Biomechanical simulation of thorax deformation using finite element approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-06

AUTHORS

Guangzhi Zhang, Xian Chen, Junji Ohgi, Toshiro Miura, Akira Nakamoto, Chikanori Matsumura, Seiryo Sugiura, Toshiaki Hisada

ABSTRACT

BACKGROUND: The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. METHODS: We constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force-length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced. RESULTS: Thorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification. CONCLUSIONS: Thorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y

DOI

http://dx.doi.org/10.1186/s12938-016-0132-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002034296

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26852020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diaphragm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Finite Element Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Four-Dimensional Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Thoracic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thorax", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan", 
          "id": "http://www.grid.ac/institutes/grid.268397.1", 
          "name": [
            "Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Guangzhi", 
        "id": "sg:person.0677312603.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677312603.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan", 
          "id": "http://www.grid.ac/institutes/grid.268397.1", 
          "name": [
            "Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xian", 
        "id": "sg:person.013616366011.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616366011.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan", 
          "id": "http://www.grid.ac/institutes/grid.268397.1", 
          "name": [
            "Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohgi", 
        "givenName": "Junji", 
        "id": "sg:person.010622535265.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622535265.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan", 
          "id": "http://www.grid.ac/institutes/grid.460248.c", 
          "name": [
            "Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Toshiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan", 
          "id": "http://www.grid.ac/institutes/grid.460248.c", 
          "name": [
            "Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamoto", 
        "givenName": "Akira", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan", 
          "id": "http://www.grid.ac/institutes/grid.460248.c", 
          "name": [
            "Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumura", 
        "givenName": "Chikanori", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwa, 277-0871 Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwa, 277-0871 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugiura", 
        "givenName": "Seiryo", 
        "id": "sg:person.01277502614.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277502614.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwa, 277-0871 Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwa, 277-0871 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hisada", 
        "givenName": "Toshiaki", 
        "id": "sg:person.01231367414.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231367414.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11095-015-1695-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040059864", 
          "https://doi.org/10.1007/s11095-015-1695-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1479-5876-12-s2-s5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005217218", 
          "https://doi.org/10.1186/1479-5876-12-s2-s5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-013-0935-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027193187", 
          "https://doi.org/10.1007/s11548-013-0935-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32609-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024243429", 
          "https://doi.org/10.1007/978-3-540-32609-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-06", 
    "datePublishedReg": "2016-02-06", 
    "description": "BACKGROUND: The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing.\nMETHODS: We constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force-length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced.\nRESULTS: Thorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification.\nCONCLUSIONS: Thorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12938-016-0132-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2436783", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "thorax deformation", 
      "intercostal muscles", 
      "biomechanical simulation", 
      "normal quiet breathing", 
      "finite element model", 
      "finite element approach", 
      "computational mechanics models", 
      "quiet breathing", 
      "muscle contraction", 
      "element model", 
      "respiratory system", 
      "element approach", 
      "mechanics model", 
      "continuum mechanics", 
      "fiber orientation", 
      "human respiratory system", 
      "deformation", 
      "four-dimensional computed tomography (4DCT) images", 
      "representative motions", 
      "respiratory muscles", 
      "respiratory disease", 
      "active force-length relationship", 
      "muscle activation", 
      "rib cage", 
      "computed tomography images", 
      "main muscles", 
      "muscle", 
      "breathing", 
      "force-length relationship", 
      "simulations", 
      "motion", 
      "observed motion", 
      "diaphragm", 
      "contraction", 
      "tomography images", 
      "skeletal muscle model", 
      "thorax", 
      "muscle model", 
      "ribs", 
      "lung", 
      "Hill type", 
      "disease", 
      "diagnosis", 
      "useful tool", 
      "model", 
      "system", 
      "mechanics", 
      "treatment", 
      "fibers", 
      "activation", 
      "verification", 
      "effectiveness", 
      "images", 
      "approach", 
      "platform", 
      "direction", 
      "orientation", 
      "work", 
      "order", 
      "results", 
      "comparison", 
      "cages", 
      "relationship", 
      "tool", 
      "movement", 
      "reproduction", 
      "isotropic hyperelastic continuum skeletal muscle model", 
      "hyperelastic continuum skeletal muscle model", 
      "continuum skeletal muscle model", 
      "measurable muscle activation", 
      "anatomical fibre orientations", 
      "bucket-handle motions"
    ], 
    "name": "Biomechanical simulation of thorax deformation using finite element approach", 
    "pagination": "18", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002034296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12938-016-0132-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26852020"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12938-016-0132-y", 
      "https://app.dimensions.ai/details/publication/pub.1002034296"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_709.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12938-016-0132-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      22 PREDICATES      116 URIs      104 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12938-016-0132-y schema:about N0843713f499347dd9ff835a445824119
2 N17f9ad7809e042acb604c8872ee3165e
3 N2694e67db8d84e3bb5eb7eea512481e0
4 N4709690e4e5445978740b02aa215b004
5 N4e6b42042a4846e7985e5488e9aa0955
6 N5e6ddb8784944a21bf9bbb4163514ad0
7 N67f680e962c6487aa2a8b285280b4655
8 N69cb36e849234deebac9516513c04063
9 N6a49eef85640455ca463b6b689cfb489
10 N7cf3625faf8b48b386c6012b6a286e2d
11 N9900beca04b044e6bbca2ff6f67a9d7a
12 N9a57b3206a2947d7ae6069ef5cf0cd2f
13 Ndc57c3f973964c6eb41f53f43c4e7b0f
14 Nf8f8b142ded7404193799af66bbc800a
15 anzsrc-for:09
16 anzsrc-for:0903
17 schema:author N71250e36b6b54ac1aa4da86d86838ed5
18 schema:citation sg:pub.10.1007/978-3-540-32609-0
19 sg:pub.10.1007/s11095-015-1695-1
20 sg:pub.10.1007/s11548-013-0935-2
21 sg:pub.10.1186/1479-5876-12-s2-s5
22 schema:datePublished 2016-02-06
23 schema:datePublishedReg 2016-02-06
24 schema:description BACKGROUND: The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. METHODS: We constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force-length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced. RESULTS: Thorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification. CONCLUSIONS: Thorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N22682bc3643e4e95b97a2f2f052f9259
29 N52e421f6bed94fa3a5e4b105f82be3b2
30 sg:journal.1031014
31 schema:keywords Hill type
32 activation
33 active force-length relationship
34 anatomical fibre orientations
35 approach
36 biomechanical simulation
37 breathing
38 bucket-handle motions
39 cages
40 comparison
41 computational mechanics models
42 computed tomography images
43 continuum mechanics
44 continuum skeletal muscle model
45 contraction
46 deformation
47 diagnosis
48 diaphragm
49 direction
50 disease
51 effectiveness
52 element approach
53 element model
54 fiber orientation
55 fibers
56 finite element approach
57 finite element model
58 force-length relationship
59 four-dimensional computed tomography (4DCT) images
60 human respiratory system
61 hyperelastic continuum skeletal muscle model
62 images
63 intercostal muscles
64 isotropic hyperelastic continuum skeletal muscle model
65 lung
66 main muscles
67 measurable muscle activation
68 mechanics
69 mechanics model
70 model
71 motion
72 movement
73 muscle
74 muscle activation
75 muscle contraction
76 muscle model
77 normal quiet breathing
78 observed motion
79 order
80 orientation
81 platform
82 quiet breathing
83 relationship
84 representative motions
85 reproduction
86 respiratory disease
87 respiratory muscles
88 respiratory system
89 results
90 rib cage
91 ribs
92 simulations
93 skeletal muscle model
94 system
95 thorax
96 thorax deformation
97 tomography images
98 tool
99 treatment
100 useful tool
101 verification
102 work
103 schema:name Biomechanical simulation of thorax deformation using finite element approach
104 schema:pagination 18
105 schema:productId N2f772fc2db8840df80856dbae55f98e3
106 Nc9d713b38e2044a293ee714cbe83d460
107 Ndfeb103d27bc483e84590aaa716d7987
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002034296
109 https://doi.org/10.1186/s12938-016-0132-y
110 schema:sdDatePublished 2022-01-01T18:40
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N634e9f7854ba473fad138e90c91d98d8
113 schema:url https://doi.org/10.1186/s12938-016-0132-y
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N07ecd5c311934fa5aa1d87c4af934620 rdf:first Nb8aec5a33c8f446a819e6ce662a090e1
118 rdf:rest Ne68d830f957c4aca8adb437c278eff8a
119 N0843713f499347dd9ff835a445824119 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Movement
121 rdf:type schema:DefinedTerm
122 N08a6501713bf49628029a7fded41e7a6 schema:affiliation grid-institutes:grid.460248.c
123 schema:familyName Matsumura
124 schema:givenName Chikanori
125 rdf:type schema:Person
126 N17f9ad7809e042acb604c8872ee3165e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Muscle Contraction
128 rdf:type schema:DefinedTerm
129 N1c33478430584656b40b240ee1095859 rdf:first sg:person.01277502614.69
130 rdf:rest N5792943f70b84906b0284916860a2d4c
131 N22682bc3643e4e95b97a2f2f052f9259 schema:volumeNumber 15
132 rdf:type schema:PublicationVolume
133 N2694e67db8d84e3bb5eb7eea512481e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Models, Biological
135 rdf:type schema:DefinedTerm
136 N2f772fc2db8840df80856dbae55f98e3 schema:name dimensions_id
137 schema:value pub.1002034296
138 rdf:type schema:PropertyValue
139 N3cdd29ab1e584bc99136879538b6408a rdf:first sg:person.013616366011.97
140 rdf:rest Ne09afff143b84b2391a7d431557c3c84
141 N4709690e4e5445978740b02aa215b004 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Muscle, Skeletal
143 rdf:type schema:DefinedTerm
144 N4e6b42042a4846e7985e5488e9aa0955 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Radiography, Thoracic
146 rdf:type schema:DefinedTerm
147 N52e421f6bed94fa3a5e4b105f82be3b2 schema:issueNumber 1
148 rdf:type schema:PublicationIssue
149 N5792943f70b84906b0284916860a2d4c rdf:first sg:person.01231367414.61
150 rdf:rest rdf:nil
151 N5a54f321d2454bf7a372938a1edbb38c schema:affiliation grid-institutes:grid.460248.c
152 schema:familyName Nakamoto
153 schema:givenName Akira
154 rdf:type schema:Person
155 N5e6ddb8784944a21bf9bbb4163514ad0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Male
157 rdf:type schema:DefinedTerm
158 N634e9f7854ba473fad138e90c91d98d8 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 N67f680e962c6487aa2a8b285280b4655 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Biomechanical Phenomena
162 rdf:type schema:DefinedTerm
163 N69cb36e849234deebac9516513c04063 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Mechanical Phenomena
165 rdf:type schema:DefinedTerm
166 N6a49eef85640455ca463b6b689cfb489 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Respiration
168 rdf:type schema:DefinedTerm
169 N71250e36b6b54ac1aa4da86d86838ed5 rdf:first sg:person.0677312603.60
170 rdf:rest N3cdd29ab1e584bc99136879538b6408a
171 N7cf3625faf8b48b386c6012b6a286e2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Four-Dimensional Computed Tomography
173 rdf:type schema:DefinedTerm
174 N82f7eb63597c4269af6e27ca3936867a rdf:first N08a6501713bf49628029a7fded41e7a6
175 rdf:rest N1c33478430584656b40b240ee1095859
176 N9900beca04b044e6bbca2ff6f67a9d7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Finite Element Analysis
178 rdf:type schema:DefinedTerm
179 N9a57b3206a2947d7ae6069ef5cf0cd2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Diaphragm
181 rdf:type schema:DefinedTerm
182 Nb8aec5a33c8f446a819e6ce662a090e1 schema:affiliation grid-institutes:grid.460248.c
183 schema:familyName Miura
184 schema:givenName Toshiro
185 rdf:type schema:Person
186 Nc9d713b38e2044a293ee714cbe83d460 schema:name doi
187 schema:value 10.1186/s12938-016-0132-y
188 rdf:type schema:PropertyValue
189 Ndc57c3f973964c6eb41f53f43c4e7b0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Humans
191 rdf:type schema:DefinedTerm
192 Ndfeb103d27bc483e84590aaa716d7987 schema:name pubmed_id
193 schema:value 26852020
194 rdf:type schema:PropertyValue
195 Ne09afff143b84b2391a7d431557c3c84 rdf:first sg:person.010622535265.10
196 rdf:rest N07ecd5c311934fa5aa1d87c4af934620
197 Ne68d830f957c4aca8adb437c278eff8a rdf:first N5a54f321d2454bf7a372938a1edbb38c
198 rdf:rest N82f7eb63597c4269af6e27ca3936867a
199 Nf8f8b142ded7404193799af66bbc800a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Thorax
201 rdf:type schema:DefinedTerm
202 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
203 schema:name Engineering
204 rdf:type schema:DefinedTerm
205 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
206 schema:name Biomedical Engineering
207 rdf:type schema:DefinedTerm
208 sg:grant.2436783 http://pending.schema.org/fundedItem sg:pub.10.1186/s12938-016-0132-y
209 rdf:type schema:MonetaryGrant
210 sg:journal.1031014 schema:issn 1475-925X
211 schema:name BioMedical Engineering OnLine
212 schema:publisher Springer Nature
213 rdf:type schema:Periodical
214 sg:person.010622535265.10 schema:affiliation grid-institutes:grid.268397.1
215 schema:familyName Ohgi
216 schema:givenName Junji
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622535265.10
218 rdf:type schema:Person
219 sg:person.01231367414.61 schema:affiliation grid-institutes:grid.26999.3d
220 schema:familyName Hisada
221 schema:givenName Toshiaki
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231367414.61
223 rdf:type schema:Person
224 sg:person.01277502614.69 schema:affiliation grid-institutes:grid.26999.3d
225 schema:familyName Sugiura
226 schema:givenName Seiryo
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277502614.69
228 rdf:type schema:Person
229 sg:person.013616366011.97 schema:affiliation grid-institutes:grid.268397.1
230 schema:familyName Chen
231 schema:givenName Xian
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616366011.97
233 rdf:type schema:Person
234 sg:person.0677312603.60 schema:affiliation grid-institutes:grid.268397.1
235 schema:familyName Zhang
236 schema:givenName Guangzhi
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677312603.60
238 rdf:type schema:Person
239 sg:pub.10.1007/978-3-540-32609-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024243429
240 https://doi.org/10.1007/978-3-540-32609-0
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/s11095-015-1695-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040059864
243 https://doi.org/10.1007/s11095-015-1695-1
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/s11548-013-0935-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027193187
246 https://doi.org/10.1007/s11548-013-0935-2
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/1479-5876-12-s2-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005217218
249 https://doi.org/10.1186/1479-5876-12-s2-s5
250 rdf:type schema:CreativeWork
251 grid-institutes:grid.268397.1 schema:alternateName Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan
252 schema:name Department of Biomedical Engineering, Yamaguchi University, Ube, 755-8611 Japan
253 rdf:type schema:Organization
254 grid-institutes:grid.26999.3d schema:alternateName The Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwa, 277-0871 Japan
255 schema:name The Department of Human and Engineered Environmental Studies, The University of Tokyo, Kashiwa, 277-0871 Japan
256 rdf:type schema:Organization
257 grid-institutes:grid.460248.c schema:alternateName Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan
258 schema:name Tokuyama Central Hospital, Japan Community Healthcare Organization, Shunan, 745-8522 Japan
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...