Alzheimer’s disease diagnosis based on the Hippocampal Unified Multi-Atlas Network (HUMAN) algorithm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Nicola Amoroso, Marianna La Rocca, Roberto Bellotti, Annarita Fanizzi, Alfonso Monaco, Sabina Tangaro, The Alzheimer’s Disease Neuroimaging Initiative

ABSTRACT

BACKGROUND: Hippocampal atrophy is a supportive feature for the diagnosis of probable Alzheimer's disease (AD). However, even for an expert neuroradiologist, tracing the hippocampus and measuring its volume is a time consuming and extremely challenging task. Accordingly, the development of reliable fully-automated segmentation algorithms is of paramount importance. MATERIALS AND METHODS: The present study evaluates (i) the precision and the robustness of the novel Hippocampal Unified Multi-Atlas Network (HUMAN) segmentation algorithm and (ii) its clinical reliability for AD diagnosis. For these purposes, we used a mixed cohort of 456 subjects and their T1 weighted magnetic resonance imaging (MRI) brain scans. The cohort included 145 controls (CTRL), 217 mild cognitive impairment (MCI) subjects and 94 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject the baseline, repeat, 12 and 24 month follow-up scans were available. RESULTS: HUMAN provides hippocampal volumes with a 3% precision; volume measurements effectively reveal AD, with an area under the curve (AUC) AUC1 = 0.08 ± 0.02. Segmented volumes can also reveal the subtler effects present in MCI subjects, AUC2 = 0.76 ± 0.05. The algorithm is stable and reproducible over time, even for 24 month follow-up scans. CONCLUSIONS: The experimental results demonstrate HUMAN is a precise segmentation algorithm, besides hippocampal volumes, provided by HUMAN, can effectively support the diagnosis of Alzheimer's disease and become a useful tool for other neuroimaging applications. More... »

PAGES

6

References to SciGraph publications

  • 2012-11. Alzheimer’s disease markers from structural MRI and FDG-PET brain images in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 1991-09. Neuropathological stageing of Alzheimer-related changes in ACTA NEUROPATHOLOGICA
  • 2010-02. The clinical use of structural MRI in Alzheimer disease in NATURE REVIEWS NEUROLOGY
  • 2016-05. Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm in PATTERN ANALYSIS AND APPLICATIONS
  • 2004-05. Robust Real-Time Face Detection in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12938-018-0439-y

    DOI

    http://dx.doi.org/10.1186/s12938-018-0439-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100556167

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29357893


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alzheimer Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Atrophy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hippocampus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Size", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Bari", 
              "id": "https://www.grid.ac/institutes/grid.470190.b", 
              "name": [
                "Dipartimento Interateneo di Fisica \u201cM. Merlin\u201d, Universit\u00e0 degli Studi di Bari \u201cA. Moro\u201d, Via Giovanni Amendola 173, 70125, Bari, Italy", 
                "Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123, Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amoroso", 
            "givenName": "Nicola", 
            "id": "sg:person.01037245711.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037245711.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Bari", 
              "id": "https://www.grid.ac/institutes/grid.470190.b", 
              "name": [
                "Dipartimento Interateneo di Fisica \u201cM. Merlin\u201d, Universit\u00e0 degli Studi di Bari \u201cA. Moro\u201d, Via Giovanni Amendola 173, 70125, Bari, Italy", 
                "Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123, Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rocca", 
            "givenName": "Marianna La", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Bari", 
              "id": "https://www.grid.ac/institutes/grid.470190.b", 
              "name": [
                "Dipartimento Interateneo di Fisica \u201cM. Merlin\u201d, Universit\u00e0 degli Studi di Bari \u201cA. Moro\u201d, Via Giovanni Amendola 173, 70125, Bari, Italy", 
                "Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123, Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bellotti", 
            "givenName": "Roberto", 
            "id": "sg:person.01177646553.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177646553.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Tumori Bari", 
              "id": "https://www.grid.ac/institutes/grid.489132.5", 
              "name": [
                "Istituto Tumori Bari Giovanni Paolo II - IRCCS, Viale Orazio Flacco 65, 70124, Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fanizzi", 
            "givenName": "Annarita", 
            "id": "sg:person.013402754773.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402754773.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Bari", 
              "id": "https://www.grid.ac/institutes/grid.470190.b", 
              "name": [
                "Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123, Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Monaco", 
            "givenName": "Alfonso", 
            "id": "sg:person.011013677607.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013677607.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "INFN Sezione di Bari", 
              "id": "https://www.grid.ac/institutes/grid.470190.b", 
              "name": [
                "Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123, Bari, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tangaro", 
            "givenName": "Sabina", 
            "id": "sg:person.01265762603.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265762603.77"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "The Alzheimer\u2019s Disease Neuroimaging Initiative", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.pscychresns.2011.06.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000289018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00308809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000355620", 
              "https://doi.org/10.1007/bf00308809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001944608", 
              "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.01.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004164894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jnnp.2004.047720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004182947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2014.04.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004685651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/814104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005249780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2016.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005862874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2015.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009256189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1073858410397054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010596547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1073858410397054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010596547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2012-12135-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011646390", 
              "https://doi.org/10.1140/epjp/i2012-12135-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-015-0492-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014970699", 
              "https://doi.org/10.1007/s10044-015-0492-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10044-015-0492-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014970699", 
              "https://doi.org/10.1007/s10044-015-0492-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalz.2011.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015460770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.22359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016953184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2007.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025777243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejmp.2014.06.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029430395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1474-4422(07)70178-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032800719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034510319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.10.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035048311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.10.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035048311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.10.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035048311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.10.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035048311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.09.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036173681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2481070876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036416356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2015.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036763505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2009.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037797190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalz.2014.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040167552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.04.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040727831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejmp.2015.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042592255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalz.2016.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042804495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2010.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044773229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2010.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046144932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2010.03.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046872595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.01.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050908785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0071354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051180735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrneurol.2009.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053668728", 
              "https://doi.org/10.1038/nrneurol.2009.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrneurol.2009.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053668728", 
              "https://doi.org/10.1038/nrneurol.2009.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/60/22/8851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059031095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2010.2046908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061792707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/01.wnl.0000311446.61861.e3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064350208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/01.wnl.0000311446.61861.e3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064350208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/01.wnl.0000311446.61861.e3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064350208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/wnl.49.3.786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064375316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/wnl.49.3.786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064375316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/wnl.49.3.786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064375316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1212/wnl.52.6.1158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064377351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.143.1.7063747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082130998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/b12753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095904119"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "BACKGROUND: Hippocampal atrophy is a supportive feature for the diagnosis of probable Alzheimer's disease (AD). However, even for an expert neuroradiologist, tracing the hippocampus and measuring its volume is a time consuming and extremely challenging task. Accordingly, the development of reliable fully-automated segmentation algorithms is of paramount importance.\nMATERIALS AND METHODS: The present study evaluates (i) the precision and the robustness of the novel Hippocampal Unified Multi-Atlas Network (HUMAN) segmentation algorithm and (ii) its clinical reliability for AD diagnosis. For these purposes, we used a mixed cohort of 456 subjects and their T1 weighted magnetic resonance imaging (MRI) brain scans. The cohort included 145 controls (CTRL), 217 mild cognitive impairment (MCI) subjects and 94 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject the baseline, repeat, 12 and 24 month follow-up scans were available.\nRESULTS: HUMAN provides hippocampal volumes with a 3% precision; volume measurements effectively reveal AD, with an area under the curve (AUC) AUC1\u00a0=\u00a00.08\u00a0\u00b1\u00a00.02. Segmented volumes can also reveal the subtler effects present in MCI subjects, AUC2\u00a0=\u00a00.76\u00a0\u00b1\u00a00.05. The algorithm is stable and reproducible over time, even for 24 month follow-up scans.\nCONCLUSIONS: The experimental results demonstrate HUMAN is a precise segmentation algorithm, besides hippocampal volumes, provided by HUMAN, can effectively support the diagnosis of Alzheimer's disease and become a useful tool for other neuroimaging applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12938-018-0439-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2687006", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7132465", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031014", 
            "issn": [
              "1475-925X"
            ], 
            "name": "BioMedical Engineering OnLine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Alzheimer\u2019s disease diagnosis based on the Hippocampal Unified Multi-Atlas Network (HUMAN) algorithm", 
        "pagination": "6", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2092bd26ecdb494633fb0a526cf3d91c2df757fa338e0c3cf02e510ddd3dfe96"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29357893"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101147518"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12938-018-0439-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100556167"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12938-018-0439-y", 
          "https://app.dimensions.ai/details/publication/pub.1100556167"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186/s12938-018-0439-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0439-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0439-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0439-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-018-0439-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    290 TRIPLES      21 PREDICATES      82 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12938-018-0439-y schema:about N3ed0f0e13db343878e4e2fffc4e188c1
    2 N49efa406b3c7404caa1deef6757c9ba4
    3 N4d918317016e4308a422b7f9192f84be
    4 N51dd580d61884e1ca31dbe1411c308cd
    5 N5996b52aa9ad441c83f3ec788ddfecf0
    6 N6eced333096242a7ac69706d4fed6a76
    7 N7d07d37811044036b90ceb097da6b999
    8 N946891a788f443fe84e62a097fcce326
    9 N98c2ddbc11204579b6520d2697a50710
    10 Nb66238ee0ef348b0b1e8b70eca451f02
    11 Ncbcfa12350174902b3fb0eb57a75abdc
    12 Ne7f5beebe8354e39a86238556063025e
    13 anzsrc-for:11
    14 anzsrc-for:1109
    15 schema:author N6b69bd91c49444ea97e7d8e6e9da5ae8
    16 schema:citation sg:pub.10.1007/bf00308809
    17 sg:pub.10.1007/s10044-015-0492-0
    18 sg:pub.10.1023/b:visi.0000013087.49260.fb
    19 sg:pub.10.1038/nrneurol.2009.215
    20 sg:pub.10.1140/epjp/i2012-12135-6
    21 https://doi.org/10.1002/hbm.22359
    22 https://doi.org/10.1016/j.compbiomed.2015.01.003
    23 https://doi.org/10.1016/j.compbiomed.2015.07.006
    24 https://doi.org/10.1016/j.ejmp.2014.06.044
    25 https://doi.org/10.1016/j.ejmp.2015.08.003
    26 https://doi.org/10.1016/j.jalz.2011.03.005
    27 https://doi.org/10.1016/j.jalz.2014.12.002
    28 https://doi.org/10.1016/j.jalz.2016.02.006
    29 https://doi.org/10.1016/j.jneumeth.2016.06.013
    30 https://doi.org/10.1016/j.media.2007.06.004
    31 https://doi.org/10.1016/j.neuroimage.2009.02.018
    32 https://doi.org/10.1016/j.neuroimage.2010.03.018
    33 https://doi.org/10.1016/j.neuroimage.2010.04.006
    34 https://doi.org/10.1016/j.neuroimage.2010.06.013
    35 https://doi.org/10.1016/j.neuroimage.2011.01.006
    36 https://doi.org/10.1016/j.neuroimage.2011.01.062
    37 https://doi.org/10.1016/j.neuroimage.2011.09.015
    38 https://doi.org/10.1016/j.neuroimage.2014.04.054
    39 https://doi.org/10.1016/j.neuroimage.2015.01.048
    40 https://doi.org/10.1016/j.neuroimage.2015.04.042
    41 https://doi.org/10.1016/j.neuroimage.2015.10.065
    42 https://doi.org/10.1016/j.pscychresns.2011.06.014
    43 https://doi.org/10.1016/s1474-4422(07)70178-3
    44 https://doi.org/10.1088/0031-9155/60/22/8851
    45 https://doi.org/10.1109/tmi.2010.2046908
    46 https://doi.org/10.1109/tsmc.1973.4309314
    47 https://doi.org/10.1136/jnnp.2004.047720
    48 https://doi.org/10.1148/radiol.2481070876
    49 https://doi.org/10.1148/radiology.143.1.7063747
    50 https://doi.org/10.1155/2015/814104
    51 https://doi.org/10.1177/1073858410397054
    52 https://doi.org/10.1201/b12753
    53 https://doi.org/10.1212/01.wnl.0000311446.61861.e3
    54 https://doi.org/10.1212/wnl.49.3.786
    55 https://doi.org/10.1212/wnl.52.6.1158
    56 https://doi.org/10.1371/journal.pone.0071354
    57 schema:datePublished 2018-12
    58 schema:datePublishedReg 2018-12-01
    59 schema:description BACKGROUND: Hippocampal atrophy is a supportive feature for the diagnosis of probable Alzheimer's disease (AD). However, even for an expert neuroradiologist, tracing the hippocampus and measuring its volume is a time consuming and extremely challenging task. Accordingly, the development of reliable fully-automated segmentation algorithms is of paramount importance. MATERIALS AND METHODS: The present study evaluates (i) the precision and the robustness of the novel Hippocampal Unified Multi-Atlas Network (HUMAN) segmentation algorithm and (ii) its clinical reliability for AD diagnosis. For these purposes, we used a mixed cohort of 456 subjects and their T1 weighted magnetic resonance imaging (MRI) brain scans. The cohort included 145 controls (CTRL), 217 mild cognitive impairment (MCI) subjects and 94 AD patients from Alzheimer's Disease Neuroimaging Initiative (ADNI). For each subject the baseline, repeat, 12 and 24 month follow-up scans were available. RESULTS: HUMAN provides hippocampal volumes with a 3% precision; volume measurements effectively reveal AD, with an area under the curve (AUC) AUC1 = 0.08 ± 0.02. Segmented volumes can also reveal the subtler effects present in MCI subjects, AUC2 = 0.76 ± 0.05. The algorithm is stable and reproducible over time, even for 24 month follow-up scans. CONCLUSIONS: The experimental results demonstrate HUMAN is a precise segmentation algorithm, besides hippocampal volumes, provided by HUMAN, can effectively support the diagnosis of Alzheimer's disease and become a useful tool for other neuroimaging applications.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree true
    63 schema:isPartOf N50a3c7d4675e44228a48ddd47d779e2b
    64 N5b86ce9996fa46a4a603959a479b45d3
    65 sg:journal.1031014
    66 schema:name Alzheimer’s disease diagnosis based on the Hippocampal Unified Multi-Atlas Network (HUMAN) algorithm
    67 schema:pagination 6
    68 schema:productId N33a18ad50768447f866f8fe8a863f246
    69 N3eb6aa91853c4059907b65ff947ffceb
    70 N3ef5d9d72d09483eb1953e18ccaeefa8
    71 N6b2c632160964f70b846ce776ce05c72
    72 Nb3f5c0b5ab0542fa90bdcf4eae000c07
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100556167
    74 https://doi.org/10.1186/s12938-018-0439-y
    75 schema:sdDatePublished 2019-04-11T01:01
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N5f2fb0eae67948819856a7710bc2ebb6
    78 schema:url http://link.springer.com/10.1186/s12938-018-0439-y
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N33a18ad50768447f866f8fe8a863f246 schema:name nlm_unique_id
    83 schema:value 101147518
    84 rdf:type schema:PropertyValue
    85 N3eb6aa91853c4059907b65ff947ffceb schema:name dimensions_id
    86 schema:value pub.1100556167
    87 rdf:type schema:PropertyValue
    88 N3ed0f0e13db343878e4e2fffc4e188c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Organ Size
    90 rdf:type schema:DefinedTerm
    91 N3ef5d9d72d09483eb1953e18ccaeefa8 schema:name readcube_id
    92 schema:value 2092bd26ecdb494633fb0a526cf3d91c2df757fa338e0c3cf02e510ddd3dfe96
    93 rdf:type schema:PropertyValue
    94 N49efa406b3c7404caa1deef6757c9ba4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Hippocampus
    96 rdf:type schema:DefinedTerm
    97 N4d918317016e4308a422b7f9192f84be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Magnetic Resonance Imaging
    99 rdf:type schema:DefinedTerm
    100 N50a3c7d4675e44228a48ddd47d779e2b schema:volumeNumber 17
    101 rdf:type schema:PublicationVolume
    102 N51dd580d61884e1ca31dbe1411c308cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Machine Learning
    104 rdf:type schema:DefinedTerm
    105 N53d90bfc06f4448c86e53903c4c2e417 rdf:first sg:person.01265762603.77
    106 rdf:rest Nefaaf926d83547b19ccbb36924c022bd
    107 N5996b52aa9ad441c83f3ec788ddfecf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Aged
    109 rdf:type schema:DefinedTerm
    110 N5b86ce9996fa46a4a603959a479b45d3 schema:issueNumber 1
    111 rdf:type schema:PublicationIssue
    112 N5f2fb0eae67948819856a7710bc2ebb6 schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 N641033a8c1274fe688b6db9ba2ab7616 rdf:first sg:person.013402754773.20
    115 rdf:rest Na7abf8daefcc413bac87806cc693a9a4
    116 N6b2c632160964f70b846ce776ce05c72 schema:name doi
    117 schema:value 10.1186/s12938-018-0439-y
    118 rdf:type schema:PropertyValue
    119 N6b69bd91c49444ea97e7d8e6e9da5ae8 rdf:first sg:person.01037245711.18
    120 rdf:rest N75e61430b3884e9fb96c17bdfe0fce20
    121 N6c64fa0105a14039a5f9bad9f485b316 schema:affiliation https://www.grid.ac/institutes/grid.470190.b
    122 schema:familyName Rocca
    123 schema:givenName Marianna La
    124 rdf:type schema:Person
    125 N6eced333096242a7ac69706d4fed6a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Humans
    127 rdf:type schema:DefinedTerm
    128 N75e61430b3884e9fb96c17bdfe0fce20 rdf:first N6c64fa0105a14039a5f9bad9f485b316
    129 rdf:rest Ndeb92be6babf49418c8cd3994a84f86e
    130 N7d07d37811044036b90ceb097da6b999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Image Processing, Computer-Assisted
    132 rdf:type schema:DefinedTerm
    133 N946891a788f443fe84e62a097fcce326 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Alzheimer Disease
    135 rdf:type schema:DefinedTerm
    136 N98c2ddbc11204579b6520d2697a50710 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Female
    138 rdf:type schema:DefinedTerm
    139 Na7abf8daefcc413bac87806cc693a9a4 rdf:first sg:person.011013677607.19
    140 rdf:rest N53d90bfc06f4448c86e53903c4c2e417
    141 Nac52d61ff39c494a8ebd0b67c10ce19c schema:familyName The Alzheimer’s Disease Neuroimaging Initiative
    142 rdf:type schema:Person
    143 Nb3f5c0b5ab0542fa90bdcf4eae000c07 schema:name pubmed_id
    144 schema:value 29357893
    145 rdf:type schema:PropertyValue
    146 Nb66238ee0ef348b0b1e8b70eca451f02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Atrophy
    148 rdf:type schema:DefinedTerm
    149 Ncbcfa12350174902b3fb0eb57a75abdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Algorithms
    151 rdf:type schema:DefinedTerm
    152 Ndeb92be6babf49418c8cd3994a84f86e rdf:first sg:person.01177646553.75
    153 rdf:rest N641033a8c1274fe688b6db9ba2ab7616
    154 Ne7f5beebe8354e39a86238556063025e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Male
    156 rdf:type schema:DefinedTerm
    157 Nefaaf926d83547b19ccbb36924c022bd rdf:first Nac52d61ff39c494a8ebd0b67c10ce19c
    158 rdf:rest rdf:nil
    159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Medical and Health Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Neurosciences
    164 rdf:type schema:DefinedTerm
    165 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1186/s12938-018-0439-y
    166 rdf:type schema:MonetaryGrant
    167 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1186/s12938-018-0439-y
    168 rdf:type schema:MonetaryGrant
    169 sg:journal.1031014 schema:issn 1475-925X
    170 schema:name BioMedical Engineering OnLine
    171 rdf:type schema:Periodical
    172 sg:person.01037245711.18 schema:affiliation https://www.grid.ac/institutes/grid.470190.b
    173 schema:familyName Amoroso
    174 schema:givenName Nicola
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037245711.18
    176 rdf:type schema:Person
    177 sg:person.011013677607.19 schema:affiliation https://www.grid.ac/institutes/grid.470190.b
    178 schema:familyName Monaco
    179 schema:givenName Alfonso
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013677607.19
    181 rdf:type schema:Person
    182 sg:person.01177646553.75 schema:affiliation https://www.grid.ac/institutes/grid.470190.b
    183 schema:familyName Bellotti
    184 schema:givenName Roberto
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177646553.75
    186 rdf:type schema:Person
    187 sg:person.01265762603.77 schema:affiliation https://www.grid.ac/institutes/grid.470190.b
    188 schema:familyName Tangaro
    189 schema:givenName Sabina
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265762603.77
    191 rdf:type schema:Person
    192 sg:person.013402754773.20 schema:affiliation https://www.grid.ac/institutes/grid.489132.5
    193 schema:familyName Fanizzi
    194 schema:givenName Annarita
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402754773.20
    196 rdf:type schema:Person
    197 sg:pub.10.1007/bf00308809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355620
    198 https://doi.org/10.1007/bf00308809
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10044-015-0492-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014970699
    201 https://doi.org/10.1007/s10044-015-0492-0
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
    204 https://doi.org/10.1023/b:visi.0000013087.49260.fb
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nrneurol.2009.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053668728
    207 https://doi.org/10.1038/nrneurol.2009.215
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1140/epjp/i2012-12135-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011646390
    210 https://doi.org/10.1140/epjp/i2012-12135-6
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1002/hbm.22359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016953184
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.compbiomed.2015.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036763505
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.compbiomed.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009256189
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.ejmp.2014.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029430395
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.ejmp.2015.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042592255
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.jalz.2011.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015460770
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.jalz.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040167552
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.jalz.2016.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042804495
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.jneumeth.2016.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005862874
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.media.2007.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025777243
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.neuroimage.2009.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037797190
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.neuroimage.2010.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046872595
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.neuroimage.2010.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044773229
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.neuroimage.2010.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046144932
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.neuroimage.2011.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034510319
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.neuroimage.2011.01.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050908785
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.neuroimage.2011.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036173681
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.neuroimage.2014.04.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004685651
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/j.neuroimage.2015.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004164894
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/j.neuroimage.2015.04.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040727831
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/j.neuroimage.2015.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035048311
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1016/j.pscychresns.2011.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000289018
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1016/s1474-4422(07)70178-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032800719
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1088/0031-9155/60/22/8851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031095
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1109/tmi.2010.2046908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695550
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1136/jnnp.2004.047720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004182947
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1148/radiol.2481070876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036416356
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1148/radiology.143.1.7063747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082130998
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1155/2015/814104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249780
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1177/1073858410397054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010596547
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1201/b12753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095904119
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1212/01.wnl.0000311446.61861.e3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064350208
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1212/wnl.49.3.786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064375316
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1212/wnl.52.6.1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064377351
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1371/journal.pone.0071354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051180735
    283 rdf:type schema:CreativeWork
    284 https://www.grid.ac/institutes/grid.470190.b schema:alternateName INFN Sezione di Bari
    285 schema:name Dipartimento Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari “A. Moro”, Via Giovanni Amendola 173, 70125, Bari, Italy
    286 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123, Bari, Italy
    287 rdf:type schema:Organization
    288 https://www.grid.ac/institutes/grid.489132.5 schema:alternateName Istituto Tumori Bari
    289 schema:name Istituto Tumori Bari Giovanni Paolo II - IRCCS, Viale Orazio Flacco 65, 70124, Bari, Italy
    290 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...