Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Juan C. Aon, Jianxin Sun, Julie M. Leighton, Edward R. Appelbaum

ABSTRACT

BACKGROUND: In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. RESULTS: The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. CONCLUSIONS: The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up. More... »

PAGES

142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12934-016-0542-3

DOI

http://dx.doi.org/10.1186/s12934-016-0542-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037816810

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27527078


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anaerobiosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Batch Cell Culture Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Wall", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fermentation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycosylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Guanosine Diphosphate Mannose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrolases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Industrial Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mannosephosphates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Processing, Post-Translational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Arkema (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419047.f", 
          "name": [
            "Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, 19406, King of Prussia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aon", 
        "givenName": "Juan C.", 
        "id": "sg:person.01207570014.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207570014.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arkema (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419047.f", 
          "name": [
            "Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, 19406, King of Prussia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jianxin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arkema (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419047.f", 
          "name": [
            "Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, 19406, King of Prussia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leighton", 
        "givenName": "Julie M.", 
        "id": "sg:person.0663717603.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663717603.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arkema (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419047.f", 
          "name": [
            "Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, 19406, King of Prussia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Appelbaum", 
        "givenName": "Edward R.", 
        "id": "sg:person.01074207422.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074207422.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.97.7.3254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003245676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2002.tb00613.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004692467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007002743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007002743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4157(87)90006-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010263829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4157(87)90006-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010263829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.2002.02814.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012044698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2536561100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013871742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.00038-05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017648813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4165(98)00137-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023863839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260280602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023920242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260280602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023920242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024555849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024555849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1472-765x.2003.01394.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033253683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/btpr.2264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033892554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4165(98)00127-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038023217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039578054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.1481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039578054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/btpr.1557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040463601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2005.04692.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2005.04692.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-13-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043642977", 
          "https://doi.org/10.1186/1475-2859-13-32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-842x(00)01805-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044042772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2859-10-93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044621275", 
          "https://doi.org/10.1186/1475-2859-10-93"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamem.2008.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047372014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19980720)59:2<203::aid-bit8>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047625409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/48102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048878336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.11.3104-3110.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062723797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1988.tb03332.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079448819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.7.6.8472892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082821206"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10\u00a0L) to industrial scale (10,000\u00a0L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway.\nRESULTS: The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000\u00a0L compared to the 10\u00a0L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10\u00a0L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale.\nCONCLUSIONS: The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12934-016-0542-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030599", 
        "issn": [
          "1475-2859"
        ], 
        "name": "Microbial Cell Factories", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae", 
    "pagination": "142", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4264c75d2596392b942bd042b2fc274c3f9a38618ee7814b3fc96402833835a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27527078"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101139812"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12934-016-0542-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037816810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12934-016-0542-3", 
      "https://app.dimensions.ai/details/publication/pub.1037816810"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12934-016-0542-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12934-016-0542-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12934-016-0542-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12934-016-0542-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12934-016-0542-3'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      67 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12934-016-0542-3 schema:about N08f75944e2924f64988ffd6d1d5c9725
2 N124cb44070734a8da89d992dd63b6764
3 N1f34b8778ef24313bd0f29783e28bbf5
4 N4bcbf170fc0f43138ef742c7274154fc
5 N4e8a4881033348f8a7fba4b5731d6364
6 N5cd67e3f9e65485b9d500c3a683c21a1
7 N684c00d5e3c644a28e17f323ed1021ca
8 N6ae87209f9b04320bc23dee5f062afd7
9 Naf945ab7b1c642a293b694c535512f3d
10 Nb35bd39cbfe047c78d058dff253b3e78
11 Nb77e4971889f4bb4b55306000823fe97
12 Nd8872901b9dd493ea615f7ee9d4079e0
13 Ndf034de977784c53bec47b12da235420
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N3c5be48d87cd4b50ac8fee25a8f78509
17 schema:citation sg:pub.10.1186/1475-2859-10-93
18 sg:pub.10.1186/1475-2859-13-32
19 https://doi.org/10.1002/(sici)1097-0290(19980720)59:2<203::aid-bit8>3.0.co;2-l
20 https://doi.org/10.1002/bit.260280602
21 https://doi.org/10.1002/btpr.1557
22 https://doi.org/10.1002/btpr.2264
23 https://doi.org/10.1002/j.1460-2075.1988.tb03332.x
24 https://doi.org/10.1002/yea.1349
25 https://doi.org/10.1002/yea.1479
26 https://doi.org/10.1002/yea.1481
27 https://doi.org/10.1016/0304-4157(87)90006-2
28 https://doi.org/10.1016/j.bbamem.2008.12.002
29 https://doi.org/10.1016/s0304-4165(98)00127-5
30 https://doi.org/10.1016/s0304-4165(98)00137-8
31 https://doi.org/10.1016/s0966-842x(00)01805-9
32 https://doi.org/10.1046/j.1432-1327.2002.02814.x
33 https://doi.org/10.1046/j.1472-765x.2003.01394.x
34 https://doi.org/10.1073/pnas.2536561100
35 https://doi.org/10.1073/pnas.97.7.3254
36 https://doi.org/10.1096/fasebj.7.6.8472892
37 https://doi.org/10.1111/j.1365-2958.2005.04692.x
38 https://doi.org/10.1111/j.1574-6976.2002.tb00613.x
39 https://doi.org/10.1128/jb.177.11.3104-3110.1995
40 https://doi.org/10.1128/mmbr.00038-05
41 https://doi.org/10.5772/48102
42 schema:datePublished 2016-12
43 schema:datePublishedReg 2016-12-01
44 schema:description BACKGROUND: In this study we examine the integrity of the cell wall during scale up of a yeast fermentation process from laboratory scale (10 L) to industrial scale (10,000 L). In a previous study we observed a clear difference in the volume fraction occupied by yeast cells as revealed by wet cell weight (WCW) measurements between these scales. That study also included metabolite analysis which suggested hypoxia during scale up. Here we hypothesize that hypoxia weakens the yeast cell wall during the scale up, leading to changes in cell permeability, and/or cell mechanical resistance, which in turn may lead to the observed difference in WCW. We tested the cell wall integrity by probing the cell wall sensitivity to Zymolyase. Also exometabolomics data showed changes in supply of precursors for the glycosylation pathway. RESULTS: The results show a more sensitive cell wall later in the production process at industrial scale, while the sensitivity at early time points was similar at both scales. We also report exometabolomics data, in particular a link with the protein glycosylation pathway. Significantly lower levels of Man6P and progressively higher GDP-mannose indicated partially impaired incorporation of this sugar nucleotide during co- or post-translational protein glycosylation pathways at the 10,000 L compared to the 10 L scale. This impairment in glycosylation would be expected to affect cell wall integrity. Although cell viability from samples obtained at both scales were similar, cells harvested from 10 L bioreactors were able to re-initiate growth faster in fresh shake flask media than those harvested from the industrial scale. CONCLUSIONS: The results obtained help explain the WCW differences observed at both scales by hypoxia-triggered weakening of the yeast cell wall during the scale up.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N466bda3219bf461bb50ce23ec20c7a6f
49 Nfada74c93a1c4cf183141d8ccf1c8429
50 sg:journal.1030599
51 schema:name Hypoxia-elicited impairment of cell wall integrity, glycosylation precursor synthesis, and growth in scaled-up high-cell density fed-batch cultures of Saccharomyces cerevisiae
52 schema:pagination 142
53 schema:productId N7e600fe2b091403eb2a810958b91d7a2
54 N81f0726a83964cbe95cecda0c0b1eceb
55 Nd1fcb530e5524e2083bb2b688b17c560
56 Nd4a8ed535a7d4fa981641b8411a4aa5b
57 Nfed736ea3a9246a39aa494b2742a3ea9
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037816810
59 https://doi.org/10.1186/s12934-016-0542-3
60 schema:sdDatePublished 2019-04-11T12:39
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N0fe9162955f44366a3240d42e6b35d96
63 schema:url https://link.springer.com/10.1186%2Fs12934-016-0542-3
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N08f75944e2924f64988ffd6d1d5c9725 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Industrial Microbiology
69 rdf:type schema:DefinedTerm
70 N0fe9162955f44366a3240d42e6b35d96 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N124cb44070734a8da89d992dd63b6764 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Glycosylation
74 rdf:type schema:DefinedTerm
75 N1f34b8778ef24313bd0f29783e28bbf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Bioreactors
77 rdf:type schema:DefinedTerm
78 N260ed2ac345b4afd8b17d7be19b51e0f rdf:first sg:person.0663717603.25
79 rdf:rest N4ece4d9ea3d84a58b91f96553d262793
80 N3c5be48d87cd4b50ac8fee25a8f78509 rdf:first sg:person.01207570014.44
81 rdf:rest Nbc0fed9f10484303a87677e67eb58562
82 N466bda3219bf461bb50ce23ec20c7a6f schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N4bcbf170fc0f43138ef742c7274154fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Saccharomyces cerevisiae
86 rdf:type schema:DefinedTerm
87 N4e8a4881033348f8a7fba4b5731d6364 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Anaerobiosis
89 rdf:type schema:DefinedTerm
90 N4ece4d9ea3d84a58b91f96553d262793 rdf:first sg:person.01074207422.08
91 rdf:rest rdf:nil
92 N5cd67e3f9e65485b9d500c3a683c21a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Protein Processing, Post-Translational
94 rdf:type schema:DefinedTerm
95 N684c00d5e3c644a28e17f323ed1021ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Metabolome
97 rdf:type schema:DefinedTerm
98 N6ae87209f9b04320bc23dee5f062afd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Mannosephosphates
100 rdf:type schema:DefinedTerm
101 N7e600fe2b091403eb2a810958b91d7a2 schema:name dimensions_id
102 schema:value pub.1037816810
103 rdf:type schema:PropertyValue
104 N81f0726a83964cbe95cecda0c0b1eceb schema:name readcube_id
105 schema:value b4264c75d2596392b942bd042b2fc274c3f9a38618ee7814b3fc96402833835a
106 rdf:type schema:PropertyValue
107 Naf945ab7b1c642a293b694c535512f3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Fermentation
109 rdf:type schema:DefinedTerm
110 Nb35bd39cbfe047c78d058dff253b3e78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Guanosine Diphosphate Mannose
112 rdf:type schema:DefinedTerm
113 Nb77e4971889f4bb4b55306000823fe97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Batch Cell Culture Techniques
115 rdf:type schema:DefinedTerm
116 Nbc0fed9f10484303a87677e67eb58562 rdf:first Nda7fa24fa8c44c9f98a4eb3154918b69
117 rdf:rest N260ed2ac345b4afd8b17d7be19b51e0f
118 Nd1fcb530e5524e2083bb2b688b17c560 schema:name nlm_unique_id
119 schema:value 101139812
120 rdf:type schema:PropertyValue
121 Nd4a8ed535a7d4fa981641b8411a4aa5b schema:name pubmed_id
122 schema:value 27527078
123 rdf:type schema:PropertyValue
124 Nd8872901b9dd493ea615f7ee9d4079e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Hydrolases
126 rdf:type schema:DefinedTerm
127 Nda7fa24fa8c44c9f98a4eb3154918b69 schema:affiliation https://www.grid.ac/institutes/grid.419047.f
128 schema:familyName Sun
129 schema:givenName Jianxin
130 rdf:type schema:Person
131 Ndf034de977784c53bec47b12da235420 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Cell Wall
133 rdf:type schema:DefinedTerm
134 Nfada74c93a1c4cf183141d8ccf1c8429 schema:volumeNumber 15
135 rdf:type schema:PublicationVolume
136 Nfed736ea3a9246a39aa494b2742a3ea9 schema:name doi
137 schema:value 10.1186/s12934-016-0542-3
138 rdf:type schema:PropertyValue
139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biological Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biochemistry and Cell Biology
144 rdf:type schema:DefinedTerm
145 sg:journal.1030599 schema:issn 1475-2859
146 schema:name Microbial Cell Factories
147 rdf:type schema:Periodical
148 sg:person.01074207422.08 schema:affiliation https://www.grid.ac/institutes/grid.419047.f
149 schema:familyName Appelbaum
150 schema:givenName Edward R.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074207422.08
152 rdf:type schema:Person
153 sg:person.01207570014.44 schema:affiliation https://www.grid.ac/institutes/grid.419047.f
154 schema:familyName Aon
155 schema:givenName Juan C.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207570014.44
157 rdf:type schema:Person
158 sg:person.0663717603.25 schema:affiliation https://www.grid.ac/institutes/grid.419047.f
159 schema:familyName Leighton
160 schema:givenName Julie M.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663717603.25
162 rdf:type schema:Person
163 sg:pub.10.1186/1475-2859-10-93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044621275
164 https://doi.org/10.1186/1475-2859-10-93
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1475-2859-13-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043642977
167 https://doi.org/10.1186/1475-2859-13-32
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/(sici)1097-0290(19980720)59:2<203::aid-bit8>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1047625409
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/bit.260280602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023920242
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/btpr.1557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040463601
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/btpr.2264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033892554
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/j.1460-2075.1988.tb03332.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079448819
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/yea.1349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024555849
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/yea.1479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002743
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/yea.1481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039578054
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0304-4157(87)90006-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010263829
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.bbamem.2008.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047372014
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0304-4165(98)00127-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038023217
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0304-4165(98)00137-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023863839
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0966-842x(00)01805-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044042772
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1046/j.1432-1327.2002.02814.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012044698
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1046/j.1472-765x.2003.01394.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033253683
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.2536561100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013871742
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.97.7.3254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003245676
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1096/fasebj.7.6.8472892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082821206
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1365-2958.2005.04692.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043619198
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1574-6976.2002.tb00613.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004692467
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1128/jb.177.11.3104-3110.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062723797
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1128/mmbr.00038-05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017648813
212 rdf:type schema:CreativeWork
213 https://doi.org/10.5772/48102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048878336
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.419047.f schema:alternateName Arkema (United States)
216 schema:name Department of Microbial and Cell Culture Development, Research and Development, GlaxoSmithKline, 709 Swedeland Road, 19406, King of Prussia, PA, USA
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...