Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-05

AUTHORS

Saeed Sharifi-Malvajerdi, Feiyu Zhu, Colin B. Fogarty, Michael P. Fay, Rick M. Fairhurst, Jennifer A. Flegg, Kasia Stepniewska, Dylan S. Small

ABSTRACT

BACKGROUND: Emerging resistance to anti-malarial drugs has led malaria researchers to investigate what covariates (parasite and host factors) are associated with resistance. In this regard, investigation of how covariates impact malaria parasites clearance is often performed using a two-stage approach in which the WWARN Parasite Clearance Estimator or PCE is used to estimate parasite clearance rates and then the estimated parasite clearance is regressed on the covariates. However, the recently developed Bayesian Clearance Estimator instead leads to more accurate results for hierarchial regression modelling which motivated the authors to implement the method as an R package, called "bhrcr". METHODS: Given malaria parasite clearance profiles of a set of patients, the "bhrcr" package performs Bayesian hierarchical regression to estimate malaria parasite clearance rates along with the effect of covariates on them in the presence of "lag" and "tail" phases. In particular, the model performs a linear regression of the log clearance rates on covariates to estimate the effects within a Bayesian hierarchical framework. All posterior inferences are obtained by a "Markov Chain Monte Carlo" based sampling scheme which forms the core of the package. RESULTS: The "bhrcr" package can be utilized to study malaria parasite clearance data, and specifically, how covariates affect parasite clearance rates. In addition to estimating the clearance rates and the impact of covariates on them, the "bhrcr" package provides tools to calculate the WWARN PCE estimates of the parasite clearance rates as well. The fitted Bayesian model to the clearance profile of each individual, as well as the WWARN PCE estimates, can also be plotted by this package. CONCLUSIONS: This paper explains the Bayesian Clearance Estimator for malaria researchers including describing the freely available software, thus making these methods accessible and practical for modelling covariates' effects on parasite clearance rates. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8

DOI

http://dx.doi.org/10.1186/s12936-018-2631-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111158737

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30611278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antimalarials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Multiple", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Host-Parasite Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Malaria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parasite Load", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parasitemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmodium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharifi-Malvajerdi", 
        "givenName": "Saeed", 
        "id": "sg:person.015625470325.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625470325.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "The Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Feiyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MIT Sloan School of Management, Massachusetts Institute of Technology, Boston, MA USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT Sloan School of Management, Massachusetts Institute of Technology, Boston, MA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fogarty", 
        "givenName": "Colin B.", 
        "id": "sg:person.0633653203.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633653203.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Allergy and Infectious Diseases, Maryland, MD USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Institute of Allergy and Infectious Diseases, Maryland, MD USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fay", 
        "givenName": "Michael P.", 
        "id": "sg:person.0607741413.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607741413.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Allergy and Infectious Diseases, Maryland, MD USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Institute of Allergy and Infectious Diseases, Maryland, MD USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fairhurst", 
        "givenName": "Rick M.", 
        "id": "sg:person.01223571744.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223571744.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flegg", 
        "givenName": "Jennifer A.", 
        "id": "sg:person.0647314343.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647314343.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Worldwide Antimalarial Resistance Network (WWARN) and Centre for Tropical Medicine, Oxord, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Worldwide Antimalarial Resistance Network (WWARN) and Centre for Tropical Medicine, Oxord, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepniewska", 
        "givenName": "Kasia", 
        "id": "sg:person.01363031503.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363031503.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA USA", 
          "id": "http://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Small", 
        "givenName": "Dylan S.", 
        "id": "sg:person.01065122655.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065122655.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature15535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013049291", 
          "https://doi.org/10.1038/nature15535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0577-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056542053", 
          "https://doi.org/10.1038/scientificamerican0577-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-10-339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036683505", 
          "https://doi.org/10.1186/1475-2875-10-339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1592592716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029840171", 
          "https://doi.org/10.1385/1592592716"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-05", 
    "datePublishedReg": "2019-01-05", 
    "description": "BACKGROUND: Emerging resistance to anti-malarial drugs has led malaria researchers to investigate what covariates (parasite and host factors) are associated with resistance. In this regard, investigation of how covariates impact malaria parasites clearance is often performed using a two-stage approach in which the WWARN Parasite Clearance Estimator or PCE is used to estimate parasite clearance rates and then the estimated parasite clearance is regressed on the covariates. However, the recently developed Bayesian Clearance Estimator instead leads to more accurate results for hierarchial regression modelling which motivated the authors to implement the method as an R package, called \"bhrcr\".\nMETHODS: Given malaria parasite clearance profiles of a set of patients, the \"bhrcr\" package performs Bayesian hierarchical regression to estimate malaria parasite clearance rates along with the effect of covariates on them in the presence of \"lag\" and \"tail\" phases. In particular, the model performs a linear regression of the log clearance rates on covariates to estimate the effects within a Bayesian hierarchical framework. All posterior inferences are obtained by a \"Markov Chain Monte Carlo\" based sampling scheme which forms the core of the package.\nRESULTS: The \"bhrcr\" package can be utilized to study malaria parasite clearance data, and specifically, how covariates affect parasite clearance rates. In addition to estimating the clearance rates and the impact of covariates on them, the \"bhrcr\" package provides tools to calculate the WWARN PCE estimates of the parasite clearance rates as well. The fitted Bayesian model to the clearance profile of each individual, as well as the WWARN PCE estimates, can also be plotted by this package.\nCONCLUSIONS: This paper explains the Bayesian Clearance Estimator for malaria researchers including describing the freely available software, thus making these methods accessible and practical for modelling covariates' effects on parasite clearance rates.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12936-018-2631-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "keywords": [
      "Markov chain Monte Carlo", 
      "Bayesian hierarchical regression model", 
      "posterior inference", 
      "Bayesian hierarchical framework", 
      "Bayesian hierarchical regression", 
      "Monte Carlo", 
      "malaria parasite clearance rates", 
      "covariate effects", 
      "Bayesian model", 
      "more accurate results", 
      "effects of covariates", 
      "estimator", 
      "accurate results", 
      "malaria researchers", 
      "two-stage approach", 
      "available software", 
      "software package", 
      "impact of covariates", 
      "hierarchical framework", 
      "Carlo", 
      "model", 
      "package", 
      "parasite clearance estimator", 
      "linear regression", 
      "inference", 
      "scheme", 
      "modelling", 
      "covariates", 
      "regression models", 
      "parasite clearance rates", 
      "estimates", 
      "regression modelling", 
      "set", 
      "clearance rate", 
      "parasite clearance", 
      "framework", 
      "approach", 
      "regression", 
      "tail", 
      "malaria parasite clearance", 
      "clearance profile", 
      "set of patients", 
      "tool", 
      "anti-malarial drugs", 
      "hierarchical regression models", 
      "software", 
      "profile", 
      "lag", 
      "results", 
      "core", 
      "researchers", 
      "effect", 
      "phase", 
      "clearance data", 
      "data", 
      "clearance", 
      "authors", 
      "PCE", 
      "rate", 
      "investigation", 
      "patients", 
      "presence", 
      "drugs", 
      "addition", 
      "hierarchical regression", 
      "resistance", 
      "individuals", 
      "regard", 
      "impact", 
      "method", 
      "paper", 
      "WWARN Parasite Clearance Estimator", 
      "Clearance Estimator", 
      "Bayesian Clearance Estimator", 
      "hierarchial regression modelling", 
      "bhrcr", 
      "malaria parasite clearance profiles", 
      "parasite clearance profiles", 
      "log clearance rates", 
      "Chain Monte Carlo", 
      "malaria parasite clearance data", 
      "parasite clearance data", 
      "WWARN PCE estimates", 
      "PCE estimates", 
      "WWARN PCE"
    ], 
    "name": "Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model", 
    "pagination": "4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111158737"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12936-018-2631-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30611278"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12936-018-2631-8", 
      "https://app.dimensions.ai/details/publication/pub.1111158737"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_816.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12936-018-2631-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'


 

This table displays all metadata directly associated to this object as RDF triples.

279 TRIPLES      22 PREDICATES      129 URIs      117 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12936-018-2631-8 schema:about N302bf2af204d4bf498bb0e354cfce220
2 N40c06d3772ce4381b26a8cff8fd12373
3 N462705fc3d4546bf890add3b5c84bb9b
4 N4913f67336fb4a829cc393fdf2e1fe8a
5 N4dd598c10b3e408baa9a9b6b20e135d6
6 N5dbed8d5b1a247c486348fa90f24b63e
7 N7af4dbb3b3a94c958e9a84cf8afdd7a9
8 N84a4e0e304054de3948f111afad950ea
9 N98a3fc3d0e374be49830b4f90e5d4af6
10 Na15cb48a238d42cb99142d83671ecfcd
11 Nba670912f8ef448f9b83b7a6a5db0514
12 Nca09a4579bca415faf254aa8c3a289e7
13 Nf59081cfd8e3480b8949d3684ef62a84
14 Nf5fb23ba31414c29b35f9b69c5e10031
15 anzsrc-for:11
16 anzsrc-for:1108
17 schema:author N2331ed38300443cf895ac97893ded00f
18 schema:citation sg:pub.10.1038/nature15535
19 sg:pub.10.1038/scientificamerican0577-119
20 sg:pub.10.1186/1475-2875-10-339
21 sg:pub.10.1385/1592592716
22 schema:datePublished 2019-01-05
23 schema:datePublishedReg 2019-01-05
24 schema:description BACKGROUND: Emerging resistance to anti-malarial drugs has led malaria researchers to investigate what covariates (parasite and host factors) are associated with resistance. In this regard, investigation of how covariates impact malaria parasites clearance is often performed using a two-stage approach in which the WWARN Parasite Clearance Estimator or PCE is used to estimate parasite clearance rates and then the estimated parasite clearance is regressed on the covariates. However, the recently developed Bayesian Clearance Estimator instead leads to more accurate results for hierarchial regression modelling which motivated the authors to implement the method as an R package, called "bhrcr". METHODS: Given malaria parasite clearance profiles of a set of patients, the "bhrcr" package performs Bayesian hierarchical regression to estimate malaria parasite clearance rates along with the effect of covariates on them in the presence of "lag" and "tail" phases. In particular, the model performs a linear regression of the log clearance rates on covariates to estimate the effects within a Bayesian hierarchical framework. All posterior inferences are obtained by a "Markov Chain Monte Carlo" based sampling scheme which forms the core of the package. RESULTS: The "bhrcr" package can be utilized to study malaria parasite clearance data, and specifically, how covariates affect parasite clearance rates. In addition to estimating the clearance rates and the impact of covariates on them, the "bhrcr" package provides tools to calculate the WWARN PCE estimates of the parasite clearance rates as well. The fitted Bayesian model to the clearance profile of each individual, as well as the WWARN PCE estimates, can also be plotted by this package. CONCLUSIONS: This paper explains the Bayesian Clearance Estimator for malaria researchers including describing the freely available software, thus making these methods accessible and practical for modelling covariates' effects on parasite clearance rates.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf Nd28ebff01962465eaaeaa8820f3c37cd
29 Nec2444f0bf784c49a04babd872382711
30 sg:journal.1030597
31 schema:keywords Bayesian Clearance Estimator
32 Bayesian hierarchical framework
33 Bayesian hierarchical regression
34 Bayesian hierarchical regression model
35 Bayesian model
36 Carlo
37 Chain Monte Carlo
38 Clearance Estimator
39 Markov chain Monte Carlo
40 Monte Carlo
41 PCE
42 PCE estimates
43 WWARN PCE
44 WWARN PCE estimates
45 WWARN Parasite Clearance Estimator
46 accurate results
47 addition
48 anti-malarial drugs
49 approach
50 authors
51 available software
52 bhrcr
53 clearance
54 clearance data
55 clearance profile
56 clearance rate
57 core
58 covariate effects
59 covariates
60 data
61 drugs
62 effect
63 effects of covariates
64 estimates
65 estimator
66 framework
67 hierarchial regression modelling
68 hierarchical framework
69 hierarchical regression
70 hierarchical regression models
71 impact
72 impact of covariates
73 individuals
74 inference
75 investigation
76 lag
77 linear regression
78 log clearance rates
79 malaria parasite clearance
80 malaria parasite clearance data
81 malaria parasite clearance profiles
82 malaria parasite clearance rates
83 malaria researchers
84 method
85 model
86 modelling
87 more accurate results
88 package
89 paper
90 parasite clearance
91 parasite clearance data
92 parasite clearance estimator
93 parasite clearance profiles
94 parasite clearance rates
95 patients
96 phase
97 posterior inference
98 presence
99 profile
100 rate
101 regard
102 regression
103 regression modelling
104 regression models
105 researchers
106 resistance
107 results
108 scheme
109 set
110 set of patients
111 software
112 software package
113 tail
114 tool
115 two-stage approach
116 schema:name Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model
117 schema:pagination 4
118 schema:productId N58688cc69de847798abed984559d3a0a
119 Na825577f91c5498da365fa72d4aa4f9a
120 Nc68780586de6499ba1d4b0aa0cb9d6ca
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111158737
122 https://doi.org/10.1186/s12936-018-2631-8
123 schema:sdDatePublished 2021-11-01T18:37
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher Nde0cf297663640698ca685ea51e472f2
126 schema:url https://doi.org/10.1186/s12936-018-2631-8
127 sgo:license sg:explorer/license/
128 sgo:sdDataset articles
129 rdf:type schema:ScholarlyArticle
130 N2331ed38300443cf895ac97893ded00f rdf:first sg:person.015625470325.99
131 rdf:rest N2eb0d8cb90694a5b897dc6523ea60a43
132 N294c8f726c7540e5b32445d9a70264ff rdf:first sg:person.01363031503.58
133 rdf:rest N8d1cbedd1af54341801bf5dbf20a1fea
134 N2eb0d8cb90694a5b897dc6523ea60a43 rdf:first Na401c0a2037146e192ca817f63029fe5
135 rdf:rest N88fe94233749499da932c0134b28e03f
136 N302bf2af204d4bf498bb0e354cfce220 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Parasitemia
138 rdf:type schema:DefinedTerm
139 N40c06d3772ce4381b26a8cff8fd12373 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Parasite Load
141 rdf:type schema:DefinedTerm
142 N462705fc3d4546bf890add3b5c84bb9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Linear Models
144 rdf:type schema:DefinedTerm
145 N4913f67336fb4a829cc393fdf2e1fe8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Monte Carlo Method
147 rdf:type schema:DefinedTerm
148 N4dd598c10b3e408baa9a9b6b20e135d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Plasmodium
150 rdf:type schema:DefinedTerm
151 N58688cc69de847798abed984559d3a0a schema:name dimensions_id
152 schema:value pub.1111158737
153 rdf:type schema:PropertyValue
154 N5dbed8d5b1a247c486348fa90f24b63e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Antimalarials
156 rdf:type schema:DefinedTerm
157 N70289fa7c7e7404d921ba1cd29908312 rdf:first sg:person.0647314343.21
158 rdf:rest N294c8f726c7540e5b32445d9a70264ff
159 N77702f7b7cfc491c8493f85305a6eb8a rdf:first sg:person.01223571744.44
160 rdf:rest N70289fa7c7e7404d921ba1cd29908312
161 N7af4dbb3b3a94c958e9a84cf8afdd7a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Malaria
163 rdf:type schema:DefinedTerm
164 N84a4e0e304054de3948f111afad950ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Host-Parasite Interactions
166 rdf:type schema:DefinedTerm
167 N88fe94233749499da932c0134b28e03f rdf:first sg:person.0633653203.00
168 rdf:rest Nf8ed45b730bf45598bcf24c8577473ae
169 N8d1cbedd1af54341801bf5dbf20a1fea rdf:first sg:person.01065122655.44
170 rdf:rest rdf:nil
171 N98a3fc3d0e374be49830b4f90e5d4af6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Animals
173 rdf:type schema:DefinedTerm
174 Na15cb48a238d42cb99142d83671ecfcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Bayes Theorem
176 rdf:type schema:DefinedTerm
177 Na401c0a2037146e192ca817f63029fe5 schema:affiliation grid-institutes:grid.25879.31
178 schema:familyName Zhu
179 schema:givenName Feiyu
180 rdf:type schema:Person
181 Na825577f91c5498da365fa72d4aa4f9a schema:name doi
182 schema:value 10.1186/s12936-018-2631-8
183 rdf:type schema:PropertyValue
184 Nba670912f8ef448f9b83b7a6a5db0514 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Markov Chains
186 rdf:type schema:DefinedTerm
187 Nc68780586de6499ba1d4b0aa0cb9d6ca schema:name pubmed_id
188 schema:value 30611278
189 rdf:type schema:PropertyValue
190 Nca09a4579bca415faf254aa8c3a289e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Drug Resistance, Multiple
192 rdf:type schema:DefinedTerm
193 Nd28ebff01962465eaaeaa8820f3c37cd schema:volumeNumber 18
194 rdf:type schema:PublicationVolume
195 Nde0cf297663640698ca685ea51e472f2 schema:name Springer Nature - SN SciGraph project
196 rdf:type schema:Organization
197 Nec2444f0bf784c49a04babd872382711 schema:issueNumber 1
198 rdf:type schema:PublicationIssue
199 Nf59081cfd8e3480b8949d3684ef62a84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Software
201 rdf:type schema:DefinedTerm
202 Nf5fb23ba31414c29b35f9b69c5e10031 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Humans
204 rdf:type schema:DefinedTerm
205 Nf8ed45b730bf45598bcf24c8577473ae rdf:first sg:person.0607741413.37
206 rdf:rest N77702f7b7cfc491c8493f85305a6eb8a
207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
208 schema:name Medical and Health Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
211 schema:name Medical Microbiology
212 rdf:type schema:DefinedTerm
213 sg:journal.1030597 schema:issn 1475-2875
214 schema:name Malaria Journal
215 schema:publisher Springer Nature
216 rdf:type schema:Periodical
217 sg:person.01065122655.44 schema:affiliation grid-institutes:grid.25879.31
218 schema:familyName Small
219 schema:givenName Dylan S.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065122655.44
221 rdf:type schema:Person
222 sg:person.01223571744.44 schema:affiliation grid-institutes:None
223 schema:familyName Fairhurst
224 schema:givenName Rick M.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223571744.44
226 rdf:type schema:Person
227 sg:person.01363031503.58 schema:affiliation grid-institutes:None
228 schema:familyName Stepniewska
229 schema:givenName Kasia
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363031503.58
231 rdf:type schema:Person
232 sg:person.015625470325.99 schema:affiliation grid-institutes:grid.25879.31
233 schema:familyName Sharifi-Malvajerdi
234 schema:givenName Saeed
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625470325.99
236 rdf:type schema:Person
237 sg:person.0607741413.37 schema:affiliation grid-institutes:None
238 schema:familyName Fay
239 schema:givenName Michael P.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607741413.37
241 rdf:type schema:Person
242 sg:person.0633653203.00 schema:affiliation grid-institutes:grid.116068.8
243 schema:familyName Fogarty
244 schema:givenName Colin B.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633653203.00
246 rdf:type schema:Person
247 sg:person.0647314343.21 schema:affiliation grid-institutes:grid.1008.9
248 schema:familyName Flegg
249 schema:givenName Jennifer A.
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647314343.21
251 rdf:type schema:Person
252 sg:pub.10.1038/nature15535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013049291
253 https://doi.org/10.1038/nature15535
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/scientificamerican0577-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542053
256 https://doi.org/10.1038/scientificamerican0577-119
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1475-2875-10-339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036683505
259 https://doi.org/10.1186/1475-2875-10-339
260 rdf:type schema:CreativeWork
261 sg:pub.10.1385/1592592716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029840171
262 https://doi.org/10.1385/1592592716
263 rdf:type schema:CreativeWork
264 grid-institutes:None schema:alternateName National Institute of Allergy and Infectious Diseases, Maryland, MD USA
265 Worldwide Antimalarial Resistance Network (WWARN) and Centre for Tropical Medicine, Oxord, UK
266 schema:name National Institute of Allergy and Infectious Diseases, Maryland, MD USA
267 Worldwide Antimalarial Resistance Network (WWARN) and Centre for Tropical Medicine, Oxord, UK
268 rdf:type schema:Organization
269 grid-institutes:grid.1008.9 schema:alternateName School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
270 schema:name School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
271 rdf:type schema:Organization
272 grid-institutes:grid.116068.8 schema:alternateName MIT Sloan School of Management, Massachusetts Institute of Technology, Boston, MA USA
273 schema:name MIT Sloan School of Management, Massachusetts Institute of Technology, Boston, MA USA
274 rdf:type schema:Organization
275 grid-institutes:grid.25879.31 schema:alternateName Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA USA
276 The Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA USA
277 schema:name Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA USA
278 The Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA USA
279 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...