Vector control with driving Y chromosomes: modelling the evolution of resistance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-14

AUTHORS

Andrea Beaghton, Pantelis John Beaghton, Austin Burt

ABSTRACT

BACKGROUND: The introduction of new malaria control interventions has often led to the evolution of resistance, both of the parasite to new drugs and of the mosquito vector to new insecticides, compromising the efficacy of the interventions. Recent progress in molecular and population biology raises the possibility of new genetic-based interventions, and the potential for resistance to evolve against these should be considered. Here, population modelling is used to determine the main factors affecting the likelihood that resistance will evolve against a synthetic, nuclease-based driving Y chromosome that produces a male-biased sex ratio. METHODS: A combination of deterministic differential equation models and stochastic analyses involving branching processes and Gillespie simulations is utilized to assess the probability that resistance evolves against a driving Y that otherwise is strong enough to eliminate the target population. The model considers resistance due to changes at the target site such that they are no longer cleaved by the nuclease, and due to trans-acting autosomal suppressor alleles. RESULTS: The probability that resistance evolves increases with the mutation rate and the intrinsic rate of increase of the population, and decreases with the strength of drive and any pleiotropic fitness costs of the resistant allele. In seasonally varying environments, the time of release can also affect the probability of resistance evolving. Trans-acting suppressor alleles are more likely to suffer stochastic loss at low frequencies than target site resistant alleles. CONCLUSIONS: As with any other intervention, there is a risk that resistance will evolve to new genetic approaches to vector control, and steps should be taken to minimize this probability. Two design features that should help in this regard are to reduce the rate at which resistant mutations arise, and to target sequences such that if they do arise, they impose a significant fitness cost on the mosquito. More... »

PAGES

286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12936-017-1932-7

DOI

http://dx.doi.org/10.1186/s12936-017-1932-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090673480

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28705249


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anopheles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Communicable Disease Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Malaria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mosquito Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Y Chromosome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaghton", 
        "givenName": "Andrea", 
        "id": "sg:person.0710545347.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710545347.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaghton", 
        "givenName": "Pantelis John", 
        "id": "sg:person.0756660547.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756660547.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burt", 
        "givenName": "Austin", 
        "id": "sg:person.01142167260.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep31139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051593162", 
          "https://doi.org/10.1038/srep31139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031506350", 
          "https://doi.org/10.1038/ncomms4977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-02744-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086000686", 
          "https://doi.org/10.1038/s41598-017-02744-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-3305-5-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008801309", 
          "https://doi.org/10.1186/1756-3305-5-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1967.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050367651", 
          "https://doi.org/10.1038/hdy.1967.53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-3-29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053724248", 
          "https://doi.org/10.1186/1475-2875-3-29"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-14", 
    "datePublishedReg": "2017-07-14", 
    "description": "BACKGROUND: The introduction of new malaria control interventions has often led to the evolution of resistance, both of the parasite to new drugs and of the mosquito vector to new insecticides, compromising the efficacy of the interventions. Recent progress in molecular and population biology raises the possibility of new genetic-based interventions, and the potential for resistance to evolve against these should be considered. Here, population modelling is used to determine the main factors affecting the likelihood that resistance will evolve against a synthetic, nuclease-based driving Y chromosome that produces a male-biased sex ratio.\nMETHODS: A combination of deterministic differential equation models and stochastic analyses involving branching processes and Gillespie simulations is utilized to assess the probability that resistance evolves against a driving Y that otherwise is strong enough to eliminate the target population. The model considers resistance due to changes at the target site such that they are no longer cleaved by the nuclease, and due to trans-acting autosomal suppressor alleles.\nRESULTS: The probability that resistance evolves increases with the mutation rate and the intrinsic rate of increase of the population, and decreases with the strength of drive and any pleiotropic fitness costs of the resistant allele. In seasonally varying environments, the time of release can also affect the probability of resistance evolving. Trans-acting suppressor alleles are more likely to suffer stochastic loss at low frequencies than target site resistant alleles.\nCONCLUSIONS: As with any other intervention, there is a risk that resistance will evolve to new genetic approaches to vector control, and steps should be taken to minimize this probability. Two design features that should help in this regard are to reduce the rate at which resistant mutations arise, and to target sequences such that if they do arise, they impose a significant fitness cost on the mosquito.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12936-017-1932-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "evolution of resistance", 
      "suppressor alleles", 
      "fitness costs", 
      "resistant alleles", 
      "male-biased sex ratio", 
      "pleiotropic fitness costs", 
      "significant fitness cost", 
      "new genetic approaches", 
      "strength of drive", 
      "population biology", 
      "stochastic loss", 
      "genetic approaches", 
      "resistance evolves", 
      "mutation rate", 
      "resistance evolving", 
      "sex ratio", 
      "intrinsic rate", 
      "Gillespie simulations", 
      "target site", 
      "chromosomes", 
      "new insecticides", 
      "alleles", 
      "mosquito vectors", 
      "population modelling", 
      "deterministic differential equation model", 
      "time of release", 
      "vector control", 
      "recent progress", 
      "nuclease", 
      "biology", 
      "mutations", 
      "evolution", 
      "parasites", 
      "resistant mutations", 
      "resistance", 
      "sequence", 
      "mosquitoes", 
      "insecticides", 
      "population", 
      "new drugs", 
      "differential equation model", 
      "molecular", 
      "sites", 
      "stochastic analysis", 
      "branching process", 
      "vector", 
      "main factors", 
      "release", 
      "control", 
      "loss", 
      "low frequency", 
      "environment", 
      "potential", 
      "factors", 
      "synthetic", 
      "changes", 
      "step", 
      "rate", 
      "progress", 
      "analysis", 
      "probability", 
      "malaria control interventions", 
      "equation model", 
      "evolves", 
      "process", 
      "combination", 
      "increase", 
      "possibility", 
      "features", 
      "introduction", 
      "model", 
      "evolving", 
      "drugs", 
      "modelling", 
      "simulations", 
      "likelihood", 
      "approach", 
      "frequency", 
      "regard", 
      "time", 
      "ratio", 
      "cost", 
      "drive", 
      "control interventions", 
      "target population", 
      "design features", 
      "efficacy", 
      "risk", 
      "strength", 
      "intervention", 
      "new malaria control interventions", 
      "new genetic-based interventions", 
      "genetic-based interventions", 
      "nuclease-based driving Y chromosome", 
      "driving Y chromosome", 
      "Y chromosome", 
      "trans-acting autosomal suppressor alleles", 
      "autosomal suppressor alleles", 
      "Trans-acting suppressor alleles", 
      "target site resistant alleles", 
      "site resistant alleles"
    ], 
    "name": "Vector control with driving Y chromosomes: modelling the evolution of resistance", 
    "pagination": "286", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090673480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12936-017-1932-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28705249"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12936-017-1932-7", 
      "https://app.dimensions.ai/details/publication/pub.1090673480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_729.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12936-017-1932-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12936-017-1932-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12936-017-1932-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12936-017-1932-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12936-017-1932-7'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      22 PREDICATES      144 URIs      130 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12936-017-1932-7 schema:about N04ff8ad1b23b45cab16eaf084032ed4d
2 N1c16a6c019bd463d84f94ed9cc56067d
3 N2ac6e2682e92408fb04dacee398424dc
4 N32abb62cf126402ca8cb73fa9a3fa1da
5 N537dcec3ab7644fca3ed44622e927764
6 N5d91d1fdd03646cf96b9b55c3abfea06
7 N61d6ec8f991f4ee1a1706f6167c0c199
8 N6b3a616765ca47deb42bd8b9296184f9
9 N808389b2870e4dbc9c83af210b264946
10 N8bae74faf2bf42c790a1c37f8fbc65ca
11 Neca64b3da4c4482da977533a3176df4a
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N8fea069c7963485da6f60927dff17830
15 schema:citation sg:pub.10.1038/hdy.1967.53
16 sg:pub.10.1038/ncomms4977
17 sg:pub.10.1038/s41598-017-02744-7
18 sg:pub.10.1038/srep31139
19 sg:pub.10.1186/1475-2875-3-29
20 sg:pub.10.1186/1756-3305-5-86
21 schema:datePublished 2017-07-14
22 schema:datePublishedReg 2017-07-14
23 schema:description BACKGROUND: The introduction of new malaria control interventions has often led to the evolution of resistance, both of the parasite to new drugs and of the mosquito vector to new insecticides, compromising the efficacy of the interventions. Recent progress in molecular and population biology raises the possibility of new genetic-based interventions, and the potential for resistance to evolve against these should be considered. Here, population modelling is used to determine the main factors affecting the likelihood that resistance will evolve against a synthetic, nuclease-based driving Y chromosome that produces a male-biased sex ratio. METHODS: A combination of deterministic differential equation models and stochastic analyses involving branching processes and Gillespie simulations is utilized to assess the probability that resistance evolves against a driving Y that otherwise is strong enough to eliminate the target population. The model considers resistance due to changes at the target site such that they are no longer cleaved by the nuclease, and due to trans-acting autosomal suppressor alleles. RESULTS: The probability that resistance evolves increases with the mutation rate and the intrinsic rate of increase of the population, and decreases with the strength of drive and any pleiotropic fitness costs of the resistant allele. In seasonally varying environments, the time of release can also affect the probability of resistance evolving. Trans-acting suppressor alleles are more likely to suffer stochastic loss at low frequencies than target site resistant alleles. CONCLUSIONS: As with any other intervention, there is a risk that resistance will evolve to new genetic approaches to vector control, and steps should be taken to minimize this probability. Two design features that should help in this regard are to reduce the rate at which resistant mutations arise, and to target sequences such that if they do arise, they impose a significant fitness cost on the mosquito.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N57e30ac7133c4873bc0d941feede2fea
28 Ndcb2ad57c8464c13aae3febdfdec8c20
29 sg:journal.1030597
30 schema:keywords Gillespie simulations
31 Trans-acting suppressor alleles
32 Y chromosome
33 alleles
34 analysis
35 approach
36 autosomal suppressor alleles
37 biology
38 branching process
39 changes
40 chromosomes
41 combination
42 control
43 control interventions
44 cost
45 design features
46 deterministic differential equation model
47 differential equation model
48 drive
49 driving Y chromosome
50 drugs
51 efficacy
52 environment
53 equation model
54 evolution
55 evolution of resistance
56 evolves
57 evolving
58 factors
59 features
60 fitness costs
61 frequency
62 genetic approaches
63 genetic-based interventions
64 increase
65 insecticides
66 intervention
67 intrinsic rate
68 introduction
69 likelihood
70 loss
71 low frequency
72 main factors
73 malaria control interventions
74 male-biased sex ratio
75 model
76 modelling
77 molecular
78 mosquito vectors
79 mosquitoes
80 mutation rate
81 mutations
82 new drugs
83 new genetic approaches
84 new genetic-based interventions
85 new insecticides
86 new malaria control interventions
87 nuclease
88 nuclease-based driving Y chromosome
89 parasites
90 pleiotropic fitness costs
91 population
92 population biology
93 population modelling
94 possibility
95 potential
96 probability
97 process
98 progress
99 rate
100 ratio
101 recent progress
102 regard
103 release
104 resistance
105 resistance evolves
106 resistance evolving
107 resistant alleles
108 resistant mutations
109 risk
110 sequence
111 sex ratio
112 significant fitness cost
113 simulations
114 site resistant alleles
115 sites
116 step
117 stochastic analysis
118 stochastic loss
119 strength
120 strength of drive
121 suppressor alleles
122 synthetic
123 target population
124 target site
125 target site resistant alleles
126 time
127 time of release
128 trans-acting autosomal suppressor alleles
129 vector
130 vector control
131 schema:name Vector control with driving Y chromosomes: modelling the evolution of resistance
132 schema:pagination 286
133 schema:productId N3c41d76b7f46426f9caba794c1c03594
134 Na9a7288fe42f45fab21b4b3888c41a4d
135 Naf1794f325e44ee6ba044b725d7ddad9
136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090673480
137 https://doi.org/10.1186/s12936-017-1932-7
138 schema:sdDatePublished 2021-11-01T18:29
139 schema:sdLicense https://scigraph.springernature.com/explorer/license/
140 schema:sdPublisher N014ce4ce6ed744559de4536c47414564
141 schema:url https://doi.org/10.1186/s12936-017-1932-7
142 sgo:license sg:explorer/license/
143 sgo:sdDataset articles
144 rdf:type schema:ScholarlyArticle
145 N014ce4ce6ed744559de4536c47414564 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N04ff8ad1b23b45cab16eaf084032ed4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Sex Ratio
149 rdf:type schema:DefinedTerm
150 N1c16a6c019bd463d84f94ed9cc56067d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Models, Genetic
152 rdf:type schema:DefinedTerm
153 N2ac6e2682e92408fb04dacee398424dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Mosquito Vectors
155 rdf:type schema:DefinedTerm
156 N32abb62cf126402ca8cb73fa9a3fa1da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Female
158 rdf:type schema:DefinedTerm
159 N3c41d76b7f46426f9caba794c1c03594 schema:name pubmed_id
160 schema:value 28705249
161 rdf:type schema:PropertyValue
162 N537dcec3ab7644fca3ed44622e927764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Malaria
164 rdf:type schema:DefinedTerm
165 N55265263267b438e868bf77cb551c282 rdf:first sg:person.01142167260.64
166 rdf:rest rdf:nil
167 N57e30ac7133c4873bc0d941feede2fea schema:issueNumber 1
168 rdf:type schema:PublicationIssue
169 N5d91d1fdd03646cf96b9b55c3abfea06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Y Chromosome
171 rdf:type schema:DefinedTerm
172 N61d6ec8f991f4ee1a1706f6167c0c199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Animals
174 rdf:type schema:DefinedTerm
175 N6b3a616765ca47deb42bd8b9296184f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Male
177 rdf:type schema:DefinedTerm
178 N808389b2870e4dbc9c83af210b264946 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Communicable Disease Control
180 rdf:type schema:DefinedTerm
181 N8b13dc4d86e44a378991e9f3d637bb3c rdf:first sg:person.0756660547.65
182 rdf:rest N55265263267b438e868bf77cb551c282
183 N8bae74faf2bf42c790a1c37f8fbc65ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Biological Evolution
185 rdf:type schema:DefinedTerm
186 N8fea069c7963485da6f60927dff17830 rdf:first sg:person.0710545347.19
187 rdf:rest N8b13dc4d86e44a378991e9f3d637bb3c
188 Na9a7288fe42f45fab21b4b3888c41a4d schema:name dimensions_id
189 schema:value pub.1090673480
190 rdf:type schema:PropertyValue
191 Naf1794f325e44ee6ba044b725d7ddad9 schema:name doi
192 schema:value 10.1186/s12936-017-1932-7
193 rdf:type schema:PropertyValue
194 Ndcb2ad57c8464c13aae3febdfdec8c20 schema:volumeNumber 16
195 rdf:type schema:PublicationVolume
196 Neca64b3da4c4482da977533a3176df4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Anopheles
198 rdf:type schema:DefinedTerm
199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
200 schema:name Biological Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
203 schema:name Genetics
204 rdf:type schema:DefinedTerm
205 sg:journal.1030597 schema:issn 1475-2875
206 schema:name Malaria Journal
207 schema:publisher Springer Nature
208 rdf:type schema:Periodical
209 sg:person.01142167260.64 schema:affiliation grid-institutes:grid.7445.2
210 schema:familyName Burt
211 schema:givenName Austin
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64
213 rdf:type schema:Person
214 sg:person.0710545347.19 schema:affiliation grid-institutes:grid.7445.2
215 schema:familyName Beaghton
216 schema:givenName Andrea
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710545347.19
218 rdf:type schema:Person
219 sg:person.0756660547.65 schema:affiliation grid-institutes:grid.7445.2
220 schema:familyName Beaghton
221 schema:givenName Pantelis John
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756660547.65
223 rdf:type schema:Person
224 sg:pub.10.1038/hdy.1967.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050367651
225 https://doi.org/10.1038/hdy.1967.53
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/ncomms4977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031506350
228 https://doi.org/10.1038/ncomms4977
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/s41598-017-02744-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086000686
231 https://doi.org/10.1038/s41598-017-02744-7
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/srep31139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051593162
234 https://doi.org/10.1038/srep31139
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1475-2875-3-29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053724248
237 https://doi.org/10.1186/1475-2875-3-29
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1756-3305-5-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008801309
240 https://doi.org/10.1186/1756-3305-5-86
241 rdf:type schema:CreativeWork
242 grid-institutes:grid.7445.2 schema:alternateName Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK
243 schema:name Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...