Biosensor-guided improvements in salicylate production by recombinant Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Shuai Qian, Ye Li, Patrick C. Cirino

ABSTRACT

BACKGROUND: Salicylate can be biosynthesized from the common metabolic intermediate shikimate and has found applications in pharmaceuticals and in the bioplastics industry. While much metabolic engineering work focused on the shikimate pathway has led to the biosynthesis of a variety of aromatic compounds, little is known about how the relative expression levels of pathway components influence salicylate biosynthesis. Furthermore, some host strain gene deletions that improve salicylate production may be impossible to predict. Here, a salicylate-responsive transcription factor was used to optimize the expression levels of shikimate/salicylate pathway genes in recombinant E. coli, and to screen a chromosomal transposon insertion library for improved salicylate production. RESULTS: A high-throughput colony screen was first developed based on a previously designed salicylate-responsive variant of the E. coli AraC regulatory protein ("AraC-SA"). Next, a combinatorial library was constructed comprising a series of ribosome binding site sequences corresponding to a range of predicted protein translation initiation rates, for each of six pathway genes (> 38,000 strain candidates). Screening for improved salicylate production allowed for the rapid identification of optimal gene expression patterns, conferring up to 123% improved production of salicylate in shake-flask culture. Finally, transposon mutagenesis and screening revealed that deletion of rnd (encoding RNase D) from the host chromosome further improved salicylate production by 27%. CONCLUSIONS: These results demonstrate the effectiveness of the salicylate sensor-based screening platform to rapidly identify beneficial gene expression patterns and gene knockout targets for improving production. Such customized high-throughput tools complement other cell factory engineering strategies. This approach can be generalized for the production of other shikimate-derived compounds. More... »

PAGES

18

Journal

TITLE

Microbial Cell Factories

ISSUE

1

VOLUME

18

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12934-019-1069-1

    DOI

    http://dx.doi.org/10.1186/s12934-019-1069-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111767827

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30696431


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Houston", 
              "id": "https://www.grid.ac/institutes/grid.266436.3", 
              "name": [
                "Department of Chemical & Biomolecular Engineering, University of Houston, S222 Engineering Building 1, 77204-4004, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qian", 
            "givenName": "Shuai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Houston", 
              "id": "https://www.grid.ac/institutes/grid.266436.3", 
              "name": [
                "Department of Chemical & Biomolecular Engineering, University of Houston, S222 Engineering Building 1, 77204-4004, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Ye", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Houston", 
              "id": "https://www.grid.ac/institutes/grid.266436.3", 
              "name": [
                "Department of Chemical & Biomolecular Engineering, University of Houston, S222 Engineering Building 1, 77204-4004, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cirino", 
            "givenName": "Patrick C.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ymben.2008.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000858257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.02973-06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002707894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2016.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004029587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2016.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004029587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2016.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004029587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2016.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004029587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.06017-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007416889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1101-1060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011940157", 
              "https://doi.org/10.1038/nbt1101-1060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1101-1060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011940157", 
              "https://doi.org/10.1038/nbt1101-1060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/sb400002n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012974247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014210998", 
              "https://doi.org/10.1038/nbt.1568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014210998", 
              "https://doi.org/10.1038/nbt.1568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2014.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016749174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2015.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017603495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2011.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022080942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2016.01.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023833637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.183.21.6384-6393.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027864919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028361428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028438756", 
              "https://doi.org/10.1038/nbt.2149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00859-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029157444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja402654z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029244658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja7109053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030143689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja7109053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030143689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2013.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032403854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2009.09.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032720885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pro.2873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035889923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201006083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037681111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038787969", 
              "https://doi.org/10.1038/nbt.2689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.120163297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039276805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/btpr.559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040955648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1106958108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049724159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.coche.2016.08.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050539679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.coche.2016.08.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050539679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1096/fasebj.7.1.8422961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082800683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2017.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092688847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2017.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092688847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2017.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092688847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-018-2062-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105830402", 
              "https://doi.org/10.1007/s10295-018-2062-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/protein/gzy024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106357854"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Salicylate can be biosynthesized from the common metabolic intermediate shikimate and has found applications in pharmaceuticals and in the bioplastics industry. While much metabolic engineering work focused on the shikimate pathway has led to the biosynthesis of a variety of aromatic compounds, little is known about how the relative expression levels of pathway components influence salicylate biosynthesis. Furthermore, some host strain gene deletions that improve salicylate production may be impossible to predict. Here, a salicylate-responsive transcription factor was used to optimize the expression levels of shikimate/salicylate pathway genes in recombinant E. coli, and to screen a chromosomal transposon insertion library for improved salicylate production.\nRESULTS: A high-throughput colony screen was first developed based on a previously designed salicylate-responsive variant of the E. coli AraC regulatory protein (\"AraC-SA\"). Next, a combinatorial library was constructed comprising a series of ribosome binding site sequences corresponding to a range of predicted protein translation initiation rates, for each of six pathway genes (>\u200938,000 strain candidates). Screening for improved salicylate production allowed for the rapid identification of optimal gene expression patterns, conferring up to 123% improved production of salicylate in shake-flask culture. Finally, transposon mutagenesis and screening revealed that deletion of rnd (encoding RNase D) from the host chromosome further improved salicylate production by 27%.\nCONCLUSIONS: These results demonstrate the effectiveness of the salicylate sensor-based screening platform to rapidly identify beneficial gene expression patterns and gene knockout targets for improving production. Such customized high-throughput tools complement other cell factory engineering strategies. This approach can be generalized for the production of other shikimate-derived compounds.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s12934-019-1069-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4179464", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1030599", 
            "issn": [
              "1475-2859"
            ], 
            "name": "Microbial Cell Factories", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Biosensor-guided improvements in salicylate production by recombinant Escherichia coli", 
        "pagination": "18", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d962a9539f112ce5a2ef9555f8dbea6a49a212211ce1008961bf07e3c0402f29"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30696431"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101139812"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12934-019-1069-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111767827"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12934-019-1069-1", 
          "https://app.dimensions.ai/details/publication/pub.1111767827"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000329_0000000329/records_74680_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs12934-019-1069-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12934-019-1069-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12934-019-1069-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12934-019-1069-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12934-019-1069-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12934-019-1069-1 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nc9b88cca6035418a94abfc7e8bde4c44
    4 schema:citation sg:pub.10.1007/s10295-018-2062-0
    5 sg:pub.10.1038/nbt.1568
    6 sg:pub.10.1038/nbt.2149
    7 sg:pub.10.1038/nbt.2689
    8 sg:pub.10.1038/nbt1101-1060
    9 https://doi.org/10.1002/anie.201006083
    10 https://doi.org/10.1002/btpr.559
    11 https://doi.org/10.1002/pro.2873
    12 https://doi.org/10.1016/j.coche.2016.08.020
    13 https://doi.org/10.1016/j.copbio.2009.09.012
    14 https://doi.org/10.1016/j.copbio.2016.01.016
    15 https://doi.org/10.1016/j.copbio.2016.05.003
    16 https://doi.org/10.1016/j.copbio.2017.10.009
    17 https://doi.org/10.1016/j.ymben.2008.07.007
    18 https://doi.org/10.1016/j.ymben.2011.06.008
    19 https://doi.org/10.1016/j.ymben.2013.04.004
    20 https://doi.org/10.1016/j.ymben.2014.02.009
    21 https://doi.org/10.1016/j.ymben.2015.11.007
    22 https://doi.org/10.1021/ja402654z
    23 https://doi.org/10.1021/ja7109053
    24 https://doi.org/10.1021/sb400002n
    25 https://doi.org/10.1073/pnas.1106958108
    26 https://doi.org/10.1073/pnas.120163297
    27 https://doi.org/10.1093/nar/gkt151
    28 https://doi.org/10.1093/protein/gzy024
    29 https://doi.org/10.1096/fasebj.7.1.8422961
    30 https://doi.org/10.1128/aem.00859-13
    31 https://doi.org/10.1128/aem.02973-06
    32 https://doi.org/10.1128/aem.06017-11
    33 https://doi.org/10.1128/jb.183.21.6384-6393.2001
    34 schema:datePublished 2019-12
    35 schema:datePublishedReg 2019-12-01
    36 schema:description BACKGROUND: Salicylate can be biosynthesized from the common metabolic intermediate shikimate and has found applications in pharmaceuticals and in the bioplastics industry. While much metabolic engineering work focused on the shikimate pathway has led to the biosynthesis of a variety of aromatic compounds, little is known about how the relative expression levels of pathway components influence salicylate biosynthesis. Furthermore, some host strain gene deletions that improve salicylate production may be impossible to predict. Here, a salicylate-responsive transcription factor was used to optimize the expression levels of shikimate/salicylate pathway genes in recombinant E. coli, and to screen a chromosomal transposon insertion library for improved salicylate production. RESULTS: A high-throughput colony screen was first developed based on a previously designed salicylate-responsive variant of the E. coli AraC regulatory protein ("AraC-SA"). Next, a combinatorial library was constructed comprising a series of ribosome binding site sequences corresponding to a range of predicted protein translation initiation rates, for each of six pathway genes (> 38,000 strain candidates). Screening for improved salicylate production allowed for the rapid identification of optimal gene expression patterns, conferring up to 123% improved production of salicylate in shake-flask culture. Finally, transposon mutagenesis and screening revealed that deletion of rnd (encoding RNase D) from the host chromosome further improved salicylate production by 27%. CONCLUSIONS: These results demonstrate the effectiveness of the salicylate sensor-based screening platform to rapidly identify beneficial gene expression patterns and gene knockout targets for improving production. Such customized high-throughput tools complement other cell factory engineering strategies. This approach can be generalized for the production of other shikimate-derived compounds.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N54d80c75981b4c9a8cf7e702954611a3
    41 Ne16a334eddd6417793cc1af46d7a57e1
    42 sg:journal.1030599
    43 schema:name Biosensor-guided improvements in salicylate production by recombinant Escherichia coli
    44 schema:pagination 18
    45 schema:productId N517ed7e8ce48447a9ccf3f6f7b160c77
    46 N80430e8e1c704debbb64a35386335e4c
    47 Nb8d2db17a0c74024b43d1a881b86c0fe
    48 Nd1d3d3b415f647de880ece6343c64863
    49 Nedcb2e17a21e46f6aacb46562294bd53
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111767827
    51 https://doi.org/10.1186/s12934-019-1069-1
    52 schema:sdDatePublished 2019-04-11T09:00
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N487395cd05b6408a893db8f5725e7fdf
    55 schema:url https://link.springer.com/10.1186%2Fs12934-019-1069-1
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N33dd1632b485430ba23391accbefe9d9 rdf:first N7d2f34eddc5a4a77a6b6e6df2ec51dee
    60 rdf:rest rdf:nil
    61 N487395cd05b6408a893db8f5725e7fdf schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N517ed7e8ce48447a9ccf3f6f7b160c77 schema:name doi
    64 schema:value 10.1186/s12934-019-1069-1
    65 rdf:type schema:PropertyValue
    66 N54d80c75981b4c9a8cf7e702954611a3 schema:volumeNumber 18
    67 rdf:type schema:PublicationVolume
    68 N63d9fd8ee779498e8633f3fb84969b1a schema:affiliation https://www.grid.ac/institutes/grid.266436.3
    69 schema:familyName Qian
    70 schema:givenName Shuai
    71 rdf:type schema:Person
    72 N65f9fcf7530b48f7ba8d888c4aab3fa4 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
    73 schema:familyName Li
    74 schema:givenName Ye
    75 rdf:type schema:Person
    76 N7864117897ba4ddaba0d7979f8225611 rdf:first N65f9fcf7530b48f7ba8d888c4aab3fa4
    77 rdf:rest N33dd1632b485430ba23391accbefe9d9
    78 N7d2f34eddc5a4a77a6b6e6df2ec51dee schema:affiliation https://www.grid.ac/institutes/grid.266436.3
    79 schema:familyName Cirino
    80 schema:givenName Patrick C.
    81 rdf:type schema:Person
    82 N80430e8e1c704debbb64a35386335e4c schema:name readcube_id
    83 schema:value d962a9539f112ce5a2ef9555f8dbea6a49a212211ce1008961bf07e3c0402f29
    84 rdf:type schema:PropertyValue
    85 Nb8d2db17a0c74024b43d1a881b86c0fe schema:name pubmed_id
    86 schema:value 30696431
    87 rdf:type schema:PropertyValue
    88 Nc9b88cca6035418a94abfc7e8bde4c44 rdf:first N63d9fd8ee779498e8633f3fb84969b1a
    89 rdf:rest N7864117897ba4ddaba0d7979f8225611
    90 Nd1d3d3b415f647de880ece6343c64863 schema:name nlm_unique_id
    91 schema:value 101139812
    92 rdf:type schema:PropertyValue
    93 Ne16a334eddd6417793cc1af46d7a57e1 schema:issueNumber 1
    94 rdf:type schema:PublicationIssue
    95 Nedcb2e17a21e46f6aacb46562294bd53 schema:name dimensions_id
    96 schema:value pub.1111767827
    97 rdf:type schema:PropertyValue
    98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Biological Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Genetics
    103 rdf:type schema:DefinedTerm
    104 sg:grant.4179464 http://pending.schema.org/fundedItem sg:pub.10.1186/s12934-019-1069-1
    105 rdf:type schema:MonetaryGrant
    106 sg:journal.1030599 schema:issn 1475-2859
    107 schema:name Microbial Cell Factories
    108 rdf:type schema:Periodical
    109 sg:pub.10.1007/s10295-018-2062-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105830402
    110 https://doi.org/10.1007/s10295-018-2062-0
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/nbt.1568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014210998
    113 https://doi.org/10.1038/nbt.1568
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/nbt.2149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028438756
    116 https://doi.org/10.1038/nbt.2149
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1038/nbt.2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038787969
    119 https://doi.org/10.1038/nbt.2689
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/nbt1101-1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011940157
    122 https://doi.org/10.1038/nbt1101-1060
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/anie.201006083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037681111
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/btpr.559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040955648
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1002/pro.2873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035889923
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.coche.2016.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050539679
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.copbio.2009.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032720885
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.copbio.2016.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023833637
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.copbio.2016.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004029587
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.copbio.2017.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092688847
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.ymben.2008.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000858257
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.ymben.2011.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080942
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.ymben.2013.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032403854
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.ymben.2014.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016749174
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.ymben.2015.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017603495
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1021/ja402654z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029244658
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1021/ja7109053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030143689
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1021/sb400002n schema:sameAs https://app.dimensions.ai/details/publication/pub.1012974247
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1073/pnas.1106958108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049724159
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1073/pnas.120163297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039276805
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1093/nar/gkt151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028361428
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1093/protein/gzy024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106357854
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1096/fasebj.7.1.8422961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082800683
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1128/aem.00859-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029157444
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1128/aem.02973-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002707894
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1128/aem.06017-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007416889
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1128/jb.183.21.6384-6393.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027864919
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
    175 schema:name Department of Chemical & Biomolecular Engineering, University of Houston, S222 Engineering Building 1, 77204-4004, Houston, TX, USA
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...