema:Periodical
147 sg:pub.10.1007/978-3-319-12922-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043933116
148 https://doi.org/10.1007/978-3-319-12922-8
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11517-014-1204-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031876041
151 https://doi.org/10.1007/s11517-014-1204-4
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s40846-015-0033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004335529
154 https://doi.org/10.1007/s40846-015-0033-8
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature06996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042808915
157 https://doi.org/10.1038/nature06996
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature11076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017695173
160 https://doi.org/10.1038/nature11076
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
163 https://doi.org/10.1038/nature14539
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nn947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020103242
166 https://doi.org/10.1038/nn947
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/sc.2012.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010479623
169 https://doi.org/10.1038/sc.2012.14
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1475-925x-14-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052347240
172 https://doi.org/10.1186/1475-925x-14-1
173 rdf:type schema:CreativeWork
174 sg:pub.10.1186/s12984-016-0134-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034595683
175 https://doi.org/10.1186/s12984-016-0134-9
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/hbm.23566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084012305
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/bs.pbr.2016.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027252582
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.eswa.2012.01.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007395241
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.neucom.2014.09.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021483497
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.tins.2006.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002419719
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0140-6736(12)61816-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039465233
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s1388-2457(02)00057-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009858336
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1038/s41598-016-0001-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085372625
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1073/pnas.1221127110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022040072
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/1741-2560/9/1/013001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042376380
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/aim.2013.6584090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095423639
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/cvpr.2006.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095198604
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/icorr.2007.4428489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093280649
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/iros.2012.6385667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094304545
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/mra.2016.2605403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061419835
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/proc.1977.10542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061443600
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/robio.2009.4913028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094139967
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/smc.2014.6974124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095801203
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/tbme.2006.870235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526608
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/tnsre.2010.2076364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740495
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tnsre.2013.2294685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740808
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1115/dscc2011-6143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092854852
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1146/annurev.bb.02.060173.001105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049964214
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1146/annurev.neuro.27.070203.144233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020297835
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pbio.0000042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006236159
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1523/jneurosci.3423-08.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001646967
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3389/fnins.2013.00172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011664946
234 rdf:type schema:CreativeWork
235 https://doi.org/10.3389/fnint.2015.00040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048679228
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
238 schema:name Department of Biomedical Engineering, Seoul National University College of Medicine, 03080, Seoul, South Korea
239 Department of Rehabilitation Medicine, Seoul National University College of Medicine, 03080, Seoul, South Korea
240 Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, 03080, Seoul, South Korea
241 Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, 08826, Seoul, South Korea
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
244 schema:name Department of Rehabilitation Medicine, Seoul National University College of Medicine, 03080, Seoul, South Korea
245 Department of Rehabilitation Medicine, Seoul National University Hospital, 03080, Seoul, South Korea
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.464585.e schema:alternateName Incheon St. Mary's Hospital
248 schema:name Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 21431, Incheon, South Korea
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...