Modeling and classification of gait patterns between anterior cruciate ligament deficient and intact knees based on phase space reconstruction, Euclidean ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Wenbao Wu, Wei Zeng, Limin Ma, Chengzhi Yuan, Yu Zhang

ABSTRACT

BACKGROUND: The anterior cruciate ligament (ACL) plays an important role in stabilizing translation and rotation of the tibia relative to the femur. ACL injury alters knee kinematics and usually links to the alternation of gait patterns. The aim of this study is to develop a new method to distinguish between gait patterns of patients with anterior cruciate ligament deficient (ACL-D) knees and healthy controls with ACL-intact (ACL-I) knees based on nonlinear features and neural networks. Therefore ACL injury will be automatically and objectively detected. METHODS: First knee rotation and translation parameters are extracted and phase space reconstruction (PSR) is employed. The properties associated with the gait system dynamics are preserved in the reconstructed phase space. For the purpose of classification of ACL-D and ACL-I knee gait patterns, three-dimensional (3D) PSR together with Euclidean distance computation has been used. These measured parameters show significant difference in gait dynamics between the two groups and have been utilized to form a feature set. Neural networks are then constructed to identify gait dynamics and are utilized as the classifier to distinguish between ACL-D and ACL-I knee gait patterns based on the difference of gait dynamics between the two groups. RESULTS: Experiments are carried out on a database containing 18 patients with ACL injury and 28 healthy controls to assess the effectiveness of the proposed method. By using the twofold and leave-one-subject-out cross-validation styles, the correct classification rates for ACL-D and ACL-I knees are reported to be 91.3[Formula: see text] and 95.65[Formula: see text], respectively. CONCLUSION: Compared with other state-of-the-art methods, the results demonstrate that gait alterations in the presence of ACL deficiency can be detected with superior performance. The proposed method is a potential candidate for the automatic and non-invasive classification between patients with ACL deficiency and healthy subjects. More... »

PAGES

165

References to SciGraph publications

  • 2015-09. Biomechanics Associated with Patellofemoral Pain and ACL Injuries in Sports in SPORTS MEDICINE
  • 2007-05. Recognizing knee pathologies by classifying instantaneous screws of the six degrees-of-freedom knee motion in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2004-01. Gait patterns before and after anterior cruciate ligament reconstruction in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2017-05. Anterior cruciate ligament deficiency reduces walking economy in “copers” and “non-copers” in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2013-04. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2014-03. Kinematic and Kinetic Interactions During Normal and ACL-Deficient Gait: A Longitudinal In Vivo Study in ANNALS OF BIOMEDICAL ENGINEERING
  • 2010-01. Adaptations of gait and muscle activation in chronic ACL deficiency in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2013-12. Analysis of knee flexion characteristics and how they alter with the onset of knee osteoarthritis: a case control study in BMC MUSCULOSKELETAL DISORDERS
  • 2016-08. Approaching the accuracy–cost conflict in embedded classification system design in PATTERN ANALYSIS AND APPLICATIONS
  • 2017-02. An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics in PATTERN ANALYSIS AND APPLICATIONS
  • 2015-07. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2017-12. Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system in SCIENTIFIC REPORTS
  • 2009-12. Knee stability assessment on anterior cruciate ligament injury: Clinical and biomechanical approaches in BMC SPORTS SCIENCE, MEDICINE AND REHABILITATION
  • 2012-04. A new quantitative method for pivot shift grading in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2017-04. Selection of clinical features for pattern recognition applied to gait analysis in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2015-11. Gait changes of the ACL-deficient knee 3D kinematic assessment in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 2017-04. Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion in KNEE SURGERY, SPORTS TRAUMATOLOGY, ARTHROSCOPY
  • 1981. Detecting strange attractors in turbulence in DYNAMICAL SYSTEMS AND TURBULENCE, WARWICK 1980
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12938-018-0594-1

    DOI

    http://dx.doi.org/10.1186/s12938-018-0594-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107953493

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30382920


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anterior Cruciate Ligament", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anterior Cruciate Ligament Injuries", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomechanical Phenomena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Case-Control Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gait", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Healthy Volunteers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Joint Instability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Knee", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Knee Joint", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Net", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Principal Component Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Range of Motion, Articular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rotation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tibia", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Acupuncture, Longyan First Hospital, 364000, Longyan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Wenbao", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Longyan University", 
              "id": "https://www.grid.ac/institutes/grid.440829.3", 
              "name": [
                "School of Physics and Mechanical & Electrical Engineering, Longyan University, 364012, Longyan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeng", 
            "givenName": "Wei", 
            "id": "sg:person.01235722777.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235722777.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "General Hospital of Guangzhou Military Command", 
              "id": "https://www.grid.ac/institutes/grid.413435.4", 
              "name": [
                "Department of Orthopaedic Surgery, Guangzhou General Hospital of Guangzhou Military Command, 510010, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Limin", 
            "id": "sg:person.0744061651.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744061651.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Rhode Island", 
              "id": "https://www.grid.ac/institutes/grid.20431.34", 
              "name": [
                "Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 02881, Kingston, RI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuan", 
            "givenName": "Chengzhi", 
            "id": "sg:person.014273430641.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273430641.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yu", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2015.05.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000567575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2015.05.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000567575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1249/mss.0000000000000236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002336321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1249/mss.0000000000000236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002336321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2013.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003722736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelekin.2013.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003722736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2474-14-169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005000418", 
              "https://doi.org/10.1186/1471-2474-14-169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gaitpost.2011.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005253116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-016-1546-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006539129", 
              "https://doi.org/10.1007/s11517-016-1546-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-016-1546-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006539129", 
              "https://doi.org/10.1007/s11517-016-1546-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2014.08.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008501562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asmart.2016.07.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008979324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2016.08.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009611248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-007-0174-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012206840", 
              "https://doi.org/10.1007/s11517-007-0174-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-007-0174-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012206840", 
              "https://doi.org/10.1007/s11517-007-0174-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-1694(01)00573-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012781955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-015-0503-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013061969", 
              "https://doi.org/10.1007/s10044-015-0503-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10255842.2015.1015526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014392110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2016.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015408338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gaitpost.2015.07.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015612656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2014.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015802279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2015.04.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019695343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2015.04.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019695343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10255842.2015.1032943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020185810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.12.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020742008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.humov.2011.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021050394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpsyg.2013.00863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023698155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2003.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023705683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-009-0886-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023957658", 
              "https://doi.org/10.1007/s00167-009-0886-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-009-0886-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023957658", 
              "https://doi.org/10.1007/s00167-009-0886-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-009-0886-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023957658", 
              "https://doi.org/10.1007/s00167-009-0886-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2014.03.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026390551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gaitpost.2015.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026592896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-013-2436-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027194886", 
              "https://doi.org/10.1007/s00167-013-2436-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40279-015-0353-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027323186", 
              "https://doi.org/10.1007/s40279-015-0353-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2010.09.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028233666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2007.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028934248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiomech.2004.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030704385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asmart.2016.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030937871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-012-1903-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035508468", 
              "https://doi.org/10.1007/s00167-012-1903-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-2909.105.2.309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036243101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.joca.2015.02.508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036406684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-015-3709-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037930775", 
              "https://doi.org/10.1007/s00167-015-3709-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2016.02.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039086449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10439-013-0914-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039375809", 
              "https://doi.org/10.1007/s10439-013-0914-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0045186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040067888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-014-3169-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041058133", 
              "https://doi.org/10.1007/s00167-014-3169-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clinbiomech.2014.03.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041232062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsams.2015.12.439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042986095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-015-0468-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046402349", 
              "https://doi.org/10.1007/s10044-015-0468-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-003-0440-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046840596", 
              "https://doi.org/10.1007/s00167-003-0440-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0091924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049441366", 
              "https://doi.org/10.1007/bfb0091924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1758-2555-1-20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050058669", 
              "https://doi.org/10.1186/1758-2555-1-20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11517-015-1269-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051600593", 
              "https://doi.org/10.1007/s11517-015-1269-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.712182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2013.2278780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061529362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2005.860843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.889496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218127409023640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062955642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2519/jospt.2005.35.8.531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070873112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2519/jospt.2007.2292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070873283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2519/jospt.2011.3384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070873824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/embc.2013.6610240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078796952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-017-4436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084019054", 
              "https://doi.org/10.1007/s00167-017-4436-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00167-017-4436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084019054", 
              "https://doi.org/10.1007/s00167-017-4436-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-04390-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086114244", 
              "https://doi.org/10.1038/s41598-017-04390-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amm.880.130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101670692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14198/jhse.2018.134.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105914212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gaitpost.2018.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106080379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gaitpost.2018.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106080379"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: The anterior cruciate ligament (ACL) plays an important role in stabilizing translation and rotation of the tibia relative to the femur. ACL injury alters knee kinematics and usually links to the alternation of gait patterns. The aim of this study is to develop a new method to distinguish between gait patterns of patients with anterior cruciate ligament deficient (ACL-D) knees and healthy controls with ACL-intact (ACL-I) knees based on nonlinear features and neural networks. Therefore ACL injury will be automatically and objectively detected.\nMETHODS: First knee rotation and translation parameters are extracted and phase space reconstruction (PSR) is employed. The properties associated with the gait system dynamics are preserved in the reconstructed phase space. For the purpose of classification of ACL-D and ACL-I knee gait patterns, three-dimensional (3D) PSR together with Euclidean distance computation has been used. These measured parameters show significant difference in gait dynamics between the two groups and have been utilized to form a feature set. Neural networks are then constructed to identify gait dynamics and are utilized as the classifier to distinguish between ACL-D and ACL-I knee gait patterns based on the difference of gait dynamics between the two groups.\nRESULTS: Experiments are carried out on a database containing 18 patients with ACL injury and 28 healthy controls to assess the effectiveness of the proposed method. By using the twofold and leave-one-subject-out cross-validation styles, the correct classification rates for ACL-D and ACL-I knees are reported to be 91.3[Formula: see text] and 95.65[Formula: see text], respectively.\nCONCLUSION: Compared with other state-of-the-art methods, the results demonstrate that gait alterations in the presence of ACL deficiency can be detected with superior performance. The proposed method is a potential candidate for the automatic and non-invasive classification between patients with ACL deficiency and healthy subjects.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12938-018-0594-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7198773", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031014", 
            "issn": [
              "1475-925X"
            ], 
            "name": "BioMedical Engineering OnLine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Modeling and classification of gait patterns between anterior cruciate ligament deficient and intact knees based on phase space reconstruction, Euclidean distance and neural networks", 
        "pagination": "165", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "224828c68d5f147f974bdf2268abfe7294e31fd39f57dadf4220830fa0df38f5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30382920"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101147518"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12938-018-0594-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107953493"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12938-018-0594-1", 
          "https://app.dimensions.ai/details/publication/pub.1107953493"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45360_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12938-018-0594-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0594-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0594-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0594-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0594-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    392 TRIPLES      21 PREDICATES      111 URIs      43 LITERALS      31 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12938-018-0594-1 schema:about N023bbf6bd4f94b1593605449716ad677
    2 N15fcbf5ed24c426fad6257d933118b6e
    3 N40aeea7bac084b0e8376b1567030dcaf
    4 N5b4abd23d6664b0cba1e8596bc1505d0
    5 N87a60e7511b94c839ddb6ed7987939fb
    6 N89ee13ad22e84606bb45462e2d7551a2
    7 N8ac02adf71e544999d482dac5dc0be65
    8 N9304b860dd854c23be89064dbe6fd8fc
    9 N9cf4e7517a8f4ccb98e7181da64b4b24
    10 Na166dae6c6694dd68dcebbac671670c1
    11 Na1bdf436d98540c3bbfc261d78223fd7
    12 Na907963b3fe2484298226117380fef9a
    13 Nb64e2b66c07d4b21bfb1c8be8e6d2dc1
    14 Nb83caab1b0be42b6b36d00c4df14ff64
    15 Nbad52e5f9e584e0cb3ef38161e220b11
    16 Nbddf157cc13f4d339c179396d0b8e426
    17 Nc4f9aaf4bbc444a4b7a21445c88cad8b
    18 Nc6782fbe869c45dd8a55d6c423410dc9
    19 Ndf30cfc6893049af831e2ba470fc06c2
    20 Ne0e80e716a7040538c77e20595d96f47
    21 Ne54322ab4a08424d9434f4808a66eb4e
    22 Nf50a673cc26e4558b89b08ec1c8e614d
    23 anzsrc-for:11
    24 anzsrc-for:1103
    25 schema:author Na581a976819b428ba947664e0896e9a1
    26 schema:citation sg:pub.10.1007/bfb0091924
    27 sg:pub.10.1007/s00167-003-0440-1
    28 sg:pub.10.1007/s00167-009-0886-x
    29 sg:pub.10.1007/s00167-012-1903-z
    30 sg:pub.10.1007/s00167-013-2436-9
    31 sg:pub.10.1007/s00167-014-3169-0
    32 sg:pub.10.1007/s00167-015-3709-2
    33 sg:pub.10.1007/s00167-017-4436-7
    34 sg:pub.10.1007/s10044-015-0468-0
    35 sg:pub.10.1007/s10044-015-0503-1
    36 sg:pub.10.1007/s10439-013-0914-3
    37 sg:pub.10.1007/s11517-007-0174-1
    38 sg:pub.10.1007/s11517-015-1269-8
    39 sg:pub.10.1007/s11517-016-1546-1
    40 sg:pub.10.1007/s40279-015-0353-4
    41 sg:pub.10.1038/s41598-017-04390-5
    42 sg:pub.10.1186/1471-2474-14-169
    43 sg:pub.10.1186/1758-2555-1-20
    44 https://doi.org/10.1016/j.asmart.2016.06.002
    45 https://doi.org/10.1016/j.asmart.2016.07.046
    46 https://doi.org/10.1016/j.clinbiomech.2007.01.003
    47 https://doi.org/10.1016/j.clinbiomech.2010.09.016
    48 https://doi.org/10.1016/j.clinbiomech.2014.03.011
    49 https://doi.org/10.1016/j.clinbiomech.2016.02.008
    50 https://doi.org/10.1016/j.clinbiomech.2016.04.002
    51 https://doi.org/10.1016/j.cmpb.2014.04.012
    52 https://doi.org/10.1016/j.eswa.2010.12.103
    53 https://doi.org/10.1016/j.eswa.2014.08.030
    54 https://doi.org/10.1016/j.gaitpost.2011.11.009
    55 https://doi.org/10.1016/j.gaitpost.2015.01.020
    56 https://doi.org/10.1016/j.gaitpost.2015.07.063
    57 https://doi.org/10.1016/j.gaitpost.2018.08.007
    58 https://doi.org/10.1016/j.humov.2011.04.009
    59 https://doi.org/10.1016/j.ins.2016.08.069
    60 https://doi.org/10.1016/j.jbiomech.2003.11.009
    61 https://doi.org/10.1016/j.jbiomech.2004.02.010
    62 https://doi.org/10.1016/j.jbiomech.2014.03.027
    63 https://doi.org/10.1016/j.jbiomech.2015.04.017
    64 https://doi.org/10.1016/j.jbiomech.2015.05.017
    65 https://doi.org/10.1016/j.jelekin.2013.10.012
    66 https://doi.org/10.1016/j.joca.2015.02.508
    67 https://doi.org/10.1016/j.jsams.2015.12.439
    68 https://doi.org/10.1016/s0022-1694(01)00573-x
    69 https://doi.org/10.1037/0033-2909.105.2.309
    70 https://doi.org/10.1037/h0045186
    71 https://doi.org/10.1080/10255842.2015.1015526
    72 https://doi.org/10.1080/10255842.2015.1032943
    73 https://doi.org/10.1109/72.712182
    74 https://doi.org/10.1109/embc.2013.6610240
    75 https://doi.org/10.1109/tbme.2013.2278780
    76 https://doi.org/10.1109/tnn.2005.860843
    77 https://doi.org/10.1109/tnn.2006.889496
    78 https://doi.org/10.1142/s0218127409023640
    79 https://doi.org/10.1249/mss.0000000000000236
    80 https://doi.org/10.14198/jhse.2018.134.11
    81 https://doi.org/10.2519/jospt.2005.35.8.531
    82 https://doi.org/10.2519/jospt.2007.2292
    83 https://doi.org/10.2519/jospt.2011.3384
    84 https://doi.org/10.3389/fpsyg.2013.00863
    85 https://doi.org/10.4028/www.scientific.net/amm.880.130
    86 schema:datePublished 2018-12
    87 schema:datePublishedReg 2018-12-01
    88 schema:description BACKGROUND: The anterior cruciate ligament (ACL) plays an important role in stabilizing translation and rotation of the tibia relative to the femur. ACL injury alters knee kinematics and usually links to the alternation of gait patterns. The aim of this study is to develop a new method to distinguish between gait patterns of patients with anterior cruciate ligament deficient (ACL-D) knees and healthy controls with ACL-intact (ACL-I) knees based on nonlinear features and neural networks. Therefore ACL injury will be automatically and objectively detected. METHODS: First knee rotation and translation parameters are extracted and phase space reconstruction (PSR) is employed. The properties associated with the gait system dynamics are preserved in the reconstructed phase space. For the purpose of classification of ACL-D and ACL-I knee gait patterns, three-dimensional (3D) PSR together with Euclidean distance computation has been used. These measured parameters show significant difference in gait dynamics between the two groups and have been utilized to form a feature set. Neural networks are then constructed to identify gait dynamics and are utilized as the classifier to distinguish between ACL-D and ACL-I knee gait patterns based on the difference of gait dynamics between the two groups. RESULTS: Experiments are carried out on a database containing 18 patients with ACL injury and 28 healthy controls to assess the effectiveness of the proposed method. By using the twofold and leave-one-subject-out cross-validation styles, the correct classification rates for ACL-D and ACL-I knees are reported to be 91.3[Formula: see text] and 95.65[Formula: see text], respectively. CONCLUSION: Compared with other state-of-the-art methods, the results demonstrate that gait alterations in the presence of ACL deficiency can be detected with superior performance. The proposed method is a potential candidate for the automatic and non-invasive classification between patients with ACL deficiency and healthy subjects.
    89 schema:genre research_article
    90 schema:inLanguage en
    91 schema:isAccessibleForFree true
    92 schema:isPartOf N6f95add485bb4aaa86def60a838eced9
    93 Nef948c7b833b4ac3a770cfbb2cea0fe8
    94 sg:journal.1031014
    95 schema:name Modeling and classification of gait patterns between anterior cruciate ligament deficient and intact knees based on phase space reconstruction, Euclidean distance and neural networks
    96 schema:pagination 165
    97 schema:productId N6be3aaeea94947ff95a2113b221a9adb
    98 N98cec310edc644a5a5a341d8a511c2c4
    99 N9acc4e5540d9478cb7dae41f382e798f
    100 Ndcfa1d8786054f088ff9beb1cd3872bc
    101 Nf8e244e285a14194be28adee390381bf
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107953493
    103 https://doi.org/10.1186/s12938-018-0594-1
    104 schema:sdDatePublished 2019-04-11T11:12
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N10a63d8ca0e8494fbf59d6733762184d
    107 schema:url https://link.springer.com/10.1186%2Fs12938-018-0594-1
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N023bbf6bd4f94b1593605449716ad677 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Anterior Cruciate Ligament Injuries
    113 rdf:type schema:DefinedTerm
    114 N10a63d8ca0e8494fbf59d6733762184d schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 N15fcbf5ed24c426fad6257d933118b6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Middle Aged
    118 rdf:type schema:DefinedTerm
    119 N3769d853cfff469f9155842d1fb45959 rdf:first sg:person.014273430641.93
    120 rdf:rest Nceb40854b5a8443cb37a85854848ab07
    121 N40aeea7bac084b0e8376b1567030dcaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Reproducibility of Results
    123 rdf:type schema:DefinedTerm
    124 N4e4f1ddf50b0484f9381334621445af3 schema:affiliation Ne753b820ac414269afe5c217efd456be
    125 schema:familyName Zhang
    126 schema:givenName Yu
    127 rdf:type schema:Person
    128 N5b4abd23d6664b0cba1e8596bc1505d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Principal Component Analysis
    130 rdf:type schema:DefinedTerm
    131 N69ba0a0e15784f299dfea4b9c3371967 schema:name Department of Acupuncture, Longyan First Hospital, 364000, Longyan, China
    132 rdf:type schema:Organization
    133 N6be3aaeea94947ff95a2113b221a9adb schema:name pubmed_id
    134 schema:value 30382920
    135 rdf:type schema:PropertyValue
    136 N6f95add485bb4aaa86def60a838eced9 schema:issueNumber 1
    137 rdf:type schema:PublicationIssue
    138 N86ea735d6d4641f6880ea3f7c49d73ba schema:affiliation N69ba0a0e15784f299dfea4b9c3371967
    139 schema:familyName Wu
    140 schema:givenName Wenbao
    141 rdf:type schema:Person
    142 N87a60e7511b94c839ddb6ed7987939fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Healthy Volunteers
    144 rdf:type schema:DefinedTerm
    145 N89ee13ad22e84606bb45462e2d7551a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Tibia
    147 rdf:type schema:DefinedTerm
    148 N8ac02adf71e544999d482dac5dc0be65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Knee Joint
    150 rdf:type schema:DefinedTerm
    151 N9304b860dd854c23be89064dbe6fd8fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Male
    153 rdf:type schema:DefinedTerm
    154 N98cec310edc644a5a5a341d8a511c2c4 schema:name readcube_id
    155 schema:value 224828c68d5f147f974bdf2268abfe7294e31fd39f57dadf4220830fa0df38f5
    156 rdf:type schema:PropertyValue
    157 N9acc4e5540d9478cb7dae41f382e798f schema:name nlm_unique_id
    158 schema:value 101147518
    159 rdf:type schema:PropertyValue
    160 N9cf4e7517a8f4ccb98e7181da64b4b24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Sensitivity and Specificity
    162 rdf:type schema:DefinedTerm
    163 Na166dae6c6694dd68dcebbac671670c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Imaging, Three-Dimensional
    165 rdf:type schema:DefinedTerm
    166 Na1bdf436d98540c3bbfc261d78223fd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Case-Control Studies
    168 rdf:type schema:DefinedTerm
    169 Na581a976819b428ba947664e0896e9a1 rdf:first N86ea735d6d4641f6880ea3f7c49d73ba
    170 rdf:rest Nf9b480b5398e45a1b1a59d2ffb3eb098
    171 Na907963b3fe2484298226117380fef9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Gait
    173 rdf:type schema:DefinedTerm
    174 Nb64e2b66c07d4b21bfb1c8be8e6d2dc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Knee
    176 rdf:type schema:DefinedTerm
    177 Nb83caab1b0be42b6b36d00c4df14ff64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Biomechanical Phenomena
    179 rdf:type schema:DefinedTerm
    180 Nbad52e5f9e584e0cb3ef38161e220b11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Joint Instability
    182 rdf:type schema:DefinedTerm
    183 Nbddf157cc13f4d339c179396d0b8e426 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Rotation
    185 rdf:type schema:DefinedTerm
    186 Nc4f9aaf4bbc444a4b7a21445c88cad8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Adult
    188 rdf:type schema:DefinedTerm
    189 Nc6782fbe869c45dd8a55d6c423410dc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Anterior Cruciate Ligament
    191 rdf:type schema:DefinedTerm
    192 Nceb40854b5a8443cb37a85854848ab07 rdf:first N4e4f1ddf50b0484f9381334621445af3
    193 rdf:rest rdf:nil
    194 Nd971b90d875e4b47ac2a1f4311c1ed57 rdf:first sg:person.0744061651.28
    195 rdf:rest N3769d853cfff469f9155842d1fb45959
    196 Ndcfa1d8786054f088ff9beb1cd3872bc schema:name doi
    197 schema:value 10.1186/s12938-018-0594-1
    198 rdf:type schema:PropertyValue
    199 Ndf30cfc6893049af831e2ba470fc06c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Nerve Net
    201 rdf:type schema:DefinedTerm
    202 Ne0e80e716a7040538c77e20595d96f47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Female
    204 rdf:type schema:DefinedTerm
    205 Ne54322ab4a08424d9434f4808a66eb4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Range of Motion, Articular
    207 rdf:type schema:DefinedTerm
    208 Ne753b820ac414269afe5c217efd456be schema:name Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China
    209 rdf:type schema:Organization
    210 Nef948c7b833b4ac3a770cfbb2cea0fe8 schema:volumeNumber 17
    211 rdf:type schema:PublicationVolume
    212 Nf50a673cc26e4558b89b08ec1c8e614d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Humans
    214 rdf:type schema:DefinedTerm
    215 Nf8e244e285a14194be28adee390381bf schema:name dimensions_id
    216 schema:value pub.1107953493
    217 rdf:type schema:PropertyValue
    218 Nf9b480b5398e45a1b1a59d2ffb3eb098 rdf:first sg:person.01235722777.90
    219 rdf:rest Nd971b90d875e4b47ac2a1f4311c1ed57
    220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Medical and Health Sciences
    222 rdf:type schema:DefinedTerm
    223 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Clinical Sciences
    225 rdf:type schema:DefinedTerm
    226 sg:grant.7198773 http://pending.schema.org/fundedItem sg:pub.10.1186/s12938-018-0594-1
    227 rdf:type schema:MonetaryGrant
    228 sg:journal.1031014 schema:issn 1475-925X
    229 schema:name BioMedical Engineering OnLine
    230 rdf:type schema:Periodical
    231 sg:person.01235722777.90 schema:affiliation https://www.grid.ac/institutes/grid.440829.3
    232 schema:familyName Zeng
    233 schema:givenName Wei
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235722777.90
    235 rdf:type schema:Person
    236 sg:person.014273430641.93 schema:affiliation https://www.grid.ac/institutes/grid.20431.34
    237 schema:familyName Yuan
    238 schema:givenName Chengzhi
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273430641.93
    240 rdf:type schema:Person
    241 sg:person.0744061651.28 schema:affiliation https://www.grid.ac/institutes/grid.413435.4
    242 schema:familyName Ma
    243 schema:givenName Limin
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744061651.28
    245 rdf:type schema:Person
    246 sg:pub.10.1007/bfb0091924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049441366
    247 https://doi.org/10.1007/bfb0091924
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s00167-003-0440-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046840596
    250 https://doi.org/10.1007/s00167-003-0440-1
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s00167-009-0886-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023957658
    253 https://doi.org/10.1007/s00167-009-0886-x
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s00167-012-1903-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035508468
    256 https://doi.org/10.1007/s00167-012-1903-z
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s00167-013-2436-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027194886
    259 https://doi.org/10.1007/s00167-013-2436-9
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s00167-014-3169-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041058133
    262 https://doi.org/10.1007/s00167-014-3169-0
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s00167-015-3709-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037930775
    265 https://doi.org/10.1007/s00167-015-3709-2
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s00167-017-4436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084019054
    268 https://doi.org/10.1007/s00167-017-4436-7
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s10044-015-0468-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046402349
    271 https://doi.org/10.1007/s10044-015-0468-0
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s10044-015-0503-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013061969
    274 https://doi.org/10.1007/s10044-015-0503-1
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s10439-013-0914-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039375809
    277 https://doi.org/10.1007/s10439-013-0914-3
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s11517-007-0174-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012206840
    280 https://doi.org/10.1007/s11517-007-0174-1
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s11517-015-1269-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051600593
    283 https://doi.org/10.1007/s11517-015-1269-8
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s11517-016-1546-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006539129
    286 https://doi.org/10.1007/s11517-016-1546-1
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s40279-015-0353-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027323186
    289 https://doi.org/10.1007/s40279-015-0353-4
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/s41598-017-04390-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086114244
    292 https://doi.org/10.1038/s41598-017-04390-5
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1186/1471-2474-14-169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005000418
    295 https://doi.org/10.1186/1471-2474-14-169
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1186/1758-2555-1-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050058669
    298 https://doi.org/10.1186/1758-2555-1-20
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1016/j.asmart.2016.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030937871
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1016/j.asmart.2016.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008979324
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1016/j.clinbiomech.2007.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028934248
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1016/j.clinbiomech.2010.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028233666
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1016/j.clinbiomech.2014.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041232062
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1016/j.clinbiomech.2016.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086449
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1016/j.clinbiomech.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015408338
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1016/j.cmpb.2014.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015802279
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1016/j.eswa.2010.12.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020742008
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1016/j.eswa.2014.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008501562
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1016/j.gaitpost.2011.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005253116
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1016/j.gaitpost.2015.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026592896
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1016/j.gaitpost.2015.07.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015612656
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1016/j.gaitpost.2018.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106080379
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1016/j.humov.2011.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021050394
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1016/j.ins.2016.08.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009611248
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1016/j.jbiomech.2003.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023705683
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1016/j.jbiomech.2004.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030704385
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1016/j.jbiomech.2014.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026390551
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1016/j.jbiomech.2015.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019695343
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1016/j.jbiomech.2015.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000567575
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1016/j.jelekin.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003722736
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1016/j.joca.2015.02.508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036406684
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1016/j.jsams.2015.12.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042986095
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1016/s0022-1694(01)00573-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012781955
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1037/0033-2909.105.2.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036243101
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1037/h0045186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040067888
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1080/10255842.2015.1015526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014392110
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1080/10255842.2015.1032943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020185810
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1109/72.712182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219084
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1109/embc.2013.6610240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078796952
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1109/tbme.2013.2278780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529362
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1109/tnn.2005.860843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716950
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1109/tnn.2006.889496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717147
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1142/s0218127409023640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062955642
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1249/mss.0000000000000236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002336321
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.14198/jhse.2018.134.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105914212
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.2519/jospt.2005.35.8.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070873112
    375 rdf:type schema:CreativeWork
    376 https://doi.org/10.2519/jospt.2007.2292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070873283
    377 rdf:type schema:CreativeWork
    378 https://doi.org/10.2519/jospt.2011.3384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070873824
    379 rdf:type schema:CreativeWork
    380 https://doi.org/10.3389/fpsyg.2013.00863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023698155
    381 rdf:type schema:CreativeWork
    382 https://doi.org/10.4028/www.scientific.net/amm.880.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101670692
    383 rdf:type schema:CreativeWork
    384 https://www.grid.ac/institutes/grid.20431.34 schema:alternateName University of Rhode Island
    385 schema:name Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 02881, Kingston, RI, USA
    386 rdf:type schema:Organization
    387 https://www.grid.ac/institutes/grid.413435.4 schema:alternateName General Hospital of Guangzhou Military Command
    388 schema:name Department of Orthopaedic Surgery, Guangzhou General Hospital of Guangzhou Military Command, 510010, Guangzhou, China
    389 rdf:type schema:Organization
    390 https://www.grid.ac/institutes/grid.440829.3 schema:alternateName Longyan University
    391 schema:name School of Physics and Mechanical & Electrical Engineering, Longyan University, 364012, Longyan, China
    392 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...