Postprandial changes in cardiometabolic disease risk in young Chinese men following isocaloric high or low protein diets, stratified by either ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Alexander Mok, Sumanto Haldar, Jetty Chung-Yung Lee, Melvin Khee-Shing Leow, Christiani Jeyakumar Henry

ABSTRACT

BACKGROUND: Cardio-Metabolic Disease (CMD) is the leading cause of death globally and particularly in Asia. Postprandial elevation of glycaemia, insulinaemia, triglyceridaemia are associated with an increased risk of CMD. While studies have shown that higher protein intake or increased meal frequency may benefit postprandial metabolism, their combined effect has rarely been investigated using composite mixed meals. We therefore examined the combined effects of increasing meal frequency (2-large vs 6-smaller meals), with high or low-protein (40 % vs 10 % energy from protein respectively) isocaloric mixed meals on a range of postprandial CMD risk markers. METHODS: In a randomized crossover study, 10 healthy Chinese males (Age: 29 ± 7 years; BMI: 21.9 ± 1.7 kg/m(2)) underwent 4 dietary treatments: CON-2 (2 large Low-Protein meals), CON-6 (6 Small Low-Protein meals), PRO-2 (2 Large High-Protein meals) and PRO-6 (6 Small High-Protein meals). Subjects wore a continuous glucose monitor (CGM) and venous blood samples were obtained at baseline and at regular intervals for 8.5 h to monitor postprandial changes in glucose, insulin, triglycerides and high sensitivity C-reactive protein (hsCRP). Blood pressure was measured at regular intervals pre- and post- meal consumption. Urine was collected to measure excretion of creatinine and F2-isoprostanes and its metabolites over the 8.5 h postprandial period. RESULTS: The high-protein meals, irrespective of meal frequency were beneficial for glycaemic health since glucose incremental area under the curve (iAUC) for PRO-2 (185 ± 166 mmol.min.L(-1)) and PRO-6 (214 ± 188 mmol.min.L(-1)) were 66 and 60 % lower respectively (both p < 0.05), compared with CON-2 (536 ± 290 mmol.min.L(-1)). The iAUC for insulin was the lowest for PRO-6 (13.7 ± 7.1 U.min.L(-1)) as compared with CON-2 (28.4 ± 15.6 U.min.L(-)1), p < 0.001. There were no significant differences in postprandial responses in other measurements between the dietary treatments. CONCLUSIONS: The consumption of composite meals with higher protein content, irrespective of meal frequency appears to be beneficial for postprandial glycemic and insulinemic responses in young, healthy Chinese males. Implications of this study may be useful in the Asian context where the consumption of high glycemic index, carbohydrate meals is prevalent. TRIAL REGISTRATION: NCT02529228 . More... »

PAGES

27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12937-016-0141-5

DOI

http://dx.doi.org/10.1186/s12937-016-0141-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045970440

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26979583


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asian Continental Ancestry Group", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "C-Reactive Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Creatinine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Over Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet, Protein-Restricted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dietary Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Intake", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "F2-Isoprostanes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycemic Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Meals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postprandial Period", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triglycerides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mok", 
        "givenName": "Alexander", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haldar", 
        "givenName": "Sumanto", 
        "id": "sg:person.0742755077.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742755077.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, SAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jetty Chung-Yung", 
        "id": "sg:person.013634243264.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013634243264.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tan Tock Seng Hospital", 
          "id": "https://www.grid.ac/institutes/grid.240988.f", 
          "name": [
            "Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore", 
            "Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, 117609, Singapore, Singapore", 
            "Division of Medicine, Department of Endocrinology, Tan Tock Seng Hospital, 11, Jalan Tang Tock Seng, 308433, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leow", 
        "givenName": "Melvin Khee-Shing", 
        "id": "sg:person.010626434017.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010626434017.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore", 
            "Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, 117609, Singapore, Singapore", 
            "Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henry", 
        "givenName": "Christiani Jeyakumar", 
        "id": "sg:person.011033621512.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033621512.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/oby.20247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001659195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.110.005850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003530853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9150(00)00499-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003554482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2007.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004589906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1520-7560(200003/04)16:2<125::aid-dmrr90>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007568631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db13-0696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008266807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nut.2014.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008350655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nut.2014.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008350655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physbeh.2014.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010105893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clnu.2013.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010223551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plipres.2008.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011451452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012013663", 
          "https://doi.org/10.1038/sj.ijo.0802937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012013663", 
          "https://doi.org/10.1038/sj.ijo.0802937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plipres.2011.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013018671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc08-1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013387772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fct.2012.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018725310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2005.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020734194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eclnm.2010.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021459097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11883-003-0032-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021718348", 
          "https://doi.org/10.1007/s11883-003-0032-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9150(03)00157-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022297179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9150(03)00157-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022297179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.23.9383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023407627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.23.13381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025901837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11745-008-3274-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028006663", 
          "https://doi.org/10.1007/s11745-008-3274-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.11.3.653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028861904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1550-2783-8-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029652011", 
          "https://doi.org/10.1186/1550-2783-8-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2007.03.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030245728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0038632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030594897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s000711450896757x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031783942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2008.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032861420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dmrr.2533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034687836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0058688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036045861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.110.004374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037427711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4530(02)00108-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040529280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198209093071104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040743632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jdiacomp.2013.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042034340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1550-2783-8-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044330829", 
          "https://doi.org/10.1186/1550-2783-8-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114511000080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045711247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198910053211403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048234041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114514002128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049702444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2007.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050361671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje-12-0884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050562942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10715762.2015.1027199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051091364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9150(01)00523-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051315494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2007.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053397322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ars.2009.2934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059231160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1123/ijsnem.16.4.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062421551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.16.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070745849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v16.i12.1512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071366576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/132.9.2574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075120261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jn/133.2.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075230328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/78.1.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075303732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/83.2.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077187977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/55.2.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077382627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077421322", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/23.8.1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080690482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/57.6.868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082834813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083004666", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/66.5.1264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083168063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "BACKGROUND: Cardio-Metabolic Disease (CMD) is the leading cause of death globally and particularly in Asia. Postprandial elevation of glycaemia, insulinaemia, triglyceridaemia are associated with an increased risk of CMD. While studies have shown that higher protein intake or increased meal frequency may benefit postprandial metabolism, their combined effect has rarely been investigated using composite mixed meals. We therefore examined the combined effects of increasing meal frequency (2-large vs 6-smaller meals), with high or low-protein (40 % vs 10 % energy from protein respectively) isocaloric mixed meals on a range of postprandial CMD risk markers.\nMETHODS: In a randomized crossover study, 10 healthy Chinese males (Age: 29 \u00b1 7 years; BMI: 21.9 \u00b1 1.7 kg/m(2)) underwent 4 dietary treatments: CON-2 (2 large Low-Protein meals), CON-6 (6 Small Low-Protein meals), PRO-2 (2 Large High-Protein meals) and PRO-6 (6 Small High-Protein meals). Subjects wore a continuous glucose monitor (CGM) and venous blood samples were obtained at baseline and at regular intervals for 8.5 h to monitor postprandial changes in glucose, insulin, triglycerides and high sensitivity C-reactive protein (hsCRP). Blood pressure was measured at regular intervals pre- and post- meal consumption. Urine was collected to measure excretion of creatinine and F2-isoprostanes and its metabolites over the 8.5 h postprandial period.\nRESULTS: The high-protein meals, irrespective of meal frequency were beneficial for glycaemic health since glucose incremental area under the curve (iAUC) for PRO-2 (185 \u00b1 166 mmol.min.L(-1)) and PRO-6 (214 \u00b1 188 mmol.min.L(-1)) were 66 and 60 % lower respectively (both p < 0.05), compared with CON-2 (536 \u00b1 290 mmol.min.L(-1)). The iAUC for insulin was the lowest for PRO-6 (13.7 \u00b1 7.1 U.min.L(-1)) as compared with CON-2 (28.4 \u00b1 15.6 U.min.L(-)1), p < 0.001. There were no significant differences in postprandial responses in other measurements between the dietary treatments.\nCONCLUSIONS: The consumption of composite meals with higher protein content, irrespective of meal frequency appears to be beneficial for postprandial glycemic and insulinemic responses in young, healthy Chinese males. Implications of this study may be useful in the Asian context where the consumption of high glycemic index, carbohydrate meals is prevalent.\nTRIAL REGISTRATION: NCT02529228 .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12937-016-0141-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031283", 
        "issn": [
          "1475-2891"
        ], 
        "name": "Nutrition Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Postprandial changes in cardiometabolic disease risk in young Chinese men following isocaloric high or low protein diets, stratified by either high or low meal frequency - a randomized controlled crossover trial", 
    "pagination": "27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dafa176f76bfe53008be5c7e946e00211896167a7b8f7ff0b5d031dd6ca5a3d9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26979583"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101152213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12937-016-0141-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045970440"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12937-016-0141-5", 
      "https://app.dimensions.ai/details/publication/pub.1045970440"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fs12937-016-0141-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12937-016-0141-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12937-016-0141-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12937-016-0141-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12937-016-0141-5'


 

This table displays all metadata directly associated to this object as RDF triples.

376 TRIPLES      21 PREDICATES      109 URIs      45 LITERALS      33 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12937-016-0141-5 schema:about N00d0778e10a1485289e44cac083c3839
2 N0fa7eed679de4c818126dc04673e900d
3 N10ee44d99c314b4da5eb29d37d160ceb
4 N119a32b50b1d48ec84777623cbd3b36f
5 N192fc687cba74c4d9436c50b05010f7a
6 N4ecfbc77a6e34617a0795c38360b6861
7 N505e087d0df24af8a25a5c02d3613773
8 N52188227505f42c8bca1a569e44638d1
9 N559d8333df3c43ddadc96a0704588cb1
10 N5ffb5ab8130c4149b36816dbc3317a65
11 N75a73077374a4eddad14e7f6d790bdf5
12 N7b58ee2f5d844923811b6b3b42b0e89f
13 N8cb69dcbf82248178220095d6c6adf52
14 N963d5ddcbd6545a3b5db2d332dcb5461
15 N9da33b92068f4af2aa2f5bd1a5019483
16 N9e35e080c5bf4d0987810a5d4f6b9e2c
17 Nbcc39f8fec4f4f78a20124129300b52c
18 Nc21148c4de95491693a1d5e7d00364c6
19 Ncdff11c88e1e4cb1810eba6467aba08d
20 Nce5cf7bad15c4d7fbb8fe312ee32d201
21 Ndaf1e21e6da9431fa91cb19bdd219235
22 Ndc6b795f561d4111bf4b1e6a21fcffef
23 Ndeea0c28c52248cc865d57dd1206464c
24 Ne9bb0c9cfedd411eb6f868e04c5777f2
25 anzsrc-for:11
26 anzsrc-for:1103
27 schema:author Na2a4c41066864ea2a6d1c8234a783229
28 schema:citation sg:pub.10.1007/s11745-008-3274-2
29 sg:pub.10.1007/s11883-003-0032-z
30 sg:pub.10.1038/sj.ijo.0802937
31 sg:pub.10.1186/1550-2783-8-10
32 sg:pub.10.1186/1550-2783-8-4
33 https://app.dimensions.ai/details/publication/pub.1077421322
34 https://app.dimensions.ai/details/publication/pub.1083004666
35 https://doi.org/10.1002/(sici)1520-7560(200003/04)16:2<125::aid-dmrr90>3.0.co;2-4
36 https://doi.org/10.1002/dmrr.2533
37 https://doi.org/10.1002/oby.20247
38 https://doi.org/10.1016/j.amjcard.2007.03.107
39 https://doi.org/10.1016/j.atherosclerosis.2007.02.017
40 https://doi.org/10.1016/j.clnu.2013.03.010
41 https://doi.org/10.1016/j.eclnm.2010.10.001
42 https://doi.org/10.1016/j.fct.2012.11.047
43 https://doi.org/10.1016/j.ijcard.2005.12.007
44 https://doi.org/10.1016/j.jacc.2007.10.016
45 https://doi.org/10.1016/j.jdiacomp.2013.01.002
46 https://doi.org/10.1016/j.metabol.2007.04.001
47 https://doi.org/10.1016/j.metabol.2008.01.015
48 https://doi.org/10.1016/j.nut.2014.06.011
49 https://doi.org/10.1016/j.physbeh.2014.01.004
50 https://doi.org/10.1016/j.plipres.2008.02.003
51 https://doi.org/10.1016/j.plipres.2011.11.002
52 https://doi.org/10.1016/s0021-9150(00)00499-8
53 https://doi.org/10.1016/s0021-9150(01)00523-8
54 https://doi.org/10.1016/s0021-9150(03)00157-6
55 https://doi.org/10.1016/s0306-4530(02)00108-7
56 https://doi.org/10.1017/s000711450896757x
57 https://doi.org/10.1017/s0007114511000080
58 https://doi.org/10.1017/s0007114514002128
59 https://doi.org/10.1056/nejm198209093071104
60 https://doi.org/10.1056/nejm198910053211403
61 https://doi.org/10.1073/pnas.87.23.9383
62 https://doi.org/10.1073/pnas.96.23.13381
63 https://doi.org/10.1089/ars.2009.2934
64 https://doi.org/10.1093/ajcn/23.8.1059
65 https://doi.org/10.1093/ajcn/55.2.461
66 https://doi.org/10.1093/ajcn/57.6.868
67 https://doi.org/10.1093/ajcn/66.5.1264
68 https://doi.org/10.1093/ajcn/78.1.31
69 https://doi.org/10.1093/ajcn/83.2.260
70 https://doi.org/10.1093/jn/132.9.2574
71 https://doi.org/10.1093/jn/133.2.405
72 https://doi.org/10.1123/ijsnem.16.4.373
73 https://doi.org/10.1161/01.atv.11.3.653
74 https://doi.org/10.1371/journal.pone.0038632
75 https://doi.org/10.1371/journal.pone.0058688
76 https://doi.org/10.1530/eje-12-0884
77 https://doi.org/10.2337/db13-0696
78 https://doi.org/10.2337/dc08-1239
79 https://doi.org/10.2337/diacare.16.1.4
80 https://doi.org/10.3109/10715762.2015.1027199
81 https://doi.org/10.3748/wjg.v16.i12.1512
82 https://doi.org/10.3945/ajcn.110.004374
83 https://doi.org/10.3945/ajcn.110.005850
84 schema:datePublished 2015-12
85 schema:datePublishedReg 2015-12-01
86 schema:description BACKGROUND: Cardio-Metabolic Disease (CMD) is the leading cause of death globally and particularly in Asia. Postprandial elevation of glycaemia, insulinaemia, triglyceridaemia are associated with an increased risk of CMD. While studies have shown that higher protein intake or increased meal frequency may benefit postprandial metabolism, their combined effect has rarely been investigated using composite mixed meals. We therefore examined the combined effects of increasing meal frequency (2-large vs 6-smaller meals), with high or low-protein (40 % vs 10 % energy from protein respectively) isocaloric mixed meals on a range of postprandial CMD risk markers. METHODS: In a randomized crossover study, 10 healthy Chinese males (Age: 29 ± 7 years; BMI: 21.9 ± 1.7 kg/m(2)) underwent 4 dietary treatments: CON-2 (2 large Low-Protein meals), CON-6 (6 Small Low-Protein meals), PRO-2 (2 Large High-Protein meals) and PRO-6 (6 Small High-Protein meals). Subjects wore a continuous glucose monitor (CGM) and venous blood samples were obtained at baseline and at regular intervals for 8.5 h to monitor postprandial changes in glucose, insulin, triglycerides and high sensitivity C-reactive protein (hsCRP). Blood pressure was measured at regular intervals pre- and post- meal consumption. Urine was collected to measure excretion of creatinine and F2-isoprostanes and its metabolites over the 8.5 h postprandial period. RESULTS: The high-protein meals, irrespective of meal frequency were beneficial for glycaemic health since glucose incremental area under the curve (iAUC) for PRO-2 (185 ± 166 mmol.min.L(-1)) and PRO-6 (214 ± 188 mmol.min.L(-1)) were 66 and 60 % lower respectively (both p < 0.05), compared with CON-2 (536 ± 290 mmol.min.L(-1)). The iAUC for insulin was the lowest for PRO-6 (13.7 ± 7.1 U.min.L(-1)) as compared with CON-2 (28.4 ± 15.6 U.min.L(-)1), p < 0.001. There were no significant differences in postprandial responses in other measurements between the dietary treatments. CONCLUSIONS: The consumption of composite meals with higher protein content, irrespective of meal frequency appears to be beneficial for postprandial glycemic and insulinemic responses in young, healthy Chinese males. Implications of this study may be useful in the Asian context where the consumption of high glycemic index, carbohydrate meals is prevalent. TRIAL REGISTRATION: NCT02529228 .
87 schema:genre research_article
88 schema:inLanguage en
89 schema:isAccessibleForFree true
90 schema:isPartOf N076179c166234bc3a370a4cdca405350
91 N1dc9cc0328234384917be6ac1696677c
92 sg:journal.1031283
93 schema:name Postprandial changes in cardiometabolic disease risk in young Chinese men following isocaloric high or low protein diets, stratified by either high or low meal frequency - a randomized controlled crossover trial
94 schema:pagination 27
95 schema:productId N0c12c5d9e42146ad869ac8ee0c408b55
96 N2e9dddba24854719b522bf5039e6539f
97 N985a4ed34dfb4fa1880898e1ca1d08e9
98 Nb29fedd67fab4f1ab410f6c1a0375e2d
99 Nd457361fdf6b4480b687d0e614e807bf
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045970440
101 https://doi.org/10.1186/s12937-016-0141-5
102 schema:sdDatePublished 2019-04-10T15:58
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N77736fbab8c643aeb6cb76d729f32491
105 schema:url http://link.springer.com/10.1186%2Fs12937-016-0141-5
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N00d0778e10a1485289e44cac083c3839 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Meals
111 rdf:type schema:DefinedTerm
112 N027e8def2cba413abcfd81d8aaefc3e6 schema:affiliation N4b0772d14c994e1988bbd737ff2687bb
113 schema:familyName Mok
114 schema:givenName Alexander
115 rdf:type schema:Person
116 N05d461cac457452f9f3a329525c7f001 schema:name Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore
117 rdf:type schema:Organization
118 N076179c166234bc3a370a4cdca405350 schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 N0c12c5d9e42146ad869ac8ee0c408b55 schema:name dimensions_id
121 schema:value pub.1045970440
122 rdf:type schema:PropertyValue
123 N0fa7eed679de4c818126dc04673e900d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Risk Factors
125 rdf:type schema:DefinedTerm
126 N10ee44d99c314b4da5eb29d37d160ceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Insulin
128 rdf:type schema:DefinedTerm
129 N119a32b50b1d48ec84777623cbd3b36f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Glycemic Index
131 rdf:type schema:DefinedTerm
132 N192fc687cba74c4d9436c50b05010f7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name C-Reactive Protein
134 rdf:type schema:DefinedTerm
135 N1dc9cc0328234384917be6ac1696677c schema:volumeNumber 15
136 rdf:type schema:PublicationVolume
137 N235d2d36818a4e97ba3031b9431a1cbd rdf:first sg:person.011033621512.53
138 rdf:rest rdf:nil
139 N2e9dddba24854719b522bf5039e6539f schema:name readcube_id
140 schema:value dafa176f76bfe53008be5c7e946e00211896167a7b8f7ff0b5d031dd6ca5a3d9
141 rdf:type schema:PropertyValue
142 N4b0772d14c994e1988bbd737ff2687bb schema:name Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore
143 rdf:type schema:Organization
144 N4ecfbc77a6e34617a0795c38360b6861 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name F2-Isoprostanes
146 rdf:type schema:DefinedTerm
147 N505e087d0df24af8a25a5c02d3613773 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Diet, Protein-Restricted
149 rdf:type schema:DefinedTerm
150 N52188227505f42c8bca1a569e44638d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Dietary Proteins
152 rdf:type schema:DefinedTerm
153 N559d8333df3c43ddadc96a0704588cb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Blood Pressure
155 rdf:type schema:DefinedTerm
156 N5ffb5ab8130c4149b36816dbc3317a65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Young Adult
158 rdf:type schema:DefinedTerm
159 N75a73077374a4eddad14e7f6d790bdf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Diet
161 rdf:type schema:DefinedTerm
162 N77736fbab8c643aeb6cb76d729f32491 schema:name Springer Nature - SN SciGraph project
163 rdf:type schema:Organization
164 N7b58ee2f5d844923811b6b3b42b0e89f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Triglycerides
166 rdf:type schema:DefinedTerm
167 N8cb69dcbf82248178220095d6c6adf52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Body Mass Index
169 rdf:type schema:DefinedTerm
170 N8ebe5265479a4d99949c9912d7b7d718 rdf:first sg:person.0742755077.39
171 rdf:rest Ncf909e583ec242a497c18b3306419ecc
172 N963d5ddcbd6545a3b5db2d332dcb5461 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Humans
174 rdf:type schema:DefinedTerm
175 N985a4ed34dfb4fa1880898e1ca1d08e9 schema:name nlm_unique_id
176 schema:value 101152213
177 rdf:type schema:PropertyValue
178 N9da33b92068f4af2aa2f5bd1a5019483 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Metabolic Syndrome
180 rdf:type schema:DefinedTerm
181 N9e35e080c5bf4d0987810a5d4f6b9e2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Cardiovascular Diseases
183 rdf:type schema:DefinedTerm
184 Na2a4c41066864ea2a6d1c8234a783229 rdf:first N027e8def2cba413abcfd81d8aaefc3e6
185 rdf:rest N8ebe5265479a4d99949c9912d7b7d718
186 Nb29fedd67fab4f1ab410f6c1a0375e2d schema:name pubmed_id
187 schema:value 26979583
188 rdf:type schema:PropertyValue
189 Nb67979ac2af3460996b5f5343e2533f2 rdf:first sg:person.010626434017.08
190 rdf:rest N235d2d36818a4e97ba3031b9431a1cbd
191 Nbcc39f8fec4f4f78a20124129300b52c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Postprandial Period
193 rdf:type schema:DefinedTerm
194 Nc21148c4de95491693a1d5e7d00364c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Cross-Over Studies
196 rdf:type schema:DefinedTerm
197 Ncdff11c88e1e4cb1810eba6467aba08d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Blood Glucose
199 rdf:type schema:DefinedTerm
200 Nce5cf7bad15c4d7fbb8fe312ee32d201 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Creatinine
202 rdf:type schema:DefinedTerm
203 Ncf909e583ec242a497c18b3306419ecc rdf:first sg:person.013634243264.62
204 rdf:rest Nb67979ac2af3460996b5f5343e2533f2
205 Nd457361fdf6b4480b687d0e614e807bf schema:name doi
206 schema:value 10.1186/s12937-016-0141-5
207 rdf:type schema:PropertyValue
208 Ndaf1e21e6da9431fa91cb19bdd219235 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Adult
210 rdf:type schema:DefinedTerm
211 Ndc6b795f561d4111bf4b1e6a21fcffef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Energy Intake
213 rdf:type schema:DefinedTerm
214 Ndeea0c28c52248cc865d57dd1206464c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Asian Continental Ancestry Group
216 rdf:type schema:DefinedTerm
217 Ne9bb0c9cfedd411eb6f868e04c5777f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Male
219 rdf:type schema:DefinedTerm
220 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
221 schema:name Medical and Health Sciences
222 rdf:type schema:DefinedTerm
223 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
224 schema:name Clinical Sciences
225 rdf:type schema:DefinedTerm
226 sg:journal.1031283 schema:issn 1475-2891
227 schema:name Nutrition Journal
228 rdf:type schema:Periodical
229 sg:person.010626434017.08 schema:affiliation https://www.grid.ac/institutes/grid.240988.f
230 schema:familyName Leow
231 schema:givenName Melvin Khee-Shing
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010626434017.08
233 rdf:type schema:Person
234 sg:person.011033621512.53 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
235 schema:familyName Henry
236 schema:givenName Christiani Jeyakumar
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033621512.53
238 rdf:type schema:Person
239 sg:person.013634243264.62 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
240 schema:familyName Lee
241 schema:givenName Jetty Chung-Yung
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013634243264.62
243 rdf:type schema:Person
244 sg:person.0742755077.39 schema:affiliation N05d461cac457452f9f3a329525c7f001
245 schema:familyName Haldar
246 schema:givenName Sumanto
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742755077.39
248 rdf:type schema:Person
249 sg:pub.10.1007/s11745-008-3274-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028006663
250 https://doi.org/10.1007/s11745-008-3274-2
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/s11883-003-0032-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021718348
253 https://doi.org/10.1007/s11883-003-0032-z
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/sj.ijo.0802937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012013663
256 https://doi.org/10.1038/sj.ijo.0802937
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1550-2783-8-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029652011
259 https://doi.org/10.1186/1550-2783-8-10
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/1550-2783-8-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044330829
262 https://doi.org/10.1186/1550-2783-8-4
263 rdf:type schema:CreativeWork
264 https://app.dimensions.ai/details/publication/pub.1077421322 schema:CreativeWork
265 https://app.dimensions.ai/details/publication/pub.1083004666 schema:CreativeWork
266 https://doi.org/10.1002/(sici)1520-7560(200003/04)16:2<125::aid-dmrr90>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007568631
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1002/dmrr.2533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034687836
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1002/oby.20247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001659195
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.amjcard.2007.03.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030245728
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.atherosclerosis.2007.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004589906
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.clnu.2013.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010223551
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.eclnm.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021459097
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.fct.2012.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018725310
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.ijcard.2005.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020734194
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.jacc.2007.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050361671
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.jdiacomp.2013.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042034340
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/j.metabol.2007.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053397322
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/j.metabol.2008.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032861420
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1016/j.nut.2014.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008350655
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/j.physbeh.2014.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010105893
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/j.plipres.2008.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011451452
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1016/j.plipres.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013018671
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1016/s0021-9150(00)00499-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003554482
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1016/s0021-9150(01)00523-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051315494
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1016/s0021-9150(03)00157-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022297179
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/s0306-4530(02)00108-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040529280
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1017/s000711450896757x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031783942
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1017/s0007114511000080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045711247
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1017/s0007114514002128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049702444
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1056/nejm198209093071104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040743632
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1056/nejm198910053211403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048234041
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1073/pnas.87.23.9383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023407627
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1073/pnas.96.23.13381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025901837
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1089/ars.2009.2934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059231160
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1093/ajcn/23.8.1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080690482
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1093/ajcn/55.2.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077382627
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1093/ajcn/57.6.868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082834813
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1093/ajcn/66.5.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083168063
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1093/ajcn/78.1.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075303732
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1093/ajcn/83.2.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077187977
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1093/jn/132.9.2574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075120261
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1093/jn/133.2.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075230328
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1123/ijsnem.16.4.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062421551
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1161/01.atv.11.3.653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028861904
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1371/journal.pone.0038632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030594897
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1371/journal.pone.0058688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036045861
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1530/eje-12-0884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050562942
349 rdf:type schema:CreativeWork
350 https://doi.org/10.2337/db13-0696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008266807
351 rdf:type schema:CreativeWork
352 https://doi.org/10.2337/dc08-1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013387772
353 rdf:type schema:CreativeWork
354 https://doi.org/10.2337/diacare.16.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070745849
355 rdf:type schema:CreativeWork
356 https://doi.org/10.3109/10715762.2015.1027199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051091364
357 rdf:type schema:CreativeWork
358 https://doi.org/10.3748/wjg.v16.i12.1512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071366576
359 rdf:type schema:CreativeWork
360 https://doi.org/10.3945/ajcn.110.004374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037427711
361 rdf:type schema:CreativeWork
362 https://doi.org/10.3945/ajcn.110.005850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003530853
363 rdf:type schema:CreativeWork
364 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
365 schema:name School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, SAR, China
366 rdf:type schema:Organization
367 https://www.grid.ac/institutes/grid.240988.f schema:alternateName Tan Tock Seng Hospital
368 schema:name Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore
369 Division of Medicine, Department of Endocrinology, Tan Tock Seng Hospital, 11, Jalan Tang Tock Seng, 308433, Singapore, Singapore
370 Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, 117609, Singapore, Singapore
371 rdf:type schema:Organization
372 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
373 schema:name Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, 14 Medical Drive, #07-02, 117599, Singapore, Singapore
374 Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore, Singapore
375 Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), 30 Medical Drive, 117609, Singapore, Singapore
376 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...