Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Lucia La Sala, Simona Mrakic-Sposta, Elena Tagliabue, Francesco Prattichizzo, Stefano Micheloni, Elena Sangalli, Claudia Specchia, Anna Chiara Uccellatore, Silvia Lupini, Gaia Spinetti, Paola de Candia, Antonio Ceriello

ABSTRACT

BACKGROUND: Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal). METHODS: To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n = 115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated. RESULTS: We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-naïve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used. CONCLUSIONS: our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2

DOI

http://dx.doi.org/10.1186/s12933-019-0824-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112386039

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30803440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "La Sala", 
        "givenName": "Lucia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Molecular Bioimaging and Physiology", 
          "id": "https://www.grid.ac/institutes/grid.428490.3", 
          "name": [
            "Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mrakic-Sposta", 
        "givenName": "Simona", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Biostatistic Unit, IRCCS MultiMedica, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tagliabue", 
        "givenName": "Elena", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prattichizzo", 
        "givenName": "Francesco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Micheloni", 
        "givenName": "Stefano", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sangalli", 
        "givenName": "Elena", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Brescia", 
          "id": "https://www.grid.ac/institutes/grid.7637.5", 
          "name": [
            "Department of Translational Biomedicine, University of Brescia, Brescia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Specchia", 
        "givenName": "Claudia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "University of Milan, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uccellatore", 
        "givenName": "Anna Chiara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "University of Milan, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lupini", 
        "givenName": "Silvia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spinetti", 
        "givenName": "Gaia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Candia", 
        "givenName": "Paola", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy", 
            "Institut d\u2019Investigacions Biom\u00e8diques August Pi i Sunyer (IDIBAPS) and Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades Metab\u00f3licas Asociadas (CIBERDEM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ceriello", 
        "givenName": "Antonio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2014/306179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004414442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.i6538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004994346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.28.5.1187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006005898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.300418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006653007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.300418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006653007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db11-1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008363834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cvr/cvp015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008945957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/ijms.15548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010719765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011297901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep31479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014593608", 
          "https://doi.org/10.1038/srep31479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2013.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/dom.12688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017949900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc15-s005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018088379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(16)30328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021100658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2011.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021177145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023682432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028723946", 
          "https://doi.org/10.1038/nature07511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinthera.2005.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031207866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db08-0063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033267669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-016-0390-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033583427", 
          "https://doi.org/10.1186/s12933-016-0390-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.208066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037297000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.226357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.226357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.200500090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039038539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.200500090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039038539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-016-0837-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039198488", 
          "https://doi.org/10.1007/s00592-016-0837-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.49.12.2170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043747622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2014.00043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044504036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fgene.2013.00094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044604833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.223545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045876868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.223545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045876868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000366374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046207912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2362.1998.00295.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048025120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1480157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1480157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1480157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050225907", 
          "https://doi.org/10.1038/nature03076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050225907", 
          "https://doi.org/10.1038/nature03076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3003205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052534178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2014-2574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064295328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diab.46.11.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070738033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mmr.2014.3107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071522388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mmr.2014.3107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071522388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/cd16-0067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083399967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4237-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018828", 
          "https://doi.org/10.1007/s00125-017-4237-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4237-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018828", 
          "https://doi.org/10.1007/s00125-017-4237-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4237-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018828", 
          "https://doi.org/10.1007/s00125-017-4237-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db16-1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084404971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-017-0604-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091990360", 
          "https://doi.org/10.1186/s12933-017-0604-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-017-0604-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091990360", 
          "https://doi.org/10.1186/s12933-017-0604-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/56326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092426654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0188980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093164046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(18)30027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101243675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/6872635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103199994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-018-1149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103836914", 
          "https://doi.org/10.1007/s00592-018-1149-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-018-0748-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105775693", 
          "https://doi.org/10.1186/s12933-018-0748-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1479164118816659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110565357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1479164118816659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110565357"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal).\nMETHODS: To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n\u2009=\u2009115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated.\nRESULTS: We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-na\u00efve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used.\nCONCLUSIONS: our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12933-019-0824-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031021", 
        "issn": [
          "1475-2840"
        ], 
        "name": "Cardiovascular Diabetology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-na\u00efve T2D", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d33fe2dc514e35d493ad1bdca14b9d5b1811e303cea36ceac2d9ccf65c4d2042"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30803440"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147637"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12933-019-0824-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112386039"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12933-019-0824-2", 
      "https://app.dimensions.ai/details/publication/pub.1112386039"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78972_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12933-019-0824-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12933-019-0824-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N4cf93155ce21460c91ace6bf7469ed5c
4 schema:citation sg:pub.10.1007/s00125-017-4237-z
5 sg:pub.10.1007/s00592-016-0837-1
6 sg:pub.10.1007/s00592-018-1149-4
7 sg:pub.10.1038/nature03076
8 sg:pub.10.1038/nature07511
9 sg:pub.10.1038/srep31479
10 sg:pub.10.1186/s12933-016-0390-9
11 sg:pub.10.1186/s12933-017-0604-9
12 sg:pub.10.1186/s12933-018-0748-2
13 https://doi.org/10.1002/mnfr.200500090
14 https://doi.org/10.1016/j.cell.2009.01.002
15 https://doi.org/10.1016/j.clinthera.2005.11.020
16 https://doi.org/10.1016/j.cmet.2006.01.005
17 https://doi.org/10.1016/j.freeradbiomed.2011.05.004
18 https://doi.org/10.1016/j.freeradbiomed.2013.06.009
19 https://doi.org/10.1016/j.molmet.2018.11.003
20 https://doi.org/10.1016/s2213-8587(16)30328-x
21 https://doi.org/10.1016/s2213-8587(18)30027-5
22 https://doi.org/10.1046/j.1365-2362.1998.00295.x
23 https://doi.org/10.1074/jbc.m110.208066
24 https://doi.org/10.1093/cvr/cvp015
25 https://doi.org/10.1111/dom.12688
26 https://doi.org/10.1126/science.1104343
27 https://doi.org/10.1126/scitranslmed.3003205
28 https://doi.org/10.1136/bmj.i6538
29 https://doi.org/10.1155/2014/306179
30 https://doi.org/10.1155/2018/6872635
31 https://doi.org/10.1159/000366374
32 https://doi.org/10.1161/circresaha.110.223545
33 https://doi.org/10.1161/circresaha.110.226357
34 https://doi.org/10.1161/circresaha.111.300418
35 https://doi.org/10.1177/1479164118816659
36 https://doi.org/10.1210/jc.2014-2574
37 https://doi.org/10.1371/journal.pone.0188980
38 https://doi.org/10.1530/eje.0.1480157
39 https://doi.org/10.2307/2531595
40 https://doi.org/10.2337/cd16-0067
41 https://doi.org/10.2337/db08-0063
42 https://doi.org/10.2337/db11-1086
43 https://doi.org/10.2337/db16-1246
44 https://doi.org/10.2337/dc15-s005
45 https://doi.org/10.2337/diab.46.11.1853
46 https://doi.org/10.2337/diabetes.49.12.2170
47 https://doi.org/10.2337/diacare.28.5.1187
48 https://doi.org/10.3389/fgene.2013.00094
49 https://doi.org/10.3389/fimmu.2014.00043
50 https://doi.org/10.3791/56326
51 https://doi.org/10.3892/mmr.2014.3107
52 https://doi.org/10.7150/ijms.15548
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description BACKGROUND: Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal). METHODS: To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n = 115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated. RESULTS: We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-naïve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used. CONCLUSIONS: our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N0763089e79da456e85be70326b4bf614
60 Nca9777aae68743848935ae2301918a7c
61 sg:journal.1031021
62 schema:name Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D
63 schema:pagination 18
64 schema:productId N54d2e771eeee4ba39d9c9de172939fdb
65 N5f67716932514d238342e2117d64d1da
66 N7d8e7b4273024af2a6d89fd0a582d1e6
67 N87cfcd82720e4c27a3f2f699b430f06d
68 Nc7ec25b2f2604de0954f3d3b229a9ec1
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112386039
70 https://doi.org/10.1186/s12933-019-0824-2
71 schema:sdDatePublished 2019-04-11T13:21
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Na1262826cd2a40d59fac39da41d5fae1
74 schema:url https://link.springer.com/10.1186%2Fs12933-019-0824-2
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N012aec94599841769539907320a967b3 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
79 schema:familyName La Sala
80 schema:givenName Lucia
81 rdf:type schema:Person
82 N04860ef848c443dc94d801f64bd0b074 rdf:first N5af3028e9ccc42dca84071afbc034789
83 rdf:rest N686f6d13ae7943cca618bb9138f871d5
84 N0763089e79da456e85be70326b4bf614 schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N08af665e87c342c7ab1ae1661558a061 rdf:first N49b6449830114616bd90395a22687223
87 rdf:rest N5bc32be9c5e84e2dbe21c37ec8f75e98
88 N1db958b2df0945fdbbff3ed244edc688 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
89 schema:familyName Ceriello
90 schema:givenName Antonio
91 rdf:type schema:Person
92 N2f4c3800834c42ba8b5a4bb364541b7c rdf:first Neae5f6a375e44dd59103ab0364ac4bfa
93 rdf:rest N9751cca69dbe4cfcaec965d666bbdc94
94 N3025fcf6f1164defb3328ed53a79542f rdf:first N3c4b58e16b964e5e989c5a6d17478ddd
95 rdf:rest N4f4afc1da666435e9e90f135985e9eb6
96 N3c4b58e16b964e5e989c5a6d17478ddd schema:affiliation https://www.grid.ac/institutes/grid.420421.1
97 schema:familyName Micheloni
98 schema:givenName Stefano
99 rdf:type schema:Person
100 N49b6449830114616bd90395a22687223 schema:affiliation https://www.grid.ac/institutes/grid.428490.3
101 schema:familyName Mrakic-Sposta
102 schema:givenName Simona
103 rdf:type schema:Person
104 N4cf93155ce21460c91ace6bf7469ed5c rdf:first N012aec94599841769539907320a967b3
105 rdf:rest N08af665e87c342c7ab1ae1661558a061
106 N4f4afc1da666435e9e90f135985e9eb6 rdf:first N819bb1a74a5045b28d0147da35eaa6e3
107 rdf:rest N2f4c3800834c42ba8b5a4bb364541b7c
108 N4f8b1b8c5f164f978489233f3b8baede rdf:first Ncccf74e703a34afb8ed6d3eaaec03cae
109 rdf:rest N04860ef848c443dc94d801f64bd0b074
110 N54d2e771eeee4ba39d9c9de172939fdb schema:name dimensions_id
111 schema:value pub.1112386039
112 rdf:type schema:PropertyValue
113 N5af3028e9ccc42dca84071afbc034789 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
114 schema:familyName de Candia
115 schema:givenName Paola
116 rdf:type schema:Person
117 N5bc32be9c5e84e2dbe21c37ec8f75e98 rdf:first Ne05653e3ed4c4b1fb720b58b9872249d
118 rdf:rest N6c119aa701dc4f4c85814e0e5d01cd0f
119 N5f67716932514d238342e2117d64d1da schema:name pubmed_id
120 schema:value 30803440
121 rdf:type schema:PropertyValue
122 N686f6d13ae7943cca618bb9138f871d5 rdf:first N1db958b2df0945fdbbff3ed244edc688
123 rdf:rest rdf:nil
124 N6b4a865f3cfd4e2b8404ed34df81cc74 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
125 schema:familyName Lupini
126 schema:givenName Silvia
127 rdf:type schema:Person
128 N6c119aa701dc4f4c85814e0e5d01cd0f rdf:first N86894fad6e0b491da79b97bba2d68fe5
129 rdf:rest N3025fcf6f1164defb3328ed53a79542f
130 N6dfb855bb97447c39f16903d35288065 rdf:first N6b4a865f3cfd4e2b8404ed34df81cc74
131 rdf:rest N4f8b1b8c5f164f978489233f3b8baede
132 N7d8e7b4273024af2a6d89fd0a582d1e6 schema:name doi
133 schema:value 10.1186/s12933-019-0824-2
134 rdf:type schema:PropertyValue
135 N819bb1a74a5045b28d0147da35eaa6e3 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
136 schema:familyName Sangalli
137 schema:givenName Elena
138 rdf:type schema:Person
139 N86894fad6e0b491da79b97bba2d68fe5 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
140 schema:familyName Prattichizzo
141 schema:givenName Francesco
142 rdf:type schema:Person
143 N87cfcd82720e4c27a3f2f699b430f06d schema:name nlm_unique_id
144 schema:value 101147637
145 rdf:type schema:PropertyValue
146 N9751cca69dbe4cfcaec965d666bbdc94 rdf:first Nd0f123e6163c43e5be21fdd3e61208c7
147 rdf:rest N6dfb855bb97447c39f16903d35288065
148 Na1262826cd2a40d59fac39da41d5fae1 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nc7ec25b2f2604de0954f3d3b229a9ec1 schema:name readcube_id
151 schema:value d33fe2dc514e35d493ad1bdca14b9d5b1811e303cea36ceac2d9ccf65c4d2042
152 rdf:type schema:PropertyValue
153 Nca9777aae68743848935ae2301918a7c schema:volumeNumber 18
154 rdf:type schema:PublicationVolume
155 Ncccf74e703a34afb8ed6d3eaaec03cae schema:affiliation https://www.grid.ac/institutes/grid.420421.1
156 schema:familyName Spinetti
157 schema:givenName Gaia
158 rdf:type schema:Person
159 Nd0f123e6163c43e5be21fdd3e61208c7 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
160 schema:familyName Uccellatore
161 schema:givenName Anna Chiara
162 rdf:type schema:Person
163 Ne05653e3ed4c4b1fb720b58b9872249d schema:affiliation https://www.grid.ac/institutes/grid.420421.1
164 schema:familyName Tagliabue
165 schema:givenName Elena
166 rdf:type schema:Person
167 Neae5f6a375e44dd59103ab0364ac4bfa schema:affiliation https://www.grid.ac/institutes/grid.7637.5
168 schema:familyName Specchia
169 schema:givenName Claudia
170 rdf:type schema:Person
171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
172 schema:name Medical and Health Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
175 schema:name Clinical Sciences
176 rdf:type schema:DefinedTerm
177 sg:journal.1031021 schema:issn 1475-2840
178 schema:name Cardiovascular Diabetology
179 rdf:type schema:Periodical
180 sg:pub.10.1007/s00125-017-4237-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084018828
181 https://doi.org/10.1007/s00125-017-4237-z
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00592-016-0837-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039198488
184 https://doi.org/10.1007/s00592-016-0837-1
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00592-018-1149-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103836914
187 https://doi.org/10.1007/s00592-018-1149-4
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature03076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050225907
190 https://doi.org/10.1038/nature03076
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nature07511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028723946
193 https://doi.org/10.1038/nature07511
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/srep31479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014593608
196 https://doi.org/10.1038/srep31479
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/s12933-016-0390-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033583427
199 https://doi.org/10.1186/s12933-016-0390-9
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/s12933-017-0604-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091990360
202 https://doi.org/10.1186/s12933-017-0604-9
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/s12933-018-0748-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105775693
205 https://doi.org/10.1186/s12933-018-0748-2
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1002/mnfr.200500090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039038539
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.cell.2009.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023682432
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.clinthera.2005.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031207866
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.cmet.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052534178
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.freeradbiomed.2011.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021177145
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.freeradbiomed.2013.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445433
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.molmet.2018.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109914476
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s2213-8587(16)30328-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021100658
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s2213-8587(18)30027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101243675
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1046/j.1365-2362.1998.00295.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048025120
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1074/jbc.m110.208066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037297000
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/cvr/cvp015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008945957
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/dom.12688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017949900
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.1104343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011297901
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/scitranslmed.3003205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341351
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1136/bmj.i6538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004994346
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1155/2014/306179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004414442
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1155/2018/6872635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103199994
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1159/000366374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046207912
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1161/circresaha.110.223545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045876868
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1161/circresaha.110.226357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702492
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1161/circresaha.111.300418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006653007
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1177/1479164118816659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110565357
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1210/jc.2014-2574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064295328
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pone.0188980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093164046
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1530/eje.0.1480157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048067533
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2337/cd16-0067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083399967
262 rdf:type schema:CreativeWork
263 https://doi.org/10.2337/db08-0063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033267669
264 rdf:type schema:CreativeWork
265 https://doi.org/10.2337/db11-1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008363834
266 rdf:type schema:CreativeWork
267 https://doi.org/10.2337/db16-1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084404971
268 rdf:type schema:CreativeWork
269 https://doi.org/10.2337/dc15-s005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018088379
270 rdf:type schema:CreativeWork
271 https://doi.org/10.2337/diab.46.11.1853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070738033
272 rdf:type schema:CreativeWork
273 https://doi.org/10.2337/diabetes.49.12.2170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043747622
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2337/diacare.28.5.1187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006005898
276 rdf:type schema:CreativeWork
277 https://doi.org/10.3389/fgene.2013.00094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044604833
278 rdf:type schema:CreativeWork
279 https://doi.org/10.3389/fimmu.2014.00043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044504036
280 rdf:type schema:CreativeWork
281 https://doi.org/10.3791/56326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092426654
282 rdf:type schema:CreativeWork
283 https://doi.org/10.3892/mmr.2014.3107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071522388
284 rdf:type schema:CreativeWork
285 https://doi.org/10.7150/ijms.15548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010719765
286 rdf:type schema:CreativeWork
287 https://www.grid.ac/institutes/grid.420421.1 schema:alternateName MultiMedica
288 schema:name Biostatistic Unit, IRCCS MultiMedica, Milan, Italy
289 Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.428490.3 schema:alternateName Institute of Molecular Bioimaging and Physiology
292 schema:name Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
295 schema:name University of Milan, Milan, Italy
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
298 schema:name Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
299 Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.7637.5 schema:alternateName University of Brescia
302 schema:name Department of Translational Biomedicine, University of Brescia, Brescia, Italy
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...