Real time QRS complex detection using DFA and regular grammar View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Salah Hamdi, Asma Ben Abdallah, Mohamed Hedi Bedoui

ABSTRACT

BACKGROUND: The sequence of Q, R, and S peaks (QRS) complex detection is a crucial procedure in electrocardiogram (ECG) processing and analysis. We propose a novel approach for QRS complex detection based on the deterministic finite automata with the addition of some constraints. This paper confirms that regular grammar is useful for extracting QRS complexes and interpreting normalized ECG signals. A QRS is assimilated to a pair of adjacent peaks which meet certain criteria of standard deviation and duration. RESULTS: The proposed method was applied on several kinds of ECG signals issued from the standard MIT-BIH arrhythmia database. A total of 48 signals were used. For an input signal, several parameters were determined, such as QRS durations, RR distances, and the peaks' amplitudes. σRR and σQRS parameters were added to quantify the regularity of RR distances and QRS durations, respectively. The sensitivity rate of the suggested method was 99.74% and the specificity rate was 99.86%. Moreover, the sensitivity and the specificity rates variations according to the Signal-to-Noise Ratio were performed. CONCLUSIONS: Regular grammar with the addition of some constraints and deterministic automata proved functional for ECG signals diagnosis. Compared to statistical methods, the use of grammar provides satisfactory and competitive results and indices that are comparable to or even better than those cited in the literature. More... »

PAGES

31

References to SciGraph publications

  • 1997. Learning the syntax and semantic rules of an ECG grammar in AI*IA 97: ADVANCES IN ARTIFICIAL INTELLIGENCE
  • 2012-04. Automatic Classification of Heartbeats Using Wavelet Neural Network in JOURNAL OF MEDICAL SYSTEMS
  • 2004-12. Ventricular beat detection in single channel electrocardiograms in BIOMEDICAL ENGINEERING ONLINE
  • 2012. SVM Classification Algorithm in ECG Classification in INFORMATION COMPUTING AND APPLICATIONS
  • 2004-12. A mathematical model for electrical stimulation of a monolayer of cardiac cells in BIOMEDICAL ENGINEERING ONLINE
  • 1999-09. Classification of premature ventricular complexes using filter bank features, induction of decision trees and a fuzzy rule-based system in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2000-12-21. Image Pattern Recognition Based on Examples— A Combined Statistical and Structural-Syntactic Approach in ADVANCES IN PATTERN RECOGNITION
  • 2004-12. Real time electrocardiogram QRS detection using combined adaptive threshold in BIOMEDICAL ENGINEERING ONLINE
  • 1980-03. QRS wave detection in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2007. Performance Evaluation of Coifman Wavelet for ECG Signal Denoising in 3RD KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2006
  • 1997-11. Quantitative analysis of errors due to power-line interference and base-line drift in detection of onsets and offsets in ECG using wavelets in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12938-017-0322-2

    DOI

    http://dx.doi.org/10.1186/s12938-017-0322-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084251240

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28241829


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arrhythmias, Cardiac", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrocardiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal-To-Noise Ratio", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Laboratory of Technology and Medical Imaging (LTIM), Faculty of Medicine of Monastir (FMM), University of Monastir, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamdi", 
            "givenName": "Salah", 
            "id": "sg:person.014611147331.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611147331.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Laboratory of Technology and Medical Imaging (LTIM), Faculty of Medicine of Monastir (FMM), University of Monastir, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ben Abdallah", 
            "givenName": "Asma", 
            "id": "sg:person.014617733143.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617733143.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Laboratory of Technology and Medical Imaging (LTIM), Faculty of Medicine of Monastir (FMM), University of Monastir, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bedoui", 
            "givenName": "Mohamed Hedi", 
            "id": "sg:person.013205633441.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013205633441.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0165-1684(88)90061-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001325595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1684(88)90061-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001325595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2008.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001527093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2010.07.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006007142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02443287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006591734", 
              "https://doi.org/10.1007/bf02443287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02443287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006591734", 
              "https://doi.org/10.1007/bf02443287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neunet.2010.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006989757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-63576-9_106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007015749", 
              "https://doi.org/10.1007/3-540-63576-9_106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-925x-3-28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009416858", 
              "https://doi.org/10.1186/1475-925x-3-28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02513349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010657864", 
              "https://doi.org/10.1007/bf02513349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02513349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010657864", 
              "https://doi.org/10.1007/bf02513349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44522-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010868957", 
              "https://doi.org/10.1007/3-540-44522-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44522-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010868957", 
              "https://doi.org/10.1007/3-540-44522-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68017-8_106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015552247", 
              "https://doi.org/10.1007/978-3-540-68017-8_106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10916-010-9551-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019262569", 
              "https://doi.org/10.1007/s10916-010-9551-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csi.2011.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025720622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0736(96)80003-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026607932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0736(96)80003-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026607932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dsp.2009.10.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026758729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2013.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030844869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-925x-3-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032135222", 
              "https://doi.org/10.1186/1475-925x-3-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02510988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034981134", 
              "https://doi.org/10.1007/bf02510988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02510988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034981134", 
              "https://doi.org/10.1007/bf02510988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.measurement.2008.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044583304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0736(87)80096-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045408201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1684(88)90069-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046476385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1684(88)90069-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046476385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2543581.2543593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047561774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-34041-3_110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047663725", 
              "https://doi.org/10.1007/978-3-642-34041-3_110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.amc.2011.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047703251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.59918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049040559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compeleceng.2007.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050292162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2607(00)00060-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051332640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jare.2012.05.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052962763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-925x-3-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053465378", 
              "https://doi.org/10.1186/1475-925x-3-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:19971019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056785678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:20030560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056793408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.212060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061084166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.362922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061084568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.469381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061084760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.58593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061085044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.740880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061085384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.846678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061085718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.909634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061085865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.959322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061085999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.56207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/51.566158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061184742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/51.646221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061184850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/51.827412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061185040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/51.993193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061185179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.668803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061230187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.1971.4502834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061523690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.1985.325532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061525240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.1986.325695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061525359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2004.824131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061526066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2009.2013934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061527623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2008.2007128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061610615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tim.2003.816841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061635819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2008.2003323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2008.2004495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/titb.2008.923147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061656700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2008.2012031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s021951941000354x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062997358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15676/ijeei.2013.5.3.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068032073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cimca.2006.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093771923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2000.860175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093784136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cic.2003.1291087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094461711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icbbe.2008.796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095212688"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: The sequence of Q, R, and S peaks (QRS) complex detection is a crucial procedure in electrocardiogram (ECG) processing and analysis. We propose a novel approach for QRS complex detection based on the deterministic finite automata with the addition of some constraints. This paper confirms that regular grammar is useful for extracting QRS complexes and interpreting normalized ECG signals. A QRS is assimilated to a pair of adjacent peaks which meet certain criteria of standard deviation and duration.\nRESULTS: The proposed method was applied on several kinds of ECG signals issued from the standard MIT-BIH arrhythmia database. A total of 48 signals were used. For an input signal, several parameters were determined, such as QRS durations, RR distances, and the peaks' amplitudes. \u03c3RR and \u03c3QRS parameters were added to quantify the regularity of RR distances and QRS durations, respectively. The sensitivity rate of the suggested method was 99.74% and the specificity rate was 99.86%. Moreover, the sensitivity and the specificity rates variations according to the Signal-to-Noise Ratio were performed.\nCONCLUSIONS: Regular grammar with the addition of some constraints and deterministic automata proved functional for ECG signals diagnosis. Compared to statistical methods, the use of grammar provides satisfactory and competitive results and indices that are comparable to or even better than those cited in the literature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12938-017-0322-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1031014", 
            "issn": [
              "1475-925X"
            ], 
            "name": "BioMedical Engineering OnLine", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "name": "Real time QRS complex detection using DFA and regular grammar", 
        "pagination": "31", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0ba334f1033aa38610fa016064fe44d2c992613c1d38b0f1043cafd939d5259a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28241829"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101147518"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12938-017-0322-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084251240"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12938-017-0322-2", 
          "https://app.dimensions.ai/details/publication/pub.1084251240"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12938-017-0322-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-017-0322-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-017-0322-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-017-0322-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-017-0322-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    304 TRIPLES      21 PREDICATES      97 URIs      28 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12938-017-0322-2 schema:about N14386b28bf0c4c78941f55c81c0ee473
    2 N199ab57239534cdd9b39f0602a1818ad
    3 N282c6867745240d897eee67edac2845f
    4 N2f328cbab8374f5ebad6c5af3ba48282
    5 N6d7745e67bdf47ebb35d6f8a2164c7a5
    6 Nc14db3b74b7c48f48c127c58f374ba88
    7 Nebcbb37bf7be4c2d9fcc10728b67929f
    8 anzsrc-for:01
    9 anzsrc-for:0104
    10 schema:author Nefddb218922f4da88f0b5adadee67c4b
    11 schema:citation sg:pub.10.1007/3-540-44522-6_6
    12 sg:pub.10.1007/3-540-63576-9_106
    13 sg:pub.10.1007/978-3-540-68017-8_106
    14 sg:pub.10.1007/978-3-642-34041-3_110
    15 sg:pub.10.1007/bf02443287
    16 sg:pub.10.1007/bf02510988
    17 sg:pub.10.1007/bf02513349
    18 sg:pub.10.1007/s10916-010-9551-7
    19 sg:pub.10.1186/1475-925x-3-1
    20 sg:pub.10.1186/1475-925x-3-28
    21 sg:pub.10.1186/1475-925x-3-3
    22 https://doi.org/10.1016/0165-1684(88)90061-8
    23 https://doi.org/10.1016/0165-1684(88)90069-2
    24 https://doi.org/10.1016/j.amc.2011.03.001
    25 https://doi.org/10.1016/j.bspc.2008.04.002
    26 https://doi.org/10.1016/j.compeleceng.2007.10.005
    27 https://doi.org/10.1016/j.csi.2011.11.001
    28 https://doi.org/10.1016/j.dsp.2009.10.017
    29 https://doi.org/10.1016/j.eswa.2010.07.118
    30 https://doi.org/10.1016/j.jare.2012.05.007
    31 https://doi.org/10.1016/j.measurement.2008.08.004
    32 https://doi.org/10.1016/j.neucom.2013.02.010
    33 https://doi.org/10.1016/j.neunet.2010.07.006
    34 https://doi.org/10.1016/s0022-0736(87)80096-1
    35 https://doi.org/10.1016/s0022-0736(96)80003-3
    36 https://doi.org/10.1016/s0169-2607(00)00060-2
    37 https://doi.org/10.1049/el:19971019
    38 https://doi.org/10.1049/el:20030560
    39 https://doi.org/10.1109/10.212060
    40 https://doi.org/10.1109/10.362922
    41 https://doi.org/10.1109/10.469381
    42 https://doi.org/10.1109/10.58593
    43 https://doi.org/10.1109/10.740880
    44 https://doi.org/10.1109/10.846678
    45 https://doi.org/10.1109/10.909634
    46 https://doi.org/10.1109/10.959322
    47 https://doi.org/10.1109/34.56207
    48 https://doi.org/10.1109/51.566158
    49 https://doi.org/10.1109/51.646221
    50 https://doi.org/10.1109/51.827412
    51 https://doi.org/10.1109/51.993193
    52 https://doi.org/10.1109/78.668803
    53 https://doi.org/10.1109/cic.2003.1291087
    54 https://doi.org/10.1109/cimca.2006.98
    55 https://doi.org/10.1109/icassp.2000.860175
    56 https://doi.org/10.1109/icbbe.2008.796
    57 https://doi.org/10.1109/tbme.1971.4502834
    58 https://doi.org/10.1109/tbme.1985.325532
    59 https://doi.org/10.1109/tbme.1986.325695
    60 https://doi.org/10.1109/tbme.2004.824131
    61 https://doi.org/10.1109/tbme.2009.2013934
    62 https://doi.org/10.1109/tgrs.2008.2007128
    63 https://doi.org/10.1109/tim.2003.816841
    64 https://doi.org/10.1109/titb.2008.2003323
    65 https://doi.org/10.1109/titb.2008.2004495
    66 https://doi.org/10.1109/titb.2008.923147
    67 https://doi.org/10.1109/tnn.2008.2012031
    68 https://doi.org/10.1117/12.59918
    69 https://doi.org/10.1142/s021951941000354x
    70 https://doi.org/10.1145/2543581.2543593
    71 https://doi.org/10.15676/ijeei.2013.5.3.3
    72 schema:datePublished 2017-12
    73 schema:datePublishedReg 2017-12-01
    74 schema:description BACKGROUND: The sequence of Q, R, and S peaks (QRS) complex detection is a crucial procedure in electrocardiogram (ECG) processing and analysis. We propose a novel approach for QRS complex detection based on the deterministic finite automata with the addition of some constraints. This paper confirms that regular grammar is useful for extracting QRS complexes and interpreting normalized ECG signals. A QRS is assimilated to a pair of adjacent peaks which meet certain criteria of standard deviation and duration. RESULTS: The proposed method was applied on several kinds of ECG signals issued from the standard MIT-BIH arrhythmia database. A total of 48 signals were used. For an input signal, several parameters were determined, such as QRS durations, RR distances, and the peaks' amplitudes. σRR and σQRS parameters were added to quantify the regularity of RR distances and QRS durations, respectively. The sensitivity rate of the suggested method was 99.74% and the specificity rate was 99.86%. Moreover, the sensitivity and the specificity rates variations according to the Signal-to-Noise Ratio were performed. CONCLUSIONS: Regular grammar with the addition of some constraints and deterministic automata proved functional for ECG signals diagnosis. Compared to statistical methods, the use of grammar provides satisfactory and competitive results and indices that are comparable to or even better than those cited in the literature.
    75 schema:genre research_article
    76 schema:inLanguage en
    77 schema:isAccessibleForFree true
    78 schema:isPartOf Nc1d1b9c5203a4d9db120e386b24a2969
    79 Ncf3756f557b14dbdb8456e4f19a4d8b6
    80 sg:journal.1031014
    81 schema:name Real time QRS complex detection using DFA and regular grammar
    82 schema:pagination 31
    83 schema:productId N09eac03abb43481dbcd9d41a96f6e700
    84 N77d06bac638d4d89a5545eda2eedfc88
    85 Na1f552e040cf4351bf72f40178aed1d5
    86 Na232b849283f4315af6a709619eeb1d0
    87 Nbd221fbdabe34f87a59c1741b62d5da0
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084251240
    89 https://doi.org/10.1186/s12938-017-0322-2
    90 schema:sdDatePublished 2019-04-11T10:04
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher Nbce55e8017a943bdb056f2128605b898
    93 schema:url https://link.springer.com/10.1186%2Fs12938-017-0322-2
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N09eac03abb43481dbcd9d41a96f6e700 schema:name doi
    98 schema:value 10.1186/s12938-017-0322-2
    99 rdf:type schema:PropertyValue
    100 N14386b28bf0c4c78941f55c81c0ee473 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Signal-To-Noise Ratio
    102 rdf:type schema:DefinedTerm
    103 N199ab57239534cdd9b39f0602a1818ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Arrhythmias, Cardiac
    105 rdf:type schema:DefinedTerm
    106 N282c6867745240d897eee67edac2845f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Humans
    108 rdf:type schema:DefinedTerm
    109 N2f328cbab8374f5ebad6c5af3ba48282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Algorithms
    111 rdf:type schema:DefinedTerm
    112 N3293e7d939514fb08078730006e65d7a rdf:first sg:person.014617733143.20
    113 rdf:rest N77a48171efb44016b47689098595d874
    114 N6d7745e67bdf47ebb35d6f8a2164c7a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Electrocardiography
    116 rdf:type schema:DefinedTerm
    117 N77a48171efb44016b47689098595d874 rdf:first sg:person.013205633441.43
    118 rdf:rest rdf:nil
    119 N77d06bac638d4d89a5545eda2eedfc88 schema:name readcube_id
    120 schema:value 0ba334f1033aa38610fa016064fe44d2c992613c1d38b0f1043cafd939d5259a
    121 rdf:type schema:PropertyValue
    122 Na1f552e040cf4351bf72f40178aed1d5 schema:name pubmed_id
    123 schema:value 28241829
    124 rdf:type schema:PropertyValue
    125 Na232b849283f4315af6a709619eeb1d0 schema:name nlm_unique_id
    126 schema:value 101147518
    127 rdf:type schema:PropertyValue
    128 Nbce55e8017a943bdb056f2128605b898 schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 Nbd221fbdabe34f87a59c1741b62d5da0 schema:name dimensions_id
    131 schema:value pub.1084251240
    132 rdf:type schema:PropertyValue
    133 Nc14db3b74b7c48f48c127c58f374ba88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Signal Processing, Computer-Assisted
    135 rdf:type schema:DefinedTerm
    136 Nc1d1b9c5203a4d9db120e386b24a2969 schema:volumeNumber 16
    137 rdf:type schema:PublicationVolume
    138 Ncf3756f557b14dbdb8456e4f19a4d8b6 schema:issueNumber 1
    139 rdf:type schema:PublicationIssue
    140 Nebcbb37bf7be4c2d9fcc10728b67929f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Time Factors
    142 rdf:type schema:DefinedTerm
    143 Nefddb218922f4da88f0b5adadee67c4b rdf:first sg:person.014611147331.17
    144 rdf:rest N3293e7d939514fb08078730006e65d7a
    145 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Mathematical Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Statistics
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1031014 schema:issn 1475-925X
    152 schema:name BioMedical Engineering OnLine
    153 rdf:type schema:Periodical
    154 sg:person.013205633441.43 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    155 schema:familyName Bedoui
    156 schema:givenName Mohamed Hedi
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013205633441.43
    158 rdf:type schema:Person
    159 sg:person.014611147331.17 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    160 schema:familyName Hamdi
    161 schema:givenName Salah
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611147331.17
    163 rdf:type schema:Person
    164 sg:person.014617733143.20 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    165 schema:familyName Ben Abdallah
    166 schema:givenName Asma
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014617733143.20
    168 rdf:type schema:Person
    169 sg:pub.10.1007/3-540-44522-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010868957
    170 https://doi.org/10.1007/3-540-44522-6_6
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/3-540-63576-9_106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007015749
    173 https://doi.org/10.1007/3-540-63576-9_106
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/978-3-540-68017-8_106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015552247
    176 https://doi.org/10.1007/978-3-540-68017-8_106
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-642-34041-3_110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047663725
    179 https://doi.org/10.1007/978-3-642-34041-3_110
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf02443287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006591734
    182 https://doi.org/10.1007/bf02443287
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf02510988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034981134
    185 https://doi.org/10.1007/bf02510988
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf02513349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010657864
    188 https://doi.org/10.1007/bf02513349
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10916-010-9551-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019262569
    191 https://doi.org/10.1007/s10916-010-9551-7
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1186/1475-925x-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032135222
    194 https://doi.org/10.1186/1475-925x-3-1
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1186/1475-925x-3-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009416858
    197 https://doi.org/10.1186/1475-925x-3-28
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1186/1475-925x-3-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053465378
    200 https://doi.org/10.1186/1475-925x-3-3
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/0165-1684(88)90061-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001325595
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/0165-1684(88)90069-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046476385
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.amc.2011.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047703251
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.bspc.2008.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001527093
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.compeleceng.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050292162
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.csi.2011.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025720622
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.dsp.2009.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026758729
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.eswa.2010.07.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006007142
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.jare.2012.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052962763
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.measurement.2008.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044583304
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.neucom.2013.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030844869
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.neunet.2010.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006989757
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/s0022-0736(87)80096-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045408201
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/s0022-0736(96)80003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026607932
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/s0169-2607(00)00060-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332640
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1049/el:19971019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056785678
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1049/el:20030560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056793408
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1109/10.212060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084166
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1109/10.362922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084568
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1109/10.469381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084760
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1109/10.58593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085044
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1109/10.740880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085384
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1109/10.846678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085718
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1109/10.909634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085865
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1109/10.959322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061085999
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1109/34.56207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156513
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1109/51.566158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061184742
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1109/51.646221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061184850
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1109/51.827412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061185040
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1109/51.993193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061185179
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1109/78.668803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061230187
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1109/cic.2003.1291087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094461711
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1109/cimca.2006.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093771923
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1109/icassp.2000.860175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093784136
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1109/icbbe.2008.796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095212688
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1109/tbme.1971.4502834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061523690
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1109/tbme.1985.325532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525240
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1109/tbme.1986.325695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061525359
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1109/tbme.2004.824131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526066
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1109/tbme.2009.2013934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527623
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1109/tgrs.2008.2007128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610615
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1109/tim.2003.816841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061635819
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1109/titb.2008.2003323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656625
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1109/titb.2008.2004495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656631
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1109/titb.2008.923147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656700
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1109/tnn.2008.2012031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717507
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1117/12.59918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049040559
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1142/s021951941000354x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062997358
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1145/2543581.2543593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047561774
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.15676/ijeei.2013.5.3.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068032073
    301 rdf:type schema:CreativeWork
    302 https://www.grid.ac/institutes/grid.411838.7 schema:alternateName University of Monastir
    303 schema:name Laboratory of Technology and Medical Imaging (LTIM), Faculty of Medicine of Monastir (FMM), University of Monastir, Monastir, Tunisia
    304 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...