Biomechanical simulation of thorax deformation using finite element approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-06

AUTHORS

Guangzhi Zhang, Xian Chen, Junji Ohgi, Toshiro Miura, Akira Nakamoto, Chikanori Matsumura, Seiryo Sugiura, Toshiaki Hisada

ABSTRACT

BackgroundThe biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing.MethodsWe constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force–length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced.ResultsThorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification.ConclusionsThorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y

DOI

http://dx.doi.org/10.1186/s12938-016-0132-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002034296

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26852020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diaphragm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Finite Element Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Four-Dimensional Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Thoracic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thorax", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan", 
          "id": "http://www.grid.ac/institutes/grid.268397.1", 
          "name": [
            "Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Guangzhi", 
        "id": "sg:person.0677312603.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677312603.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan", 
          "id": "http://www.grid.ac/institutes/grid.268397.1", 
          "name": [
            "Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xian", 
        "id": "sg:person.013616366011.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616366011.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan", 
          "id": "http://www.grid.ac/institutes/grid.268397.1", 
          "name": [
            "Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohgi", 
        "givenName": "Junji", 
        "id": "sg:person.010622535265.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622535265.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460248.c", 
          "name": [
            "Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miura", 
        "givenName": "Toshiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460248.c", 
          "name": [
            "Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamoto", 
        "givenName": "Akira", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460248.c", 
          "name": [
            "Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumura", 
        "givenName": "Chikanori", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Department of Human and Engineered Environmental Studies, The University of Tokyo, 277-0871, Kashiwa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The Department of Human and Engineered Environmental Studies, The University of Tokyo, 277-0871, Kashiwa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugiura", 
        "givenName": "Seiryo", 
        "id": "sg:person.01277502614.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277502614.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Department of Human and Engineered Environmental Studies, The University of Tokyo, 277-0871, Kashiwa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The Department of Human and Engineered Environmental Studies, The University of Tokyo, 277-0871, Kashiwa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hisada", 
        "givenName": "Toshiaki", 
        "id": "sg:person.01231367414.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231367414.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1479-5876-12-s2-s5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005217218", 
          "https://doi.org/10.1186/1479-5876-12-s2-s5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-015-1695-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040059864", 
          "https://doi.org/10.1007/s11095-015-1695-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32609-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024243429", 
          "https://doi.org/10.1007/978-3-540-32609-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-013-0935-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027193187", 
          "https://doi.org/10.1007/s11548-013-0935-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-06", 
    "datePublishedReg": "2016-02-06", 
    "description": "BackgroundThe biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing.MethodsWe constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force\u2013length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced.ResultsThorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification.ConclusionsThorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12938-016-0132-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2436783", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031014", 
        "issn": [
          "1475-925X"
        ], 
        "name": "BioMedical Engineering OnLine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "thorax deformation", 
      "intercostal muscles", 
      "normal quiet breathing", 
      "biomechanical simulation", 
      "finite element model", 
      "finite element approach", 
      "computational mechanics models", 
      "quiet breathing", 
      "muscle contraction", 
      "respiratory system", 
      "element model", 
      "element approach", 
      "mechanics model", 
      "continuum mechanics", 
      "human respiratory system", 
      "fiber orientation", 
      "four-dimensional computed tomography (4DCT) images", 
      "deformation", 
      "representative motions", 
      "respiratory muscles", 
      "respiratory disease", 
      "active force-length relationship", 
      "muscle activation", 
      "main muscles", 
      "rib cage", 
      "computed tomography images", 
      "muscle", 
      "breathing", 
      "force-length relationship", 
      "simulations", 
      "motion", 
      "observed motion", 
      "diaphragm", 
      "tomography images", 
      "contraction", 
      "skeletal muscle model", 
      "thorax", 
      "muscle model", 
      "ribs", 
      "lung", 
      "Hill type", 
      "MethodsWe", 
      "disease", 
      "diagnosis", 
      "useful tool", 
      "system", 
      "model", 
      "treatment", 
      "mechanics", 
      "fibers", 
      "activation", 
      "verification", 
      "effectiveness", 
      "images", 
      "approach", 
      "direction", 
      "platform", 
      "orientation", 
      "work", 
      "order", 
      "results", 
      "comparison", 
      "cages", 
      "relationship", 
      "tool", 
      "movement", 
      "reproduction"
    ], 
    "name": "Biomechanical simulation of thorax deformation using finite element approach", 
    "pagination": "18", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002034296"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12938-016-0132-y"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26852020"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12938-016-0132-y", 
      "https://app.dimensions.ai/details/publication/pub.1002034296"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_710.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12938-016-0132-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12938-016-0132-y'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      22 PREDICATES      111 URIs      99 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12938-016-0132-y schema:about N3be8baebd7d443318153d064fda15024
2 N495baa26fd5745258cb9cc3999cdd1f3
3 N588d9023752e4083be3fadba70046016
4 N678ce42910b244148ef0a3bea4cc85aa
5 N89533c30d67849bbb4055db591b7f05c
6 Na8b8f9ca28e9403e8093d6bf7b42e472
7 Nab94ff0ad0a2440cbb7cbd1df7d1fc99
8 Nac0d7878ba594533bf76c23f37a61944
9 Naed0771738f844b2b134a77692dab7bf
10 Ndd605de15de440c59b8e03cdbf2f4f00
11 Ne2d1277d438b4188b21ec0db4dd900a6
12 Ne83810b87e6f48138164453338933f38
13 Nfc784e63b8e54d95953018c3545a9b84
14 Nfca5292e37d346aa940319c2b89fae49
15 anzsrc-for:09
16 anzsrc-for:0903
17 schema:author N18de11b35c5f47ffa853a3a669961a3d
18 schema:citation sg:pub.10.1007/978-3-540-32609-0
19 sg:pub.10.1007/s11095-015-1695-1
20 sg:pub.10.1007/s11548-013-0935-2
21 sg:pub.10.1186/1479-5876-12-s2-s5
22 schema:datePublished 2016-02-06
23 schema:datePublishedReg 2016-02-06
24 schema:description BackgroundThe biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing.MethodsWe constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force–length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced.ResultsThorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification.ConclusionsThorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N03871f464d4441df86408e5ea06d34cc
29 N089c730ed77e4dffa5a85f693751976a
30 sg:journal.1031014
31 schema:keywords Hill type
32 MethodsWe
33 activation
34 active force-length relationship
35 approach
36 biomechanical simulation
37 breathing
38 cages
39 comparison
40 computational mechanics models
41 computed tomography images
42 continuum mechanics
43 contraction
44 deformation
45 diagnosis
46 diaphragm
47 direction
48 disease
49 effectiveness
50 element approach
51 element model
52 fiber orientation
53 fibers
54 finite element approach
55 finite element model
56 force-length relationship
57 four-dimensional computed tomography (4DCT) images
58 human respiratory system
59 images
60 intercostal muscles
61 lung
62 main muscles
63 mechanics
64 mechanics model
65 model
66 motion
67 movement
68 muscle
69 muscle activation
70 muscle contraction
71 muscle model
72 normal quiet breathing
73 observed motion
74 order
75 orientation
76 platform
77 quiet breathing
78 relationship
79 representative motions
80 reproduction
81 respiratory disease
82 respiratory muscles
83 respiratory system
84 results
85 rib cage
86 ribs
87 simulations
88 skeletal muscle model
89 system
90 thorax
91 thorax deformation
92 tomography images
93 tool
94 treatment
95 useful tool
96 verification
97 work
98 schema:name Biomechanical simulation of thorax deformation using finite element approach
99 schema:pagination 18
100 schema:productId N012ae491090841e2bd313b988952d45d
101 Nc3504db27ef14ea1a25f253329d82fb0
102 Nf6759d6bee18447389edb8ea2dd443fb
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002034296
104 https://doi.org/10.1186/s12938-016-0132-y
105 schema:sdDatePublished 2022-05-20T07:32
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N77967e94473b4256809c2d609e171a5f
108 schema:url https://doi.org/10.1186/s12938-016-0132-y
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N012ae491090841e2bd313b988952d45d schema:name doi
113 schema:value 10.1186/s12938-016-0132-y
114 rdf:type schema:PropertyValue
115 N03871f464d4441df86408e5ea06d34cc schema:issueNumber 1
116 rdf:type schema:PublicationIssue
117 N089c730ed77e4dffa5a85f693751976a schema:volumeNumber 15
118 rdf:type schema:PublicationVolume
119 N18de11b35c5f47ffa853a3a669961a3d rdf:first sg:person.0677312603.60
120 rdf:rest Nf0e36016fe744302b689059e682c0bf7
121 N28f97951f5944e10927f711cac780d81 rdf:first sg:person.010622535265.10
122 rdf:rest Nc803793242cc4f439e54bf1ffc8ec649
123 N3bc351f027e746068bd5fea7fa8ad051 rdf:first sg:person.01277502614.69
124 rdf:rest Nb123b49411b74bdc8de86d0a426cfee2
125 N3be8baebd7d443318153d064fda15024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Four-Dimensional Computed Tomography
127 rdf:type schema:DefinedTerm
128 N4532ca0eb6fd44a79e07bff9f4572b20 schema:affiliation grid-institutes:grid.460248.c
129 schema:familyName Matsumura
130 schema:givenName Chikanori
131 rdf:type schema:Person
132 N495baa26fd5745258cb9cc3999cdd1f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Mechanical Phenomena
134 rdf:type schema:DefinedTerm
135 N4ddeebba7a97412fbfaad49288194700 schema:affiliation grid-institutes:grid.460248.c
136 schema:familyName Miura
137 schema:givenName Toshiro
138 rdf:type schema:Person
139 N573fe065338c421a8e0301df473cb5be rdf:first N4532ca0eb6fd44a79e07bff9f4572b20
140 rdf:rest N3bc351f027e746068bd5fea7fa8ad051
141 N588d9023752e4083be3fadba70046016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Diaphragm
143 rdf:type schema:DefinedTerm
144 N678ce42910b244148ef0a3bea4cc85aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Biomechanical Phenomena
146 rdf:type schema:DefinedTerm
147 N77967e94473b4256809c2d609e171a5f schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 N89533c30d67849bbb4055db591b7f05c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Thorax
151 rdf:type schema:DefinedTerm
152 Na3ba11b784ef4d68b45d1d87fbcea584 schema:affiliation grid-institutes:grid.460248.c
153 schema:familyName Nakamoto
154 schema:givenName Akira
155 rdf:type schema:Person
156 Na8b8f9ca28e9403e8093d6bf7b42e472 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Models, Biological
158 rdf:type schema:DefinedTerm
159 Nab94ff0ad0a2440cbb7cbd1df7d1fc99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Radiography, Thoracic
161 rdf:type schema:DefinedTerm
162 Nac0d7878ba594533bf76c23f37a61944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Male
164 rdf:type schema:DefinedTerm
165 Naed0771738f844b2b134a77692dab7bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Muscle Contraction
167 rdf:type schema:DefinedTerm
168 Nb123b49411b74bdc8de86d0a426cfee2 rdf:first sg:person.01231367414.61
169 rdf:rest rdf:nil
170 Nc3504db27ef14ea1a25f253329d82fb0 schema:name dimensions_id
171 schema:value pub.1002034296
172 rdf:type schema:PropertyValue
173 Nc803793242cc4f439e54bf1ffc8ec649 rdf:first N4ddeebba7a97412fbfaad49288194700
174 rdf:rest Ne8708e7058a64506ab7492d1bcb4aefe
175 Ndd605de15de440c59b8e03cdbf2f4f00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Humans
177 rdf:type schema:DefinedTerm
178 Ne2d1277d438b4188b21ec0db4dd900a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Finite Element Analysis
180 rdf:type schema:DefinedTerm
181 Ne83810b87e6f48138164453338933f38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Respiration
183 rdf:type schema:DefinedTerm
184 Ne8708e7058a64506ab7492d1bcb4aefe rdf:first Na3ba11b784ef4d68b45d1d87fbcea584
185 rdf:rest N573fe065338c421a8e0301df473cb5be
186 Nf0e36016fe744302b689059e682c0bf7 rdf:first sg:person.013616366011.97
187 rdf:rest N28f97951f5944e10927f711cac780d81
188 Nf6759d6bee18447389edb8ea2dd443fb schema:name pubmed_id
189 schema:value 26852020
190 rdf:type schema:PropertyValue
191 Nfc784e63b8e54d95953018c3545a9b84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Movement
193 rdf:type schema:DefinedTerm
194 Nfca5292e37d346aa940319c2b89fae49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Muscle, Skeletal
196 rdf:type schema:DefinedTerm
197 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
198 schema:name Engineering
199 rdf:type schema:DefinedTerm
200 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
201 schema:name Biomedical Engineering
202 rdf:type schema:DefinedTerm
203 sg:grant.2436783 http://pending.schema.org/fundedItem sg:pub.10.1186/s12938-016-0132-y
204 rdf:type schema:MonetaryGrant
205 sg:journal.1031014 schema:issn 1475-925X
206 schema:name BioMedical Engineering OnLine
207 schema:publisher Springer Nature
208 rdf:type schema:Periodical
209 sg:person.010622535265.10 schema:affiliation grid-institutes:grid.268397.1
210 schema:familyName Ohgi
211 schema:givenName Junji
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622535265.10
213 rdf:type schema:Person
214 sg:person.01231367414.61 schema:affiliation grid-institutes:grid.26999.3d
215 schema:familyName Hisada
216 schema:givenName Toshiaki
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231367414.61
218 rdf:type schema:Person
219 sg:person.01277502614.69 schema:affiliation grid-institutes:grid.26999.3d
220 schema:familyName Sugiura
221 schema:givenName Seiryo
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277502614.69
223 rdf:type schema:Person
224 sg:person.013616366011.97 schema:affiliation grid-institutes:grid.268397.1
225 schema:familyName Chen
226 schema:givenName Xian
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013616366011.97
228 rdf:type schema:Person
229 sg:person.0677312603.60 schema:affiliation grid-institutes:grid.268397.1
230 schema:familyName Zhang
231 schema:givenName Guangzhi
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677312603.60
233 rdf:type schema:Person
234 sg:pub.10.1007/978-3-540-32609-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024243429
235 https://doi.org/10.1007/978-3-540-32609-0
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s11095-015-1695-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040059864
238 https://doi.org/10.1007/s11095-015-1695-1
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s11548-013-0935-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027193187
241 https://doi.org/10.1007/s11548-013-0935-2
242 rdf:type schema:CreativeWork
243 sg:pub.10.1186/1479-5876-12-s2-s5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005217218
244 https://doi.org/10.1186/1479-5876-12-s2-s5
245 rdf:type schema:CreativeWork
246 grid-institutes:grid.268397.1 schema:alternateName Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan
247 schema:name Department of Biomedical Engineering, Yamaguchi University, 755-8611, Ube, Japan
248 rdf:type schema:Organization
249 grid-institutes:grid.26999.3d schema:alternateName The Department of Human and Engineered Environmental Studies, The University of Tokyo, 277-0871, Kashiwa, Japan
250 schema:name The Department of Human and Engineered Environmental Studies, The University of Tokyo, 277-0871, Kashiwa, Japan
251 rdf:type schema:Organization
252 grid-institutes:grid.460248.c schema:alternateName Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan
253 schema:name Tokuyama Central Hospital, Japan Community Healthcare Organization, 745-8522, Shunan, Japan
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...