Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Katherine Torres, Christine M. Bachman, Charles B. Delahunt, Jhonatan Alarcon Baldeon, Freddy Alava, Dionicia Gamboa Vilela, Stephane Proux, Courosh Mehanian, Shawn K. McGuire, Clay M. Thompson, Travis Ostbye, Liming Hu, Mayoore S. Jaiswal, Victoria M. Hunt, David Bell

ABSTRACT

BACKGROUND: Microscopic examination of Giemsa-stained blood films remains a major form of diagnosis in malaria case management, and is a reference standard for research. However, as with other visualization-based diagnoses, accuracy depends on individual technician performance, making standardization difficult and reliability poor. Automated image recognition based on machine-learning, utilizing convolutional neural networks, offers potential to overcome these drawbacks. A prototype digital microscope device employing an algorithm based on machine-learning, the Autoscope, was assessed for its potential in malaria microscopy. Autoscope was tested in the Iquitos region of Peru in 2016 at two peripheral health facilities, with routine microscopy and PCR as reference standards. The main outcome measures include sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference. METHODS: A cross-sectional, observational trial was conducted at two peripheral primary health facilities in Peru. 700 participants were enrolled with the criteria: (1) age between 5 and 75 years, (2) history of fever in the last 3 days or elevated temperature on admission, (3) informed consent. The main outcome measures included sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference. RESULTS: At the San Juan clinic, sensitivity of Autoscope for diagnosing malaria was 72% (95% CI 64-80%), and specificity was 85% (95% CI 79-90%). Microscopy performance was similar to Autoscope, with sensitivity 68% (95% CI 59-76%) and specificity 100% (95% CI 98-100%). At San Juan, 85% of prepared slides had a minimum of 600 WBCs imaged, thus meeting Autoscope's design assumptions. At the second clinic, Santa Clara, the sensitivity of Autoscope was 52% (95% CI 44-60%) and specificity was 70% (95% CI 64-76%). Microscopy performance at Santa Clara was 42% (95% CI 34-51) and specificity was 97% (95% CI 94-99). Only 39% of slides from Santa Clara met Autoscope's design assumptions regarding WBCs imaged. CONCLUSIONS: Autoscope's diagnostic performance was on par with routine microscopy when slides had adequate blood volume to meet its design assumptions, as represented by results from the San Juan clinic. Autoscope's diagnostic performance was poorer than routine microscopy on slides from the Santa Clara clinic, which generated slides with lower blood volumes. Results of the study reflect both the potential for artificial intelligence to perform tasks currently conducted by highly-trained experts, and the challenges of replicating the adaptiveness of human thought processes. More... »

PAGES

339

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12936-018-2493-0

DOI

http://dx.doi.org/10.1186/s12936-018-2493-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107226638

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30253764


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cayetano Heredia University", 
          "id": "https://www.grid.ac/institutes/grid.11100.31", 
          "name": [
            "Universidad Peruana Cayetano Heredia, Laboratorio de Malaria, Laboratiorios de Investigacion y Dessarrollo, Facultad de Ciencias y Filosofia, Av. Honorio Delgado 430 SMP, Lima, Peru"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres", 
        "givenName": "Katherine", 
        "id": "sg:person.01371445005.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371445005.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bachman", 
        "givenName": "Christine M.", 
        "id": "sg:person.013164253320.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013164253320.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delahunt", 
        "givenName": "Charles B.", 
        "id": "sg:person.01176712404.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176712404.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cayetano Heredia University", 
          "id": "https://www.grid.ac/institutes/grid.11100.31", 
          "name": [
            "Universidad Peruana Cayetano Heredia, Laboratorio de Malaria, Laboratiorios de Investigacion y Dessarrollo, Facultad de Ciencias y Filosofia, Av. Honorio Delgado 430 SMP, Lima, Peru"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alarcon Baldeon", 
        "givenName": "Jhonatan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cayetano Heredia University", 
          "id": "https://www.grid.ac/institutes/grid.11100.31", 
          "name": [
            "Universidad Peruana Cayetano Heredia, Laboratorio de Malaria, Laboratiorios de Investigacion y Dessarrollo, Facultad de Ciencias y Filosofia, Av. Honorio Delgado 430 SMP, Lima, Peru"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alava", 
        "givenName": "Freddy", 
        "id": "sg:person.0700530275.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700530275.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cayetano Heredia University", 
          "id": "https://www.grid.ac/institutes/grid.11100.31", 
          "name": [
            "Universidad Peruana Cayetano Heredia, Laboratorio de Malaria, Laboratiorios de Investigacion y Dessarrollo, Facultad de Ciencias y Filosofia, Av. Honorio Delgado 430 SMP, Lima, Peru"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gamboa Vilela", 
        "givenName": "Dionicia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mahidol University", 
          "id": "https://www.grid.ac/institutes/grid.10223.32", 
          "name": [
            "Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Proux", 
        "givenName": "Stephane", 
        "id": "sg:person.01123766427.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123766427.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehanian", 
        "givenName": "Courosh", 
        "id": "sg:person.013613663015.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013613663015.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McGuire", 
        "givenName": "Shawn K.", 
        "id": "sg:person.011471454615.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471454615.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "Clay M.", 
        "id": "sg:person.015715637220.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715637220.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ostbye", 
        "givenName": "Travis", 
        "id": "sg:person.013573431020.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573431020.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Liming", 
        "id": "sg:person.016601565015.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601565015.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaiswal", 
        "givenName": "Mayoore S.", 
        "id": "sg:person.013323100765.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323100765.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunt", 
        "givenName": "Victoria M.", 
        "id": "sg:person.07654074364.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07654074364.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bell", 
        "givenName": "David", 
        "id": "sg:person.01223137535.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223137535.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11517-006-0044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001753486", 
          "https://doi.org/10.1007/s11517-006-0044-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-006-0044-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001753486", 
          "https://doi.org/10.1007/s11517-006-0044-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-5-92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003487805", 
          "https://doi.org/10.1186/1475-2875-5-92"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2474-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007780689", 
          "https://doi.org/10.1007/s00521-016-2474-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2474-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007780689", 
          "https://doi.org/10.1007/s00521-016-2474-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3156.2006.01587.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007953543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-8-153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013692985", 
          "https://doi.org/10.1186/1475-2875-8-153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-8-129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014652686", 
          "https://doi.org/10.1186/1475-2875-8-129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2121-9-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017281480", 
          "https://doi.org/10.1186/1471-2121-9-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0104855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023773345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-9-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025202123", 
          "https://doi.org/10.1186/1475-2875-9-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2005.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030137562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jmi.12032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030664854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041375367", 
          "https://doi.org/10.1038/nrmicro1524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041375367", 
          "https://doi.org/10.1038/nrmicro1524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.43.5.2435-2440.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041614226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0008091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047254623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-4758(94)90164-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051560463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-4758(94)90164-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051560463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.2007.77.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077584378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/014107688107400715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082105740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/014107688107400715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082105740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4269/ajtmh.1995.52.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082538099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082973860", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbio.201700003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091384839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trsl.2017.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100351267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trsl.2017.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100351267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccvw.2017.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100561654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s18020513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100901414"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Microscopic examination of Giemsa-stained blood films remains a major form of diagnosis in malaria case management, and is a reference standard for research. However, as with other visualization-based diagnoses, accuracy depends on individual technician performance, making standardization difficult and reliability poor. Automated image recognition based on machine-learning, utilizing convolutional neural networks, offers potential to overcome these drawbacks. A prototype digital microscope device employing an algorithm based on machine-learning, the Autoscope, was assessed for its potential in malaria microscopy. Autoscope was tested in the Iquitos region of Peru in 2016 at two peripheral health facilities, with routine microscopy and PCR as reference standards. The main outcome measures include sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference.\nMETHODS: A cross-sectional, observational trial was conducted at two peripheral primary health facilities in Peru. 700 participants were enrolled with the criteria: (1) age between 5 and 75\u00a0years, (2) history of fever in the last 3\u00a0days or elevated temperature on admission, (3) informed consent. The main outcome measures included sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference.\nRESULTS: At the San Juan clinic, sensitivity of Autoscope for diagnosing malaria was 72% (95% CI 64-80%), and specificity was 85% (95% CI 79-90%). Microscopy performance was similar to Autoscope, with sensitivity 68% (95% CI 59-76%) and specificity 100% (95% CI 98-100%). At San Juan, 85% of prepared slides had a minimum of 600 WBCs imaged, thus meeting Autoscope's design assumptions. At the second clinic, Santa Clara, the sensitivity of Autoscope was 52% (95% CI 44-60%) and specificity was 70% (95% CI 64-76%). Microscopy performance at Santa Clara was 42% (95% CI 34-51) and specificity was 97% (95% CI 94-99). Only 39% of slides from Santa Clara met Autoscope's design assumptions regarding WBCs imaged.\nCONCLUSIONS: Autoscope's diagnostic performance was on par with routine microscopy when slides had adequate blood volume to meet its design assumptions, as represented by results from the San Juan clinic. Autoscope's diagnostic performance was poorer than routine microscopy on slides from the Santa Clara clinic, which generated slides with lower blood volumes. Results of the study reflect both the potential for artificial intelligence to perform tasks currently conducted by highly-trained experts, and the challenges of replicating the adaptiveness of human thought processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12936-018-2493-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru", 
    "pagination": "339", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7afe1856a3273d99bb6d75f3eaa7d84c56e3dd520669be6af4a16b05032c583a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30253764"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101139802"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12936-018-2493-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107226638"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12936-018-2493-0", 
      "https://app.dimensions.ai/details/publication/pub.1107226638"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12936-018-2493-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2493-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2493-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2493-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12936-018-2493-0'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12936-018-2493-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf7a495e887a7402e9c6250eb2b5dc141
4 schema:citation sg:pub.10.1007/s00521-016-2474-6
5 sg:pub.10.1007/s11517-006-0044-2
6 sg:pub.10.1038/nrmicro1524
7 sg:pub.10.1186/1471-2121-9-15
8 sg:pub.10.1186/1475-2875-5-92
9 sg:pub.10.1186/1475-2875-8-129
10 sg:pub.10.1186/1475-2875-8-153
11 sg:pub.10.1186/1475-2875-9-4
12 https://app.dimensions.ai/details/publication/pub.1082973860
13 https://doi.org/10.1002/jbio.201700003
14 https://doi.org/10.1016/0169-4758(94)90164-3
15 https://doi.org/10.1016/j.trsl.2017.12.004
16 https://doi.org/10.1109/iccvw.2017.22
17 https://doi.org/10.1111/j.1365-3156.2006.01587.x
18 https://doi.org/10.1111/jmi.12032
19 https://doi.org/10.1128/jcm.43.5.2435-2440.2005
20 https://doi.org/10.1177/014107688107400715
21 https://doi.org/10.1371/journal.pone.0008091
22 https://doi.org/10.1371/journal.pone.0104855
23 https://doi.org/10.1373/clinchem.2005.057901
24 https://doi.org/10.3390/s18020513
25 https://doi.org/10.4269/ajtmh.1995.52.45
26 https://doi.org/10.4269/ajtmh.2007.77.119
27 schema:datePublished 2018-12
28 schema:datePublishedReg 2018-12-01
29 schema:description BACKGROUND: Microscopic examination of Giemsa-stained blood films remains a major form of diagnosis in malaria case management, and is a reference standard for research. However, as with other visualization-based diagnoses, accuracy depends on individual technician performance, making standardization difficult and reliability poor. Automated image recognition based on machine-learning, utilizing convolutional neural networks, offers potential to overcome these drawbacks. A prototype digital microscope device employing an algorithm based on machine-learning, the Autoscope, was assessed for its potential in malaria microscopy. Autoscope was tested in the Iquitos region of Peru in 2016 at two peripheral health facilities, with routine microscopy and PCR as reference standards. The main outcome measures include sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference. METHODS: A cross-sectional, observational trial was conducted at two peripheral primary health facilities in Peru. 700 participants were enrolled with the criteria: (1) age between 5 and 75 years, (2) history of fever in the last 3 days or elevated temperature on admission, (3) informed consent. The main outcome measures included sensitivity and specificity of diagnosis of malaria from Giemsa-stained blood films, using PCR as reference. RESULTS: At the San Juan clinic, sensitivity of Autoscope for diagnosing malaria was 72% (95% CI 64-80%), and specificity was 85% (95% CI 79-90%). Microscopy performance was similar to Autoscope, with sensitivity 68% (95% CI 59-76%) and specificity 100% (95% CI 98-100%). At San Juan, 85% of prepared slides had a minimum of 600 WBCs imaged, thus meeting Autoscope's design assumptions. At the second clinic, Santa Clara, the sensitivity of Autoscope was 52% (95% CI 44-60%) and specificity was 70% (95% CI 64-76%). Microscopy performance at Santa Clara was 42% (95% CI 34-51) and specificity was 97% (95% CI 94-99). Only 39% of slides from Santa Clara met Autoscope's design assumptions regarding WBCs imaged. CONCLUSIONS: Autoscope's diagnostic performance was on par with routine microscopy when slides had adequate blood volume to meet its design assumptions, as represented by results from the San Juan clinic. Autoscope's diagnostic performance was poorer than routine microscopy on slides from the Santa Clara clinic, which generated slides with lower blood volumes. Results of the study reflect both the potential for artificial intelligence to perform tasks currently conducted by highly-trained experts, and the challenges of replicating the adaptiveness of human thought processes.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N2c8e706f30f642d68ddfc10f767683ac
34 Naa9f23bfb71f4373b01ce8f62bc71c7d
35 sg:journal.1030597
36 schema:name Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru
37 schema:pagination 339
38 schema:productId N42774392984a49eca310f1ddb9ad12ee
39 Na8a442f0b98142639974aa8d9588fc65
40 Nc04199af8c0444f0ae90042dc5e76fb1
41 Nd0a22e26c17c4034a01af8b81187ad08
42 Nf4d2744f4c7248398a13e4945ed3598d
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107226638
44 https://doi.org/10.1186/s12936-018-2493-0
45 schema:sdDatePublished 2019-04-10T23:41
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ne7d9a2ceda734fbc91cbdf5bebb0c232
48 schema:url https://link.springer.com/10.1186%2Fs12936-018-2493-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N096bece6173d4453895134db04fbdc1c rdf:first Na128686567684fae9b5d457ab0055380
53 rdf:rest N93ae0e5fcf00418fac8c904a8050cc75
54 N12e96c5792644dcb840a1eb63ea55b4a schema:affiliation https://www.grid.ac/institutes/grid.11100.31
55 schema:familyName Gamboa Vilela
56 schema:givenName Dionicia
57 rdf:type schema:Person
58 N1c9d5868db9d4e4a921e5b54819bcbc7 rdf:first sg:person.07654074364.48
59 rdf:rest N2303741ecea244678f6a1de138160a00
60 N1d1b7726d2394d18b222a97e59abf4b1 rdf:first sg:person.01123766427.13
61 rdf:rest N3ef576fd9fd94e0fa214b93c0d1d0cdb
62 N2303741ecea244678f6a1de138160a00 rdf:first sg:person.01223137535.41
63 rdf:rest rdf:nil
64 N2c8e706f30f642d68ddfc10f767683ac schema:volumeNumber 17
65 rdf:type schema:PublicationVolume
66 N3ef576fd9fd94e0fa214b93c0d1d0cdb rdf:first sg:person.013613663015.38
67 rdf:rest N5d3dbe18d5094f7bbe8bfeaab952ad7e
68 N42774392984a49eca310f1ddb9ad12ee schema:name nlm_unique_id
69 schema:value 101139802
70 rdf:type schema:PropertyValue
71 N5d3dbe18d5094f7bbe8bfeaab952ad7e rdf:first sg:person.011471454615.57
72 rdf:rest N75518232e5d84d42ae0d7a530f799bc1
73 N6e35da0c3a2f4f2fa0069a88d247f832 rdf:first sg:person.013164253320.11
74 rdf:rest Nfbd387945ee34474b5aca3b8521035dc
75 N75518232e5d84d42ae0d7a530f799bc1 rdf:first sg:person.015715637220.07
76 rdf:rest Ne4c125650b884354aab38d07807ca56d
77 N7dc6f04009f9446b904ee65bc15a9bdd rdf:first N12e96c5792644dcb840a1eb63ea55b4a
78 rdf:rest N1d1b7726d2394d18b222a97e59abf4b1
79 N86ea08169e1e4b0ba59c6c89160bcef5 rdf:first sg:person.013323100765.77
80 rdf:rest N1c9d5868db9d4e4a921e5b54819bcbc7
81 N93ae0e5fcf00418fac8c904a8050cc75 rdf:first sg:person.0700530275.45
82 rdf:rest N7dc6f04009f9446b904ee65bc15a9bdd
83 Na128686567684fae9b5d457ab0055380 schema:affiliation https://www.grid.ac/institutes/grid.11100.31
84 schema:familyName Alarcon Baldeon
85 schema:givenName Jhonatan
86 rdf:type schema:Person
87 Na8a442f0b98142639974aa8d9588fc65 schema:name pubmed_id
88 schema:value 30253764
89 rdf:type schema:PropertyValue
90 Naa9f23bfb71f4373b01ce8f62bc71c7d schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Nc04199af8c0444f0ae90042dc5e76fb1 schema:name readcube_id
93 schema:value 7afe1856a3273d99bb6d75f3eaa7d84c56e3dd520669be6af4a16b05032c583a
94 rdf:type schema:PropertyValue
95 Nd0a22e26c17c4034a01af8b81187ad08 schema:name doi
96 schema:value 10.1186/s12936-018-2493-0
97 rdf:type schema:PropertyValue
98 Ne4c125650b884354aab38d07807ca56d rdf:first sg:person.013573431020.08
99 rdf:rest Ne765fa35758e4907bbf2962b0f7c3a87
100 Ne765fa35758e4907bbf2962b0f7c3a87 rdf:first sg:person.016601565015.44
101 rdf:rest N86ea08169e1e4b0ba59c6c89160bcef5
102 Ne7d9a2ceda734fbc91cbdf5bebb0c232 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nf4d2744f4c7248398a13e4945ed3598d schema:name dimensions_id
105 schema:value pub.1107226638
106 rdf:type schema:PropertyValue
107 Nf7a495e887a7402e9c6250eb2b5dc141 rdf:first sg:person.01371445005.56
108 rdf:rest N6e35da0c3a2f4f2fa0069a88d247f832
109 Nfbd387945ee34474b5aca3b8521035dc rdf:first sg:person.01176712404.13
110 rdf:rest N096bece6173d4453895134db04fbdc1c
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:journal.1030597 schema:issn 1475-2875
118 schema:name Malaria Journal
119 rdf:type schema:Periodical
120 sg:person.01123766427.13 schema:affiliation https://www.grid.ac/institutes/grid.10223.32
121 schema:familyName Proux
122 schema:givenName Stephane
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123766427.13
124 rdf:type schema:Person
125 sg:person.011471454615.57 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
126 schema:familyName McGuire
127 schema:givenName Shawn K.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471454615.57
129 rdf:type schema:Person
130 sg:person.01176712404.13 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
131 schema:familyName Delahunt
132 schema:givenName Charles B.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176712404.13
134 rdf:type schema:Person
135 sg:person.01223137535.41 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
136 schema:familyName Bell
137 schema:givenName David
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223137535.41
139 rdf:type schema:Person
140 sg:person.013164253320.11 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
141 schema:familyName Bachman
142 schema:givenName Christine M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013164253320.11
144 rdf:type schema:Person
145 sg:person.013323100765.77 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
146 schema:familyName Jaiswal
147 schema:givenName Mayoore S.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323100765.77
149 rdf:type schema:Person
150 sg:person.013573431020.08 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
151 schema:familyName Ostbye
152 schema:givenName Travis
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013573431020.08
154 rdf:type schema:Person
155 sg:person.013613663015.38 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
156 schema:familyName Mehanian
157 schema:givenName Courosh
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013613663015.38
159 rdf:type schema:Person
160 sg:person.01371445005.56 schema:affiliation https://www.grid.ac/institutes/grid.11100.31
161 schema:familyName Torres
162 schema:givenName Katherine
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371445005.56
164 rdf:type schema:Person
165 sg:person.015715637220.07 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
166 schema:familyName Thompson
167 schema:givenName Clay M.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715637220.07
169 rdf:type schema:Person
170 sg:person.016601565015.44 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
171 schema:familyName Hu
172 schema:givenName Liming
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016601565015.44
174 rdf:type schema:Person
175 sg:person.0700530275.45 schema:affiliation https://www.grid.ac/institutes/grid.11100.31
176 schema:familyName Alava
177 schema:givenName Freddy
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700530275.45
179 rdf:type schema:Person
180 sg:person.07654074364.48 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
181 schema:familyName Hunt
182 schema:givenName Victoria M.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07654074364.48
184 rdf:type schema:Person
185 sg:pub.10.1007/s00521-016-2474-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007780689
186 https://doi.org/10.1007/s00521-016-2474-6
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s11517-006-0044-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001753486
189 https://doi.org/10.1007/s11517-006-0044-2
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrmicro1524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041375367
192 https://doi.org/10.1038/nrmicro1524
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1471-2121-9-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017281480
195 https://doi.org/10.1186/1471-2121-9-15
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1475-2875-5-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003487805
198 https://doi.org/10.1186/1475-2875-5-92
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1475-2875-8-129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014652686
201 https://doi.org/10.1186/1475-2875-8-129
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/1475-2875-8-153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013692985
204 https://doi.org/10.1186/1475-2875-8-153
205 rdf:type schema:CreativeWork
206 sg:pub.10.1186/1475-2875-9-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025202123
207 https://doi.org/10.1186/1475-2875-9-4
208 rdf:type schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1082973860 schema:CreativeWork
210 https://doi.org/10.1002/jbio.201700003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091384839
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0169-4758(94)90164-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051560463
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.trsl.2017.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100351267
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/iccvw.2017.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100561654
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1111/j.1365-3156.2006.01587.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007953543
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1111/jmi.12032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030664854
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1128/jcm.43.5.2435-2440.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041614226
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1177/014107688107400715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082105740
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pone.0008091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047254623
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pone.0104855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023773345
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1373/clinchem.2005.057901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030137562
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3390/s18020513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100901414
233 rdf:type schema:CreativeWork
234 https://doi.org/10.4269/ajtmh.1995.52.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082538099
235 rdf:type schema:CreativeWork
236 https://doi.org/10.4269/ajtmh.2007.77.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077584378
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.10223.32 schema:alternateName Mahidol University
239 schema:name Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.11100.31 schema:alternateName Cayetano Heredia University
242 schema:name Universidad Peruana Cayetano Heredia, Laboratorio de Malaria, Laboratiorios de Investigacion y Dessarrollo, Facultad de Ciencias y Filosofia, Av. Honorio Delgado 430 SMP, Lima, Peru
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.471104.7 schema:alternateName Intellectual Ventures (United States)
245 schema:name Intellectual Ventures, 3150 139 AVE SE, 98005, Bellevue, WA, USA
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...