Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Zhihua Liu, Chenguang Ma, Junhua Gu, Ming Yu

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. RESULTS: Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. CONCLUSIONS: The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI. More... »

PAGES

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12938-019-0625-6

DOI

http://dx.doi.org/10.1186/s12938-019-0625-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111660487

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30683112


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shenzhen Institutes of Advanced Technology", 
          "id": "https://www.grid.ac/institutes/grid.458489.c", 
          "name": [
            "Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China", 
            "Beijing Yuqiu Medical Research Institute, 100022, Beijing, China", 
            "Shenzhen Yuqiu Biological Big Data Research Institute, 518033, Shenzhen, China", 
            "Nanjing Yuqiu Biotechnology Co., Ltd., 210009, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Tsinghua University, 100084, Beijing, China", 
            "Beijing Yuqiu Medical Research Institute, 100022, Beijing, China", 
            "Shenzhen Yuqiu Biological Big Data Research Institute, 518033, Shenzhen, China", 
            "Nanjing Yuqiu Biotechnology Co., Ltd., 210009, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Chenguang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412030.4", 
          "name": [
            "Shenzhen Yuqiu Biological Big Data Research Institute, 518033, Shenzhen, China", 
            "Nanjing Yuqiu Biotechnology Co., Ltd., 210009, Nanjing, China", 
            "Hebei University of Technology, 300130, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Junhua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412030.4", 
          "name": [
            "Shenzhen Yuqiu Biological Big Data Research Institute, 518033, Shenzhen, China", 
            "Nanjing Yuqiu Biotechnology Co., Ltd., 210009, Nanjing, China", 
            "Hebei University of Technology, 300130, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Ming", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1159/000258197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000505804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10741-016-9554-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006753949", 
          "https://doi.org/10.1007/s10741-016-9554-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10741-016-9554-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006753949", 
          "https://doi.org/10.1007/s10741-016-9554-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jjcc.2010.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008312230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2006.05.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008330510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010326831", 
          "https://doi.org/10.1038/nature03985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010326831", 
          "https://doi.org/10.1038/nature03985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010326831", 
          "https://doi.org/10.1038/nature03985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2004-08-3283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011077875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13040-016-0117-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011080736", 
          "https://doi.org/10.1186/s13040-016-0117-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13040-016-0117-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011080736", 
          "https://doi.org/10.1186/s13040-016-0117-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10741-007-9004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012996240", 
          "https://doi.org/10.1007/s10741-007-9004-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10741-007-9004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012996240", 
          "https://doi.org/10.1007/s10741-007-9004-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015802193", 
          "https://doi.org/10.1186/gm560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e3282ef9819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015874964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e3282ef9819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015874964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yjmcc.2014.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016854987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2015.03.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021319131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024489479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/mst021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025155055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.162.21.2405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026488919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-012-2330-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030324920", 
          "https://doi.org/10.1007/s11033-012-2330-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.167.6.573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036879423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037084752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037084752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0042076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038393762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2007.02.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038912871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2796.2012.02589.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040132594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.2652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/path.2652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041026329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5812/ircmj.26919v2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044220910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.114.304405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048581456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.114.304405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048581456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-4-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049587189", 
          "https://doi.org/10.1186/1755-8794-4-83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083860158", 
          "https://doi.org/10.1038/srep43167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2017.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084060040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-04037-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090218409", 
          "https://doi.org/10.1038/s41598-017-04037-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI.\nRESULTS: Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction.\nCONCLUSIONS: The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12938-019-0625-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "96a29a1e6dbc5c646b4d0ce89ed8340ff6fcfee2a1c4fcb1da0f68662783fa95"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30683112"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12938-019-0625-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111660487"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12938-019-0625-6", 
      "https://app.dimensions.ai/details/publication/pub.1111660487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68471_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12938-019-0625-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0625-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0625-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0625-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-019-0625-6'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12938-019-0625-6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N15de8af347444b85bfe1b9f5388300cb
4 schema:citation sg:pub.10.1007/s10741-007-9004-7
5 sg:pub.10.1007/s10741-016-9554-7
6 sg:pub.10.1007/s11033-012-2330-4
7 sg:pub.10.1038/nature03985
8 sg:pub.10.1038/s41598-017-04037-5
9 sg:pub.10.1038/srep43167
10 sg:pub.10.1186/1755-8794-4-83
11 sg:pub.10.1186/gm560
12 sg:pub.10.1186/s13040-016-0117-1
13 https://doi.org/10.1001/archinte.162.21.2405
14 https://doi.org/10.1001/archinte.167.6.573
15 https://doi.org/10.1002/path.2652
16 https://doi.org/10.1016/j.amjcard.2007.02.077
17 https://doi.org/10.1016/j.artmed.2017.02.005
18 https://doi.org/10.1016/j.ijcard.2015.03.305
19 https://doi.org/10.1016/j.jacc.2006.05.055
20 https://doi.org/10.1016/j.jjcc.2010.10.003
21 https://doi.org/10.1016/j.yjmcc.2014.04.017
22 https://doi.org/10.1093/bioinformatics/bts666
23 https://doi.org/10.1093/molbev/mst021
24 https://doi.org/10.1097/hjh.0b013e3282ef9819
25 https://doi.org/10.1111/j.1365-2796.2012.02589.x
26 https://doi.org/10.1159/000258197
27 https://doi.org/10.1161/atvbaha.114.304405
28 https://doi.org/10.1161/cir.0000000000000350
29 https://doi.org/10.1182/blood-2004-08-3283
30 https://doi.org/10.1371/journal.pone.0042076
31 https://doi.org/10.5812/ircmj.26919v2
32 schema:datePublished 2019-12
33 schema:datePublishedReg 2019-12-01
34 schema:description BACKGROUND: Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. RESULTS: Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. CONCLUSIONS: The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf Nc5f5d52c7ee14836a8936de99e6e93a7
39 Nd39bc065e7ca40fcb9a760299b4245e3
40 sg:journal.1031014
41 schema:name Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis
42 schema:pagination 9
43 schema:productId N4ff75634fee54812ad9d1a049fef0704
44 N9d2ddf9f17eb4e62b5122a7f0c9d558b
45 Nd11bee999f9c4c9cacc053c50a86fdc6
46 Nd1c1fb835ce344b1a795ce2bd2992da9
47 Ndaa441632270460cab6023c714ad6c37
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111660487
49 https://doi.org/10.1186/s12938-019-0625-6
50 schema:sdDatePublished 2019-04-11T08:58
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N98e28af4b2344d2ab6df4e19322ce857
53 schema:url https://link.springer.com/10.1186%2Fs12938-019-0625-6
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N15de8af347444b85bfe1b9f5388300cb rdf:first N9ed94d8579af43f89a549cba3a12be82
58 rdf:rest N9b872ecbd29a4921808307b87ee93f0a
59 N16e00d7b0a6e40799a63cb634d47725b schema:affiliation https://www.grid.ac/institutes/grid.412030.4
60 schema:familyName Gu
61 schema:givenName Junhua
62 rdf:type schema:Person
63 N3384b7624e5d480ca262a87c4ca76c7b rdf:first N16e00d7b0a6e40799a63cb634d47725b
64 rdf:rest Ne2c181d86efd4841bd6fd10a76c5288e
65 N477612c496834cf2bffd22fe7802f9d4 schema:affiliation https://www.grid.ac/institutes/grid.412030.4
66 schema:familyName Yu
67 schema:givenName Ming
68 rdf:type schema:Person
69 N4ff75634fee54812ad9d1a049fef0704 schema:name nlm_unique_id
70 schema:value 101147518
71 rdf:type schema:PropertyValue
72 N98e28af4b2344d2ab6df4e19322ce857 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N9b872ecbd29a4921808307b87ee93f0a rdf:first Nd4c7e927dcdf4130aa236dee04d7dfd8
75 rdf:rest N3384b7624e5d480ca262a87c4ca76c7b
76 N9d2ddf9f17eb4e62b5122a7f0c9d558b schema:name pubmed_id
77 schema:value 30683112
78 rdf:type schema:PropertyValue
79 N9ed94d8579af43f89a549cba3a12be82 schema:affiliation https://www.grid.ac/institutes/grid.458489.c
80 schema:familyName Liu
81 schema:givenName Zhihua
82 rdf:type schema:Person
83 Nc5f5d52c7ee14836a8936de99e6e93a7 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 Nd11bee999f9c4c9cacc053c50a86fdc6 schema:name readcube_id
86 schema:value 96a29a1e6dbc5c646b4d0ce89ed8340ff6fcfee2a1c4fcb1da0f68662783fa95
87 rdf:type schema:PropertyValue
88 Nd1c1fb835ce344b1a795ce2bd2992da9 schema:name dimensions_id
89 schema:value pub.1111660487
90 rdf:type schema:PropertyValue
91 Nd39bc065e7ca40fcb9a760299b4245e3 schema:volumeNumber 18
92 rdf:type schema:PublicationVolume
93 Nd4c7e927dcdf4130aa236dee04d7dfd8 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
94 schema:familyName Ma
95 schema:givenName Chenguang
96 rdf:type schema:Person
97 Ndaa441632270460cab6023c714ad6c37 schema:name doi
98 schema:value 10.1186/s12938-019-0625-6
99 rdf:type schema:PropertyValue
100 Ne2c181d86efd4841bd6fd10a76c5288e rdf:first N477612c496834cf2bffd22fe7802f9d4
101 rdf:rest rdf:nil
102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
103 schema:name Biological Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
106 schema:name Genetics
107 rdf:type schema:DefinedTerm
108 sg:journal.1031014 schema:issn 1475-925X
109 schema:name BioMedical Engineering OnLine
110 rdf:type schema:Periodical
111 sg:pub.10.1007/s10741-007-9004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012996240
112 https://doi.org/10.1007/s10741-007-9004-7
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10741-016-9554-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006753949
115 https://doi.org/10.1007/s10741-016-9554-7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11033-012-2330-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030324920
118 https://doi.org/10.1007/s11033-012-2330-4
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nature03985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010326831
121 https://doi.org/10.1038/nature03985
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/s41598-017-04037-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090218409
124 https://doi.org/10.1038/s41598-017-04037-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/srep43167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083860158
127 https://doi.org/10.1038/srep43167
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1755-8794-4-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049587189
130 https://doi.org/10.1186/1755-8794-4-83
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/gm560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015802193
133 https://doi.org/10.1186/gm560
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/s13040-016-0117-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011080736
136 https://doi.org/10.1186/s13040-016-0117-1
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1001/archinte.162.21.2405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026488919
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1001/archinte.167.6.573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036879423
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/path.2652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041026329
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.amjcard.2007.02.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038912871
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.artmed.2017.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084060040
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ijcard.2015.03.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021319131
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jacc.2006.05.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008330510
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jjcc.2010.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008312230
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.yjmcc.2014.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016854987
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/bts666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024489479
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/molbev/mst021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025155055
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1097/hjh.0b013e3282ef9819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015874964
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1365-2796.2012.02589.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040132594
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1159/000258197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000505804
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1161/atvbaha.114.304405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048581456
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1161/cir.0000000000000350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037084752
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1182/blood-2004-08-3283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077875
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1371/journal.pone.0042076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038393762
173 rdf:type schema:CreativeWork
174 https://doi.org/10.5812/ircmj.26919v2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044220910
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
177 schema:name Beijing Yuqiu Medical Research Institute, 100022, Beijing, China
178 Nanjing Yuqiu Biotechnology Co., Ltd., 210009, Nanjing, China
179 Shenzhen Yuqiu Biological Big Data Research Institute, 518033, Shenzhen, China
180 Tsinghua University, 100084, Beijing, China
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.412030.4 schema:alternateName Hebei University of Technology
183 schema:name Hebei University of Technology, 300130, Tianjin, China
184 Nanjing Yuqiu Biotechnology Co., Ltd., 210009, Nanjing, China
185 Shenzhen Yuqiu Biological Big Data Research Institute, 518033, Shenzhen, China
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.458489.c schema:alternateName Shenzhen Institutes of Advanced Technology
188 schema:name Beijing Yuqiu Medical Research Institute, 100022, Beijing, China
189 Nanjing Yuqiu Biotechnology Co., Ltd., 210009, Nanjing, China
190 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
191 Shenzhen Yuqiu Biological Big Data Research Institute, 518033, Shenzhen, China
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...