Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Saeed Sharifi-Malvajerdi, Feiyu Zhu, Colin B. Fogarty, Michael P. Fay, Rick M. Fairhurst, Jennifer A. Flegg, Kasia Stepniewska, Dylan S. Small

ABSTRACT

BACKGROUND: Emerging resistance to anti-malarial drugs has led malaria researchers to investigate what covariates (parasite and host factors) are associated with resistance. In this regard, investigation of how covariates impact malaria parasites clearance is often performed using a two-stage approach in which the WWARN Parasite Clearance Estimator or PCE is used to estimate parasite clearance rates and then the estimated parasite clearance is regressed on the covariates. However, the recently developed Bayesian Clearance Estimator instead leads to more accurate results for hierarchial regression modelling which motivated the authors to implement the method as an R package, called "bhrcr". METHODS: Given malaria parasite clearance profiles of a set of patients, the "bhrcr" package performs Bayesian hierarchical regression to estimate malaria parasite clearance rates along with the effect of covariates on them in the presence of "lag" and "tail" phases. In particular, the model performs a linear regression of the log clearance rates on covariates to estimate the effects within a Bayesian hierarchical framework. All posterior inferences are obtained by a "Markov Chain Monte Carlo" based sampling scheme which forms the core of the package. RESULTS: The "bhrcr" package can be utilized to study malaria parasite clearance data, and specifically, how covariates affect parasite clearance rates. In addition to estimating the clearance rates and the impact of covariates on them, the "bhrcr" package provides tools to calculate the WWARN PCE estimates of the parasite clearance rates as well. The fitted Bayesian model to the clearance profile of each individual, as well as the WWARN PCE estimates, can also be plotted by this package. CONCLUSIONS: This paper explains the Bayesian Clearance Estimator for malaria researchers including describing the freely available software, thus making these methods accessible and practical for modelling covariates' effects on parasite clearance rates. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8

DOI

http://dx.doi.org/10.1186/s12936-018-2631-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111158737

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30611278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharifi-Malvajerdi", 
        "givenName": "Saeed", 
        "id": "sg:person.015625470325.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625470325.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "The Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Feiyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT Sloan School of Management, Massachusetts Institute of Technology, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fogarty", 
        "givenName": "Colin B.", 
        "id": "sg:person.0633653203.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633653203.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Allergy and Infectious Diseases", 
          "id": "https://www.grid.ac/institutes/grid.419681.3", 
          "name": [
            "National Institute of Allergy and Infectious Diseases, Maryland, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fay", 
        "givenName": "Michael P.", 
        "id": "sg:person.0607741413.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607741413.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Allergy and Infectious Diseases", 
          "id": "https://www.grid.ac/institutes/grid.419681.3", 
          "name": [
            "National Institute of Allergy and Infectious Diseases, Maryland, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fairhurst", 
        "givenName": "Rick M.", 
        "id": "sg:person.01223571744.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223571744.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flegg", 
        "givenName": "Jennifer A.", 
        "id": "sg:person.0647314343.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647314343.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Worldwide Antimalarial Resistance Network (WWARN) and Centre for Tropical Medicine, Oxord, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepniewska", 
        "givenName": "Kasia", 
        "id": "sg:person.01363031503.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363031503.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Small", 
        "givenName": "Dylan S.", 
        "id": "sg:person.01065122655.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065122655.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1056/nejmoa1314981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013049291", 
          "https://doi.org/10.1038/nature15535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029488311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1029840171", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/biom.12307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032667867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-10-339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036683505", 
          "https://doi.org/10.1186/1475-2875-10-339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(12)70181-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047536348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b10905-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048099153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4922(01)02031-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048125037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0577-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056542053", 
          "https://doi.org/10.1038/scientificamerican0577-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1996.10476956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.2005.73.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077115368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080970272", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781316576533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096882640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511815867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098669153"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Emerging resistance to anti-malarial drugs has led malaria researchers to investigate what covariates (parasite and host factors) are associated with resistance. In this regard, investigation of how covariates impact malaria parasites clearance is often performed using a two-stage approach in which the WWARN Parasite Clearance Estimator or PCE is used to estimate parasite clearance rates and then the estimated parasite clearance is regressed on the covariates. However, the recently developed Bayesian Clearance Estimator instead leads to more accurate results for hierarchial regression modelling which motivated the authors to implement the method as an R package, called \"bhrcr\".\nMETHODS: Given malaria parasite clearance profiles of a set of patients, the \"bhrcr\" package performs Bayesian hierarchical regression to estimate malaria parasite clearance rates along with the effect of covariates on them in the presence of \"lag\" and \"tail\" phases. In particular, the model performs a linear regression of the log clearance rates on covariates to estimate the effects within a Bayesian hierarchical framework. All posterior inferences are obtained by a \"Markov Chain Monte Carlo\" based sampling scheme which forms the core of the package.\nRESULTS: The \"bhrcr\" package can be utilized to study malaria parasite clearance data, and specifically, how covariates affect parasite clearance rates. In addition to estimating the clearance rates and the impact of covariates on them, the \"bhrcr\" package provides tools to calculate the WWARN PCE estimates of the parasite clearance rates as well. The fitted Bayesian model to the clearance profile of each individual, as well as the WWARN PCE estimates, can also be plotted by this package.\nCONCLUSIONS: This paper explains the Bayesian Clearance Estimator for malaria researchers including describing the freely available software, thus making these methods accessible and practical for modelling covariates' effects on parasite clearance rates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12936-018-2631-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51a2134d2d8bfbb31d1cb053a7ec2a7020c507bd597745d924957ddd73bfd825"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30611278"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101139802"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12936-018-2631-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111158737"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12936-018-2631-8", 
      "https://app.dimensions.ai/details/publication/pub.1111158737"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6319_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12936-018-2631-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2631-8'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      44 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12936-018-2631-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N03470a6e2d464fd08dfd2c4d43d57f90
4 schema:citation sg:pub.10.1038/nature15535
5 sg:pub.10.1038/scientificamerican0577-119
6 sg:pub.10.1186/1475-2875-10-339
7 https://app.dimensions.ai/details/publication/pub.1029840171
8 https://app.dimensions.ai/details/publication/pub.1080970272
9 https://doi.org/10.1016/s1471-4922(01)02031-1
10 https://doi.org/10.1016/s1473-3099(12)70181-0
11 https://doi.org/10.1017/cbo9780511815867
12 https://doi.org/10.1017/cbo9781316576533
13 https://doi.org/10.1056/nejmoa1314981
14 https://doi.org/10.1080/01621459.1996.10476956
15 https://doi.org/10.1111/biom.12307
16 https://doi.org/10.1201/b10905-7
17 https://doi.org/10.1214/ss/1177011136
18 https://doi.org/10.4269/ajtmh.2005.73.593
19 schema:datePublished 2019-12
20 schema:datePublishedReg 2019-12-01
21 schema:description BACKGROUND: Emerging resistance to anti-malarial drugs has led malaria researchers to investigate what covariates (parasite and host factors) are associated with resistance. In this regard, investigation of how covariates impact malaria parasites clearance is often performed using a two-stage approach in which the WWARN Parasite Clearance Estimator or PCE is used to estimate parasite clearance rates and then the estimated parasite clearance is regressed on the covariates. However, the recently developed Bayesian Clearance Estimator instead leads to more accurate results for hierarchial regression modelling which motivated the authors to implement the method as an R package, called "bhrcr". METHODS: Given malaria parasite clearance profiles of a set of patients, the "bhrcr" package performs Bayesian hierarchical regression to estimate malaria parasite clearance rates along with the effect of covariates on them in the presence of "lag" and "tail" phases. In particular, the model performs a linear regression of the log clearance rates on covariates to estimate the effects within a Bayesian hierarchical framework. All posterior inferences are obtained by a "Markov Chain Monte Carlo" based sampling scheme which forms the core of the package. RESULTS: The "bhrcr" package can be utilized to study malaria parasite clearance data, and specifically, how covariates affect parasite clearance rates. In addition to estimating the clearance rates and the impact of covariates on them, the "bhrcr" package provides tools to calculate the WWARN PCE estimates of the parasite clearance rates as well. The fitted Bayesian model to the clearance profile of each individual, as well as the WWARN PCE estimates, can also be plotted by this package. CONCLUSIONS: This paper explains the Bayesian Clearance Estimator for malaria researchers including describing the freely available software, thus making these methods accessible and practical for modelling covariates' effects on parasite clearance rates.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N4b40a3e437a94afeae99145940de9326
26 N66cbe853948b4160ac97fa03a8c0f353
27 sg:journal.1030597
28 schema:name Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model
29 schema:pagination 4
30 schema:productId N0925825822774ec8b0ed258346b5ce2f
31 N1a5630edeccc4123ba2007bae454e83b
32 N7d490753d92f4231aea41faced4fd502
33 N97ee3deba03d4d438cb0c378fa9fd21f
34 Ne473644f8839497199b7f281f01f1d96
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111158737
36 https://doi.org/10.1186/s12936-018-2631-8
37 schema:sdDatePublished 2019-04-11T08:37
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N7f365a7d92914745937f302c6c7db831
40 schema:url https://link.springer.com/10.1186%2Fs12936-018-2631-8
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N03470a6e2d464fd08dfd2c4d43d57f90 rdf:first sg:person.015625470325.99
45 rdf:rest N729bfa0fc8bc491d9c0ceeaf7062a575
46 N0925825822774ec8b0ed258346b5ce2f schema:name dimensions_id
47 schema:value pub.1111158737
48 rdf:type schema:PropertyValue
49 N09bb75a863c1488c83f173f595d05ccb schema:affiliation https://www.grid.ac/institutes/grid.25879.31
50 schema:familyName Zhu
51 schema:givenName Feiyu
52 rdf:type schema:Person
53 N0aa44e046ddb49f3b7bc72e20b7af5b5 rdf:first sg:person.0647314343.21
54 rdf:rest N5a4d46309c6a48cc9d2c649a7c9c7e01
55 N18fe360b8d484efbad2089e330222026 rdf:first sg:person.01065122655.44
56 rdf:rest rdf:nil
57 N1a5630edeccc4123ba2007bae454e83b schema:name nlm_unique_id
58 schema:value 101139802
59 rdf:type schema:PropertyValue
60 N4b40a3e437a94afeae99145940de9326 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N5a4d46309c6a48cc9d2c649a7c9c7e01 rdf:first sg:person.01363031503.58
63 rdf:rest N18fe360b8d484efbad2089e330222026
64 N66cbe853948b4160ac97fa03a8c0f353 schema:volumeNumber 18
65 rdf:type schema:PublicationVolume
66 N729bfa0fc8bc491d9c0ceeaf7062a575 rdf:first N09bb75a863c1488c83f173f595d05ccb
67 rdf:rest Na881f062066b421893c2982db89558f7
68 N7d490753d92f4231aea41faced4fd502 schema:name doi
69 schema:value 10.1186/s12936-018-2631-8
70 rdf:type schema:PropertyValue
71 N7f365a7d92914745937f302c6c7db831 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N97ee3deba03d4d438cb0c378fa9fd21f schema:name pubmed_id
74 schema:value 30611278
75 rdf:type schema:PropertyValue
76 Na881f062066b421893c2982db89558f7 rdf:first sg:person.0633653203.00
77 rdf:rest Nd87f96a83cd34a768eff95e1b3897747
78 Nbe508f6aeb1a44c1817de3f33c7453e1 schema:name Worldwide Antimalarial Resistance Network (WWARN) and Centre for Tropical Medicine, Oxord, UK
79 rdf:type schema:Organization
80 Nd87f96a83cd34a768eff95e1b3897747 rdf:first sg:person.0607741413.37
81 rdf:rest Nf348d6d5abeb4bd18f5d154b81b8cc21
82 Ne473644f8839497199b7f281f01f1d96 schema:name readcube_id
83 schema:value 51a2134d2d8bfbb31d1cb053a7ec2a7020c507bd597745d924957ddd73bfd825
84 rdf:type schema:PropertyValue
85 Nf348d6d5abeb4bd18f5d154b81b8cc21 rdf:first sg:person.01223571744.44
86 rdf:rest N0aa44e046ddb49f3b7bc72e20b7af5b5
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
91 schema:name Statistics
92 rdf:type schema:DefinedTerm
93 sg:journal.1030597 schema:issn 1475-2875
94 schema:name Malaria Journal
95 rdf:type schema:Periodical
96 sg:person.01065122655.44 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
97 schema:familyName Small
98 schema:givenName Dylan S.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065122655.44
100 rdf:type schema:Person
101 sg:person.01223571744.44 schema:affiliation https://www.grid.ac/institutes/grid.419681.3
102 schema:familyName Fairhurst
103 schema:givenName Rick M.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223571744.44
105 rdf:type schema:Person
106 sg:person.01363031503.58 schema:affiliation Nbe508f6aeb1a44c1817de3f33c7453e1
107 schema:familyName Stepniewska
108 schema:givenName Kasia
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363031503.58
110 rdf:type schema:Person
111 sg:person.015625470325.99 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
112 schema:familyName Sharifi-Malvajerdi
113 schema:givenName Saeed
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625470325.99
115 rdf:type schema:Person
116 sg:person.0607741413.37 schema:affiliation https://www.grid.ac/institutes/grid.419681.3
117 schema:familyName Fay
118 schema:givenName Michael P.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607741413.37
120 rdf:type schema:Person
121 sg:person.0633653203.00 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
122 schema:familyName Fogarty
123 schema:givenName Colin B.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633653203.00
125 rdf:type schema:Person
126 sg:person.0647314343.21 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
127 schema:familyName Flegg
128 schema:givenName Jennifer A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647314343.21
130 rdf:type schema:Person
131 sg:pub.10.1038/nature15535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013049291
132 https://doi.org/10.1038/nature15535
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/scientificamerican0577-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542053
135 https://doi.org/10.1038/scientificamerican0577-119
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/1475-2875-10-339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036683505
138 https://doi.org/10.1186/1475-2875-10-339
139 rdf:type schema:CreativeWork
140 https://app.dimensions.ai/details/publication/pub.1029840171 schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1080970272 schema:CreativeWork
142 https://doi.org/10.1016/s1471-4922(01)02031-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048125037
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s1473-3099(12)70181-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047536348
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1017/cbo9780511815867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098669153
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1017/cbo9781316576533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096882640
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1056/nejmoa1314981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001751558
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/01621459.1996.10476956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305090
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/biom.12307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032667867
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1201/b10905-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048099153
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1214/ss/1177011136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029488311
159 rdf:type schema:CreativeWork
160 https://doi.org/10.4269/ajtmh.2005.73.593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077115368
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
163 schema:name School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
166 schema:name MIT Sloan School of Management, Massachusetts Institute of Technology, Boston, MA, USA
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
169 schema:name Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
170 The Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.419681.3 schema:alternateName National Institute of Allergy and Infectious Diseases
173 schema:name National Institute of Allergy and Infectious Diseases, Maryland, MD, USA
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...