Partitioning the contributions of alternative malaria vector species View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-04

AUTHORS

Anne Deredec, Samantha M. O’Loughlin, Tin-Yu J. Hui, Austin Burt

ABSTRACT

BACKGROUND: In many locations malaria is transmitted by more than one vector species. Some vector control interventions, in particular those using genetic approaches, are likely to be targeted against a single species or species complex, at least initially, and it would therefore be useful to be able to predict the epidemiological impact of controlling a single species when multiple vector species are present. METHODS: To address this issue, the classical Ross-McDonald model of malaria epidemiology is expanded to account for multiple vector species, giving expressions for the equilibrium prevalence, sporozoite rates and reproductive number. These allow one to predict when control of just one vector species will lead to elimination of the disease. Application of the model is illustrated using published data from a particularly extensive entomological and epidemiological survey before the rollout of bed nets in eastern Kenya, where Anopheles gambiae s.l. and An. funestus were vectors. RESULTS: Meta-analysis indicates that sporozoite rates were 38 % higher in An. gambiae s.l. than in An. funestus, and, according to the model, this difference could be due to An. gambiae s.l. having a higher frequency of feeding on humans, a higher human-to-mosquito transmission rate, a lower adult mortality rate, and/or a shorter incubation period. Further calculations suggest that An. gambiae s.l. would have been sufficient to maintain transmission by itself throughout the region, whereas An. funestus would not have been able to support transmission by itself in Malindi District. CONCLUSIONS: Partitioning the contributions of different vector species may allow us to predict whether malaria will persist after targeted vector control. More... »

PAGES

60

References to SciGraph publications

  • 2007-09-25. Standardizing estimates of the Plasmodium falciparum parasite rate in MALARIA JOURNAL
  • 2014-08-30. Effects of the kdr resistance mutation on the susceptibility of wild Anopheles gambiae populations to Plasmodium falciparum: a hindrance for vector control in MALARIA JOURNAL
  • 2013-01-08. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years in MALARIA JOURNAL
  • 2011-09-19. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis in MALARIA JOURNAL
  • 2005-11-24. The entomological inoculation rate and Plasmodium falciparum infection in African children in NATURE
  • 2010-12-03. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis in PARASITES & VECTORS
  • 2011-12-13. Impact of insecticide-treated bed nets on malaria transmission indices on the south coast of Kenya in MALARIA JOURNAL
  • 2013-06-14. Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso in MALARIA JOURNAL
  • 2010-11-02. A quantitative analysis of transmission efficiency versus intensity for malaria in NATURE COMMUNICATIONS
  • 2010-08-16. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis in PARASITES & VECTORS
  • 2010-02-26. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya in MALARIA JOURNAL
  • 2011-10-17. A malaria transmission-directed model of mosquito life cycle and ecology in MALARIA JOURNAL
  • 2012-04-27. Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali in MALARIA JOURNAL
  • 2006-11-10. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania in BMC INFECTIOUS DISEASES
  • 2010-06-28. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets in MALARIA JOURNAL
  • 2011-05-25. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis in PARASITES & VECTORS
  • 2004-06-04. Statics and dynamics of malaria infection in Anopheles mosquitoes in MALARIA JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12936-016-1107-y

    DOI

    http://dx.doi.org/10.1186/s12936-016-1107-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053026693

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26847084


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anopheles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Insect Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Insecticide-Treated Bednets", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kenya", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Malaria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mosquito Control", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sporozoites", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "UMR BIOGER, INRA, AgroParisTech, Universit\u00e9 Paris-Saclay, 78850 Thiverval-Grignon, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK", 
                "UMR BIOGER, INRA, AgroParisTech, Universit\u00e9 Paris-Saclay, 78850 Thiverval-Grignon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deredec", 
            "givenName": "Anne", 
            "id": "sg:person.01171645357.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171645357.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Loughlin", 
            "givenName": "Samantha M.", 
            "id": "sg:person.01344374404.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344374404.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hui", 
            "givenName": "Tin-Yu J.", 
            "id": "sg:person.01161473511.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161473511.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burt", 
            "givenName": "Austin", 
            "id": "sg:person.01142167260.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031173410", 
              "https://doi.org/10.1038/nature04024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-12-204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048925565", 
              "https://doi.org/10.1186/1475-2875-12-204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-10-356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008654877", 
              "https://doi.org/10.1186/1475-2875-10-356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-6-131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006806821", 
              "https://doi.org/10.1186/1475-2875-6-131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-10-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025590640", 
              "https://doi.org/10.1186/1475-2875-10-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-13-340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007348817", 
              "https://doi.org/10.1186/1475-2875-13-340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2334-6-161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007547663", 
              "https://doi.org/10.1186/1471-2334-6-161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053630023", 
              "https://doi.org/10.1038/ncomms1107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-3305-3-117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030844439", 
              "https://doi.org/10.1186/1756-3305-3-117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-3305-3-72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003622346", 
              "https://doi.org/10.1186/1756-3305-3-72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-12-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050665629", 
              "https://doi.org/10.1186/1475-2875-12-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-9-187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042900740", 
              "https://doi.org/10.1186/1475-2875-9-187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-3305-4-89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042456450", 
              "https://doi.org/10.1186/1756-3305-4-89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-11-133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013977180", 
              "https://doi.org/10.1186/1475-2875-11-133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-3-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022899740", 
              "https://doi.org/10.1186/1475-2875-3-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-10-269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039208981", 
              "https://doi.org/10.1186/1475-2875-10-269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2875-9-62", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053665143", 
              "https://doi.org/10.1186/1475-2875-9-62"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-02-04", 
        "datePublishedReg": "2016-02-04", 
        "description": "BACKGROUND: In many locations malaria is transmitted by more than one vector species. Some vector control interventions, in particular those using genetic approaches, are likely to be targeted against a single species or species complex, at least initially, and it would therefore be useful to be able to predict the epidemiological impact of controlling a single species when multiple vector species are present.\nMETHODS: To address this issue, the classical Ross-McDonald model of malaria epidemiology is expanded to account for multiple vector species, giving expressions for the equilibrium prevalence, sporozoite rates and reproductive number. These allow one to predict when control of just one vector species will lead to elimination of the disease. Application of the model is illustrated using published data from a particularly extensive entomological and epidemiological survey before the rollout of bed nets in eastern Kenya, where Anopheles gambiae s.l. and An. funestus were vectors.\nRESULTS: Meta-analysis indicates that sporozoite rates were 38 % higher in An. gambiae s.l. than in An. funestus, and, according to the model, this difference could be due to An. gambiae s.l. having a higher frequency of feeding on humans, a higher human-to-mosquito transmission rate, a lower adult mortality rate, and/or a shorter incubation period. Further calculations suggest that An. gambiae s.l. would have been sufficient to maintain transmission by itself throughout the region, whereas An. funestus would not have been able to support transmission by itself in Malindi District.\nCONCLUSIONS: Partitioning the contributions of different vector species may allow us to predict whether malaria will persist after targeted vector control.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12936-016-1107-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1030597", 
            "issn": [
              "1475-2875"
            ], 
            "name": "Malaria Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "sporozoite rates", 
          "gambiae s.", 
          "vector control interventions", 
          "malaria epidemiology", 
          "bed nets", 
          "mortality rate", 
          "epidemiological impact", 
          "epidemiological survey", 
          "control interventions", 
          "Malindi District", 
          "Anopheles gambiae s.", 
          "vector species", 
          "short incubation period", 
          "malaria", 
          "reproductive number", 
          "funestus", 
          "malaria vector species", 
          "equilibrium prevalence", 
          "humans", 
          "adult mortality rates", 
          "high frequency", 
          "incubation period", 
          "epidemiology", 
          "prevalence", 
          "disease", 
          "high human", 
          "rate", 
          "intervention", 
          "An", 
          "control", 
          "different vector species", 
          "vector control", 
          "multiple vector species", 
          "transmission", 
          "expression", 
          "genetic approaches", 
          "s.", 
          "period", 
          "differences", 
          "elimination", 
          "rollout", 
          "survey", 
          "low adult mortality rates", 
          "frequency", 
          "Kenya", 
          "data", 
          "number", 
          "transmission rate", 
          "model", 
          "impact", 
          "district", 
          "Eastern Kenya", 
          "species", 
          "region", 
          "contribution", 
          "approach", 
          "vector", 
          "issues", 
          "single species", 
          "nets", 
          "applications", 
          "Further calculations", 
          "calculations", 
          "locations malaria", 
          "classical Ross-McDonald model", 
          "Ross-McDonald model", 
          "mosquito transmission rate", 
          "alternative malaria vector species"
        ], 
        "name": "Partitioning the contributions of alternative malaria vector species", 
        "pagination": "60", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053026693"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12936-016-1107-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26847084"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12936-016-1107-y", 
          "https://app.dimensions.ai/details/publication/pub.1053026693"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_719.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12936-016-1107-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1107-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1107-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1107-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12936-016-1107-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      22 PREDICATES      120 URIs      95 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12936-016-1107-y schema:about N1e24792a9b1d4c4abe40dcfeaecc7aa8
    2 N2dd22a24961545b4aaddf1ae02a6210f
    3 N3f0fab2a1b574421ad605a29c78b21ed
    4 N465be48ef6944aaca74cb8d6c78bbb9d
    5 N513e83ca285e474e805bb2a2a6d923aa
    6 N8a0e2bade7dd421fa97fd20b38a73e0d
    7 N8c99a868001d409abb0777eb8afd67e1
    8 N8ecf641622f2433b8fa0b971e83cbce0
    9 Nb30171c19239493293b3402a63f65edc
    10 anzsrc-for:11
    11 anzsrc-for:1117
    12 schema:author Nb88958f8ef0a461e9ffc5aa6d0abdb13
    13 schema:citation sg:pub.10.1038/nature04024
    14 sg:pub.10.1038/ncomms1107
    15 sg:pub.10.1186/1471-2334-6-161
    16 sg:pub.10.1186/1475-2875-10-269
    17 sg:pub.10.1186/1475-2875-10-303
    18 sg:pub.10.1186/1475-2875-10-356
    19 sg:pub.10.1186/1475-2875-11-133
    20 sg:pub.10.1186/1475-2875-12-13
    21 sg:pub.10.1186/1475-2875-12-204
    22 sg:pub.10.1186/1475-2875-13-340
    23 sg:pub.10.1186/1475-2875-3-13
    24 sg:pub.10.1186/1475-2875-6-131
    25 sg:pub.10.1186/1475-2875-9-187
    26 sg:pub.10.1186/1475-2875-9-62
    27 sg:pub.10.1186/1756-3305-3-117
    28 sg:pub.10.1186/1756-3305-3-72
    29 sg:pub.10.1186/1756-3305-4-89
    30 schema:datePublished 2016-02-04
    31 schema:datePublishedReg 2016-02-04
    32 schema:description BACKGROUND: In many locations malaria is transmitted by more than one vector species. Some vector control interventions, in particular those using genetic approaches, are likely to be targeted against a single species or species complex, at least initially, and it would therefore be useful to be able to predict the epidemiological impact of controlling a single species when multiple vector species are present. METHODS: To address this issue, the classical Ross-McDonald model of malaria epidemiology is expanded to account for multiple vector species, giving expressions for the equilibrium prevalence, sporozoite rates and reproductive number. These allow one to predict when control of just one vector species will lead to elimination of the disease. Application of the model is illustrated using published data from a particularly extensive entomological and epidemiological survey before the rollout of bed nets in eastern Kenya, where Anopheles gambiae s.l. and An. funestus were vectors. RESULTS: Meta-analysis indicates that sporozoite rates were 38 % higher in An. gambiae s.l. than in An. funestus, and, according to the model, this difference could be due to An. gambiae s.l. having a higher frequency of feeding on humans, a higher human-to-mosquito transmission rate, a lower adult mortality rate, and/or a shorter incubation period. Further calculations suggest that An. gambiae s.l. would have been sufficient to maintain transmission by itself throughout the region, whereas An. funestus would not have been able to support transmission by itself in Malindi District. CONCLUSIONS: Partitioning the contributions of different vector species may allow us to predict whether malaria will persist after targeted vector control.
    33 schema:genre article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N1783a942babc40d583dd9a4921ea33e9
    37 N3fa40a327d1e48e99bbec030e714ab3a
    38 sg:journal.1030597
    39 schema:keywords An
    40 Anopheles gambiae s.
    41 Eastern Kenya
    42 Further calculations
    43 Kenya
    44 Malindi District
    45 Ross-McDonald model
    46 adult mortality rates
    47 alternative malaria vector species
    48 applications
    49 approach
    50 bed nets
    51 calculations
    52 classical Ross-McDonald model
    53 contribution
    54 control
    55 control interventions
    56 data
    57 differences
    58 different vector species
    59 disease
    60 district
    61 elimination
    62 epidemiological impact
    63 epidemiological survey
    64 epidemiology
    65 equilibrium prevalence
    66 expression
    67 frequency
    68 funestus
    69 gambiae s.
    70 genetic approaches
    71 high frequency
    72 high human
    73 humans
    74 impact
    75 incubation period
    76 intervention
    77 issues
    78 locations malaria
    79 low adult mortality rates
    80 malaria
    81 malaria epidemiology
    82 malaria vector species
    83 model
    84 mortality rate
    85 mosquito transmission rate
    86 multiple vector species
    87 nets
    88 number
    89 period
    90 prevalence
    91 rate
    92 region
    93 reproductive number
    94 rollout
    95 s.
    96 short incubation period
    97 single species
    98 species
    99 sporozoite rates
    100 survey
    101 transmission
    102 transmission rate
    103 vector
    104 vector control
    105 vector control interventions
    106 vector species
    107 schema:name Partitioning the contributions of alternative malaria vector species
    108 schema:pagination 60
    109 schema:productId Nce7afa5253bc4bceb72b5094e63a61dc
    110 Ne46fe6fa2d554076ac4c49f3a02066a8
    111 Ne6c15101fdd94d0d818691b8f597f7b1
    112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053026693
    113 https://doi.org/10.1186/s12936-016-1107-y
    114 schema:sdDatePublished 2021-12-01T19:38
    115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    116 schema:sdPublisher N612b33e124bf4aef89e3410888adce4a
    117 schema:url https://doi.org/10.1186/s12936-016-1107-y
    118 sgo:license sg:explorer/license/
    119 sgo:sdDataset articles
    120 rdf:type schema:ScholarlyArticle
    121 N1007c0ecceb44561aac7181599aa8ee1 rdf:first sg:person.01344374404.16
    122 rdf:rest Neb856527b26741dcbd18aaae44ad82d3
    123 N1783a942babc40d583dd9a4921ea33e9 schema:issueNumber 1
    124 rdf:type schema:PublicationIssue
    125 N1e24792a9b1d4c4abe40dcfeaecc7aa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Malaria
    127 rdf:type schema:DefinedTerm
    128 N23e7fc09f6cc401e8dcf716ca56b050b rdf:first sg:person.01142167260.64
    129 rdf:rest rdf:nil
    130 N2dd22a24961545b4aaddf1ae02a6210f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Humans
    132 rdf:type schema:DefinedTerm
    133 N3f0fab2a1b574421ad605a29c78b21ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Kenya
    135 rdf:type schema:DefinedTerm
    136 N3fa40a327d1e48e99bbec030e714ab3a schema:volumeNumber 15
    137 rdf:type schema:PublicationVolume
    138 N465be48ef6944aaca74cb8d6c78bbb9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Insect Vectors
    140 rdf:type schema:DefinedTerm
    141 N513e83ca285e474e805bb2a2a6d923aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Mosquito Control
    143 rdf:type schema:DefinedTerm
    144 N612b33e124bf4aef89e3410888adce4a schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 N8a0e2bade7dd421fa97fd20b38a73e0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Animals
    148 rdf:type schema:DefinedTerm
    149 N8c99a868001d409abb0777eb8afd67e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Insecticide-Treated Bednets
    151 rdf:type schema:DefinedTerm
    152 N8ecf641622f2433b8fa0b971e83cbce0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Anopheles
    154 rdf:type schema:DefinedTerm
    155 Nb30171c19239493293b3402a63f65edc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Sporozoites
    157 rdf:type schema:DefinedTerm
    158 Nb88958f8ef0a461e9ffc5aa6d0abdb13 rdf:first sg:person.01171645357.71
    159 rdf:rest N1007c0ecceb44561aac7181599aa8ee1
    160 Nce7afa5253bc4bceb72b5094e63a61dc schema:name pubmed_id
    161 schema:value 26847084
    162 rdf:type schema:PropertyValue
    163 Ne46fe6fa2d554076ac4c49f3a02066a8 schema:name dimensions_id
    164 schema:value pub.1053026693
    165 rdf:type schema:PropertyValue
    166 Ne6c15101fdd94d0d818691b8f597f7b1 schema:name doi
    167 schema:value 10.1186/s12936-016-1107-y
    168 rdf:type schema:PropertyValue
    169 Neb856527b26741dcbd18aaae44ad82d3 rdf:first sg:person.01161473511.18
    170 rdf:rest N23e7fc09f6cc401e8dcf716ca56b050b
    171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Medical and Health Sciences
    173 rdf:type schema:DefinedTerm
    174 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Public Health and Health Services
    176 rdf:type schema:DefinedTerm
    177 sg:journal.1030597 schema:issn 1475-2875
    178 schema:name Malaria Journal
    179 schema:publisher Springer Nature
    180 rdf:type schema:Periodical
    181 sg:person.01142167260.64 schema:affiliation grid-institutes:grid.7445.2
    182 schema:familyName Burt
    183 schema:givenName Austin
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167260.64
    185 rdf:type schema:Person
    186 sg:person.01161473511.18 schema:affiliation grid-institutes:grid.7445.2
    187 schema:familyName Hui
    188 schema:givenName Tin-Yu J.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161473511.18
    190 rdf:type schema:Person
    191 sg:person.01171645357.71 schema:affiliation grid-institutes:None
    192 schema:familyName Deredec
    193 schema:givenName Anne
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171645357.71
    195 rdf:type schema:Person
    196 sg:person.01344374404.16 schema:affiliation grid-institutes:grid.7445.2
    197 schema:familyName O’Loughlin
    198 schema:givenName Samantha M.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344374404.16
    200 rdf:type schema:Person
    201 sg:pub.10.1038/nature04024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031173410
    202 https://doi.org/10.1038/nature04024
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/ncomms1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053630023
    205 https://doi.org/10.1038/ncomms1107
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1186/1471-2334-6-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007547663
    208 https://doi.org/10.1186/1471-2334-6-161
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1186/1475-2875-10-269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039208981
    211 https://doi.org/10.1186/1475-2875-10-269
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1186/1475-2875-10-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025590640
    214 https://doi.org/10.1186/1475-2875-10-303
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/1475-2875-10-356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008654877
    217 https://doi.org/10.1186/1475-2875-10-356
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1186/1475-2875-11-133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013977180
    220 https://doi.org/10.1186/1475-2875-11-133
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/1475-2875-12-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050665629
    223 https://doi.org/10.1186/1475-2875-12-13
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/1475-2875-12-204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048925565
    226 https://doi.org/10.1186/1475-2875-12-204
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/1475-2875-13-340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007348817
    229 https://doi.org/10.1186/1475-2875-13-340
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1186/1475-2875-3-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022899740
    232 https://doi.org/10.1186/1475-2875-3-13
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/1475-2875-6-131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006806821
    235 https://doi.org/10.1186/1475-2875-6-131
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/1475-2875-9-187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042900740
    238 https://doi.org/10.1186/1475-2875-9-187
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/1475-2875-9-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053665143
    241 https://doi.org/10.1186/1475-2875-9-62
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1186/1756-3305-3-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030844439
    244 https://doi.org/10.1186/1756-3305-3-117
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/1756-3305-3-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003622346
    247 https://doi.org/10.1186/1756-3305-3-72
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1186/1756-3305-4-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042456450
    250 https://doi.org/10.1186/1756-3305-4-89
    251 rdf:type schema:CreativeWork
    252 grid-institutes:None schema:alternateName UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
    253 schema:name Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK
    254 UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
    255 rdf:type schema:Organization
    256 grid-institutes:grid.7445.2 schema:alternateName Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK
    257 schema:name Department of Life Sciences, Imperial College, Silwood Park, Ascot, London, SL5 7 PY UK
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...