Genomic signatures of population decline in the malaria mosquito Anopheles gambiae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-24

AUTHORS

Samantha M. O’Loughlin, Stephen M. Magesa, Charles Mbogo, Franklin Mosha, Janet Midega, Austin Burt

ABSTRACT

BACKGROUND: Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. METHODS: To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. RESULTS: In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. CONCLUSIONS: These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions. More... »

PAGES

182

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12936-016-1214-9

DOI

http://dx.doi.org/10.1186/s12936-016-1214-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015070433

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27013475


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anopheles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insect Vectors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kenya", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mosquito Nets", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Loughlin", 
        "givenName": "Samantha M.", 
        "id": "sg:person.01344374404.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344374404.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Global Health Division, RTI International, Dar es Salaam, Tanzania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "NIMR Amani Research Centre, P.O. Box 81, Muheza, Tanzania", 
            "Global Health Division, RTI International, Dar es Salaam, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magesa", 
        "givenName": "Stephen M.", 
        "id": "sg:person.01274616640.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274616640.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Malaria Public Health Department, Centre for Geographic Medicine, KEMRI-Wellcome Trust Research Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100, Nairobi, Kenya", 
          "id": "http://www.grid.ac/institutes/grid.33058.3d", 
          "name": [
            "Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya", 
            "Malaria Public Health Department, Centre for Geographic Medicine, KEMRI-Wellcome Trust Research Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100, Nairobi, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mbogo", 
        "givenName": "Charles", 
        "id": "sg:person.014700733407.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014700733407.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kilimanjaro Christian Medical University College, Moshi, Tanzania", 
          "id": "http://www.grid.ac/institutes/grid.412898.e", 
          "name": [
            "Kilimanjaro Christian Medical University College, Moshi, Tanzania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mosha", 
        "givenName": "Franklin", 
        "id": "sg:person.012343361537.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343361537.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN UK", 
          "id": "http://www.grid.ac/institutes/grid.270683.8", 
          "name": [
            "Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya", 
            "Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ UK", 
            "Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Midega", 
        "givenName": "Janet", 
        "id": "sg:person.0760217111.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760217111.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burt", 
        "givenName": "Austin", 
        "id": "sg:person.01142167260.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1475-2875-10-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019677829", 
          "https://doi.org/10.1186/1475-2875-10-80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-3305-6-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045797789", 
          "https://doi.org/10.1186/1756-3305-6-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-12-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050665629", 
          "https://doi.org/10.1186/1475-2875-12-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-6-151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014010383", 
          "https://doi.org/10.1186/1475-2875-6-151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-11-172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011529528", 
          "https://doi.org/10.1186/1475-2875-11-172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247164", 
          "https://doi.org/10.1038/nature10231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005845061", 
          "https://doi.org/10.1038/ng.3015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-8-157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053647033", 
          "https://doi.org/10.1186/1475-2875-8-157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-9-62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053665143", 
          "https://doi.org/10.1186/1475-2875-9-62"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03-24", 
    "datePublishedReg": "2016-03-24", 
    "description": "BACKGROUND: Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets.\nMETHODS: To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter \u03c1). Linkage disequilibrium and \u03c1 were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi.\nRESULTS: In the first simulations \u03c1 changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and \u03c1 is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi.\nCONCLUSIONS: These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12936-016-1214-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030597", 
        "issn": [
          "1475-2875"
        ], 
        "name": "Malaria Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "bed nets", 
      "insecticide-treated bed nets", 
      "effectiveness of interventions", 
      "gambiae mosquitoes", 
      "Kilifi District", 
      "malaria mosquito Anopheles gambiae", 
      "linkage disequilibrium", 
      "Kilifi", 
      "malaria vector Anopheles", 
      "mosquito Anopheles gambiae", 
      "genomic signatures", 
      "individual An", 
      "sensitive indicator", 
      "Anopheles arabiensis", 
      "control campaigns", 
      "vector Anopheles", 
      "valuable method", 
      "Anopheles gambiae", 
      "decline", 
      "gambiae", 
      "population", 
      "intervention", 
      "An", 
      "Anopheles merus", 
      "rollout", 
      "homozygosity", 
      "mosquitoes", 
      "disequilibrium", 
      "individuals", 
      "recent decline", 
      "Anopheles", 
      "crashes", 
      "arabiensis", 
      "small samples", 
      "control", 
      "genomic parameters", 
      "genomic features", 
      "time", 
      "effect", 
      "hypothesis", 
      "changes", 
      "same location", 
      "indicators", 
      "Kenya", 
      "samples", 
      "data", 
      "location", 
      "effectiveness", 
      "district", 
      "success", 
      "features", 
      "results", 
      "signatures", 
      "statistics", 
      "values", 
      "campaign", 
      "size", 
      "method", 
      "vector", 
      "parameters", 
      "population genomic parameters", 
      "nets", 
      "population crash", 
      "merus", 
      "diversity", 
      "abundance", 
      "population size", 
      "run", 
      "empirical data", 
      "pest control", 
      "nucleotide diversity", 
      "population decline", 
      "Tajima's D", 
      "population genomic signatures", 
      "recent population decline", 
      "significant run", 
      "simulations", 
      "Population genomic features", 
      "detectable population genomic signature", 
      "first simulations \u03c1", 
      "simulations \u03c1", 
      "Kilifi population"
    ], 
    "name": "Genomic signatures of population decline in the malaria mosquito Anopheles gambiae", 
    "pagination": "182", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015070433"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12936-016-1214-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27013475"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12936-016-1214-9", 
      "https://app.dimensions.ai/details/publication/pub.1015070433"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_694.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12936-016-1214-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1214-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1214-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1214-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1214-9'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      22 PREDICATES      126 URIs      109 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12936-016-1214-9 schema:about N008c7738c91740f392f33c4629218ec6
2 N50d84deb7e114d09a62d48938157eac8
3 N7e690eea14b14dd2aa426966421a0d8a
4 Na311d2fd1ec84195a1f410bddcf725e6
5 Na3208fae89524f4e9ac6917319c852a3
6 Nb8d0685f3c3a416aab66c5dac97ed1c4
7 Nc4ffeef33ac24f959af3bd247eee4a49
8 Nd43ae81c275343fb8aa16e8cfac87e36
9 Nf11fd55e310c45edac7f36c4b92d5cb3
10 anzsrc-for:11
11 anzsrc-for:1117
12 schema:author N0b093c597aef48e1941bfa969c802da1
13 schema:citation sg:pub.10.1038/nature10231
14 sg:pub.10.1038/ng.3015
15 sg:pub.10.1186/1475-2875-10-80
16 sg:pub.10.1186/1475-2875-11-172
17 sg:pub.10.1186/1475-2875-12-13
18 sg:pub.10.1186/1475-2875-6-151
19 sg:pub.10.1186/1475-2875-8-157
20 sg:pub.10.1186/1475-2875-9-62
21 sg:pub.10.1186/1756-3305-6-37
22 schema:datePublished 2016-03-24
23 schema:datePublishedReg 2016-03-24
24 schema:description BACKGROUND: Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. METHODS: To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. RESULTS: In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. CONCLUSIONS: These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N046e9e66209a482bad5f5d6093f3e14c
29 N1c7e45c2e16f4cee9362b87d4d9e5f80
30 sg:journal.1030597
31 schema:keywords An
32 Anopheles
33 Anopheles arabiensis
34 Anopheles gambiae
35 Anopheles merus
36 Kenya
37 Kilifi
38 Kilifi District
39 Kilifi population
40 Population genomic features
41 Tajima's D
42 abundance
43 arabiensis
44 bed nets
45 campaign
46 changes
47 control
48 control campaigns
49 crashes
50 data
51 decline
52 detectable population genomic signature
53 disequilibrium
54 district
55 diversity
56 effect
57 effectiveness
58 effectiveness of interventions
59 empirical data
60 features
61 first simulations ρ
62 gambiae
63 gambiae mosquitoes
64 genomic features
65 genomic parameters
66 genomic signatures
67 homozygosity
68 hypothesis
69 indicators
70 individual An
71 individuals
72 insecticide-treated bed nets
73 intervention
74 linkage disequilibrium
75 location
76 malaria mosquito Anopheles gambiae
77 malaria vector Anopheles
78 merus
79 method
80 mosquito Anopheles gambiae
81 mosquitoes
82 nets
83 nucleotide diversity
84 parameters
85 pest control
86 population
87 population crash
88 population decline
89 population genomic parameters
90 population genomic signatures
91 population size
92 recent decline
93 recent population decline
94 results
95 rollout
96 run
97 same location
98 samples
99 sensitive indicator
100 signatures
101 significant run
102 simulations
103 simulations ρ
104 size
105 small samples
106 statistics
107 success
108 time
109 valuable method
110 values
111 vector
112 vector Anopheles
113 schema:name Genomic signatures of population decline in the malaria mosquito Anopheles gambiae
114 schema:pagination 182
115 schema:productId N27a0f217d7da48e794cf4c5ed58cd4b6
116 N352cc85c05904fa8a7d763691218801a
117 Nd58867aa509c4b66bef183946993cad1
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015070433
119 https://doi.org/10.1186/s12936-016-1214-9
120 schema:sdDatePublished 2021-12-01T19:36
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher Ne6b722009ea44ce7b1c918437c488f93
123 schema:url https://doi.org/10.1186/s12936-016-1214-9
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N008c7738c91740f392f33c4629218ec6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Mosquito Nets
129 rdf:type schema:DefinedTerm
130 N046e9e66209a482bad5f5d6093f3e14c schema:volumeNumber 15
131 rdf:type schema:PublicationVolume
132 N0b093c597aef48e1941bfa969c802da1 rdf:first sg:person.01344374404.16
133 rdf:rest N999ca3d37670482dadd306514b367e19
134 N17fe3aa0b52143c1b1d1748d199f5016 rdf:first sg:person.012343361537.66
135 rdf:rest Nf63d922bb3894e66b991b8d8cc6a061b
136 N1c7e45c2e16f4cee9362b87d4d9e5f80 schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 N27a0f217d7da48e794cf4c5ed58cd4b6 schema:name pubmed_id
139 schema:value 27013475
140 rdf:type schema:PropertyValue
141 N352cc85c05904fa8a7d763691218801a schema:name dimensions_id
142 schema:value pub.1015070433
143 rdf:type schema:PropertyValue
144 N50d84deb7e114d09a62d48938157eac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Genetic Variation
146 rdf:type schema:DefinedTerm
147 N7e690eea14b14dd2aa426966421a0d8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Genetics, Population
149 rdf:type schema:DefinedTerm
150 N85ca9ae03aaf478bb06e0d30eb2edd1d rdf:first sg:person.014700733407.85
151 rdf:rest N17fe3aa0b52143c1b1d1748d199f5016
152 N999ca3d37670482dadd306514b367e19 rdf:first sg:person.01274616640.31
153 rdf:rest N85ca9ae03aaf478bb06e0d30eb2edd1d
154 Na311d2fd1ec84195a1f410bddcf725e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Animals
156 rdf:type schema:DefinedTerm
157 Na3208fae89524f4e9ac6917319c852a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Computer Simulation
159 rdf:type schema:DefinedTerm
160 Nb8d0685f3c3a416aab66c5dac97ed1c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Genomics
162 rdf:type schema:DefinedTerm
163 Nc4ffeef33ac24f959af3bd247eee4a49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Kenya
165 rdf:type schema:DefinedTerm
166 Ncd315626c16e4a718d9daaa115dc1552 rdf:first sg:person.01142167260.64
167 rdf:rest rdf:nil
168 Nd43ae81c275343fb8aa16e8cfac87e36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Insect Vectors
170 rdf:type schema:DefinedTerm
171 Nd58867aa509c4b66bef183946993cad1 schema:name doi
172 schema:value 10.1186/s12936-016-1214-9
173 rdf:type schema:PropertyValue
174 Ne6b722009ea44ce7b1c918437c488f93 schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 Nf11fd55e310c45edac7f36c4b92d5cb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Anopheles
178 rdf:type schema:DefinedTerm
179 Nf63d922bb3894e66b991b8d8cc6a061b rdf:first sg:person.0760217111.27
180 rdf:rest Ncd315626c16e4a718d9daaa115dc1552
181 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
182 schema:name Medical and Health Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
185 schema:name Public Health and Health Services
186 rdf:type schema:DefinedTerm
187 sg:journal.1030597 schema:issn 1475-2875
188 schema:name Malaria Journal
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01142167260.64 schema:affiliation grid-institutes:grid.7445.2
192 schema:familyName Burt
193 schema:givenName Austin
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64
195 rdf:type schema:Person
196 sg:person.012343361537.66 schema:affiliation grid-institutes:grid.412898.e
197 schema:familyName Mosha
198 schema:givenName Franklin
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012343361537.66
200 rdf:type schema:Person
201 sg:person.01274616640.31 schema:affiliation grid-institutes:None
202 schema:familyName Magesa
203 schema:givenName Stephen M.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274616640.31
205 rdf:type schema:Person
206 sg:person.01344374404.16 schema:affiliation grid-institutes:grid.7445.2
207 schema:familyName O’Loughlin
208 schema:givenName Samantha M.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344374404.16
210 rdf:type schema:Person
211 sg:person.014700733407.85 schema:affiliation grid-institutes:grid.33058.3d
212 schema:familyName Mbogo
213 schema:givenName Charles
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014700733407.85
215 rdf:type schema:Person
216 sg:person.0760217111.27 schema:affiliation grid-institutes:grid.270683.8
217 schema:familyName Midega
218 schema:givenName Janet
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760217111.27
220 rdf:type schema:Person
221 sg:pub.10.1038/nature10231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247164
222 https://doi.org/10.1038/nature10231
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ng.3015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005845061
225 https://doi.org/10.1038/ng.3015
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1475-2875-10-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019677829
228 https://doi.org/10.1186/1475-2875-10-80
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/1475-2875-11-172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011529528
231 https://doi.org/10.1186/1475-2875-11-172
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/1475-2875-12-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050665629
234 https://doi.org/10.1186/1475-2875-12-13
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1475-2875-6-151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014010383
237 https://doi.org/10.1186/1475-2875-6-151
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1475-2875-8-157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053647033
240 https://doi.org/10.1186/1475-2875-8-157
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1475-2875-9-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053665143
243 https://doi.org/10.1186/1475-2875-9-62
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1756-3305-6-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045797789
246 https://doi.org/10.1186/1756-3305-6-37
247 rdf:type schema:CreativeWork
248 grid-institutes:None schema:alternateName Global Health Division, RTI International, Dar es Salaam, Tanzania
249 schema:name Global Health Division, RTI International, Dar es Salaam, Tanzania
250 NIMR Amani Research Centre, P.O. Box 81, Muheza, Tanzania
251 rdf:type schema:Organization
252 grid-institutes:grid.270683.8 schema:alternateName Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN UK
253 schema:name Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya
254 Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
255 Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN UK
256 rdf:type schema:Organization
257 grid-institutes:grid.33058.3d schema:alternateName Malaria Public Health Department, Centre for Geographic Medicine, KEMRI-Wellcome Trust Research Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100, Nairobi, Kenya
258 schema:name Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya
259 Malaria Public Health Department, Centre for Geographic Medicine, KEMRI-Wellcome Trust Research Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100, Nairobi, Kenya
260 rdf:type schema:Organization
261 grid-institutes:grid.412898.e schema:alternateName Kilimanjaro Christian Medical University College, Moshi, Tanzania
262 schema:name Kilimanjaro Christian Medical University College, Moshi, Tanzania
263 rdf:type schema:Organization
264 grid-institutes:grid.7445.2 schema:alternateName Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY UK
265 schema:name Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY UK
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...