Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Lucia La Sala, Simona Mrakic-Sposta, Elena Tagliabue, Francesco Prattichizzo, Stefano Micheloni, Elena Sangalli, Claudia Specchia, Anna Chiara Uccellatore, Silvia Lupini, Gaia Spinetti, Paola de Candia, Antonio Ceriello

ABSTRACT

BACKGROUND: Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal). METHODS: To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n = 115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated. RESULTS: We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-naïve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used. CONCLUSIONS: our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes. More... »

PAGES

18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2

DOI

http://dx.doi.org/10.1186/s12933-019-0824-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112386039

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30803440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "La Sala", 
        "givenName": "Lucia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Molecular Bioimaging and Physiology", 
          "id": "https://www.grid.ac/institutes/grid.428490.3", 
          "name": [
            "Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mrakic-Sposta", 
        "givenName": "Simona", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Biostatistic Unit, IRCCS MultiMedica, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tagliabue", 
        "givenName": "Elena", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prattichizzo", 
        "givenName": "Francesco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Micheloni", 
        "givenName": "Stefano", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sangalli", 
        "givenName": "Elena", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Brescia", 
          "id": "https://www.grid.ac/institutes/grid.7637.5", 
          "name": [
            "Department of Translational Biomedicine, University of Brescia, Brescia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Specchia", 
        "givenName": "Claudia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "University of Milan, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uccellatore", 
        "givenName": "Anna Chiara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "University of Milan, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lupini", 
        "givenName": "Silvia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spinetti", 
        "givenName": "Gaia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MultiMedica", 
          "id": "https://www.grid.ac/institutes/grid.420421.1", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Candia", 
        "givenName": "Paola", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.5841.8", 
          "name": [
            "Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy", 
            "Institut d\u2019Investigacions Biom\u00e8diques August Pi i Sunyer (IDIBAPS) and Centro de Investigaci\u00f3n Biom\u00e9dica en Red de Diabetes y Enfermedades Metab\u00f3licas Asociadas (CIBERDEM), Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ceriello", 
        "givenName": "Antonio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2014/306179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004414442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.i6538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004994346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.28.5.1187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006005898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.300418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006653007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.300418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006653007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db11-1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008363834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cvr/cvp015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008945957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7150/ijms.15548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010719765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011297901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep31479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014593608", 
          "https://doi.org/10.1038/srep31479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2013.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/dom.12688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017949900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc15-s005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018088379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(16)30328-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021100658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2011.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021177145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023682432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028723946", 
          "https://doi.org/10.1038/nature07511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinthera.2005.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031207866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db08-0063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033267669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-016-0390-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033583427", 
          "https://doi.org/10.1186/s12933-016-0390-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.208066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037297000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.226357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.226357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038702492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.200500090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039038539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mnfr.200500090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039038539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-016-0837-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039198488", 
          "https://doi.org/10.1007/s00592-016-0837-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.49.12.2170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043747622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2014.00043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044504036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fgene.2013.00094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044604833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.223545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045876868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.110.223545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045876868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000366374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046207912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2362.1998.00295.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048025120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1480157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1480157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje.0.1480157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050225907", 
          "https://doi.org/10.1038/nature03076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050225907", 
          "https://doi.org/10.1038/nature03076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3003205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052534178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2014-2574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064295328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diab.46.11.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070738033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mmr.2014.3107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071522388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/mmr.2014.3107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071522388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/cd16-0067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083399967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4237-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018828", 
          "https://doi.org/10.1007/s00125-017-4237-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4237-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018828", 
          "https://doi.org/10.1007/s00125-017-4237-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-017-4237-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084018828", 
          "https://doi.org/10.1007/s00125-017-4237-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db16-1246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084404971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-017-0604-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091990360", 
          "https://doi.org/10.1186/s12933-017-0604-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-017-0604-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091990360", 
          "https://doi.org/10.1186/s12933-017-0604-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/56326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092426654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0188980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093164046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(18)30027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101243675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/6872635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103199994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-018-1149-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103836914", 
          "https://doi.org/10.1007/s00592-018-1149-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12933-018-0748-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105775693", 
          "https://doi.org/10.1186/s12933-018-0748-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmet.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109914476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1479164118816659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110565357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1479164118816659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110565357"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal).\nMETHODS: To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n\u2009=\u2009115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated.\nRESULTS: We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-na\u00efve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used.\nCONCLUSIONS: our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12933-019-0824-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031021", 
        "issn": [
          "1475-2840"
        ], 
        "name": "Cardiovascular Diabetology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-na\u00efve T2D", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d33fe2dc514e35d493ad1bdca14b9d5b1811e303cea36ceac2d9ccf65c4d2042"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30803440"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101147637"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12933-019-0824-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112386039"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12933-019-0824-2", 
      "https://app.dimensions.ai/details/publication/pub.1112386039"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78972_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12933-019-0824-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12933-019-0824-2'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12933-019-0824-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nc5fbffd5742e44a6aaf9da48dbf54db9
4 schema:citation sg:pub.10.1007/s00125-017-4237-z
5 sg:pub.10.1007/s00592-016-0837-1
6 sg:pub.10.1007/s00592-018-1149-4
7 sg:pub.10.1038/nature03076
8 sg:pub.10.1038/nature07511
9 sg:pub.10.1038/srep31479
10 sg:pub.10.1186/s12933-016-0390-9
11 sg:pub.10.1186/s12933-017-0604-9
12 sg:pub.10.1186/s12933-018-0748-2
13 https://doi.org/10.1002/mnfr.200500090
14 https://doi.org/10.1016/j.cell.2009.01.002
15 https://doi.org/10.1016/j.clinthera.2005.11.020
16 https://doi.org/10.1016/j.cmet.2006.01.005
17 https://doi.org/10.1016/j.freeradbiomed.2011.05.004
18 https://doi.org/10.1016/j.freeradbiomed.2013.06.009
19 https://doi.org/10.1016/j.molmet.2018.11.003
20 https://doi.org/10.1016/s2213-8587(16)30328-x
21 https://doi.org/10.1016/s2213-8587(18)30027-5
22 https://doi.org/10.1046/j.1365-2362.1998.00295.x
23 https://doi.org/10.1074/jbc.m110.208066
24 https://doi.org/10.1093/cvr/cvp015
25 https://doi.org/10.1111/dom.12688
26 https://doi.org/10.1126/science.1104343
27 https://doi.org/10.1126/scitranslmed.3003205
28 https://doi.org/10.1136/bmj.i6538
29 https://doi.org/10.1155/2014/306179
30 https://doi.org/10.1155/2018/6872635
31 https://doi.org/10.1159/000366374
32 https://doi.org/10.1161/circresaha.110.223545
33 https://doi.org/10.1161/circresaha.110.226357
34 https://doi.org/10.1161/circresaha.111.300418
35 https://doi.org/10.1177/1479164118816659
36 https://doi.org/10.1210/jc.2014-2574
37 https://doi.org/10.1371/journal.pone.0188980
38 https://doi.org/10.1530/eje.0.1480157
39 https://doi.org/10.2307/2531595
40 https://doi.org/10.2337/cd16-0067
41 https://doi.org/10.2337/db08-0063
42 https://doi.org/10.2337/db11-1086
43 https://doi.org/10.2337/db16-1246
44 https://doi.org/10.2337/dc15-s005
45 https://doi.org/10.2337/diab.46.11.1853
46 https://doi.org/10.2337/diabetes.49.12.2170
47 https://doi.org/10.2337/diacare.28.5.1187
48 https://doi.org/10.3389/fgene.2013.00094
49 https://doi.org/10.3389/fimmu.2014.00043
50 https://doi.org/10.3791/56326
51 https://doi.org/10.3892/mmr.2014.3107
52 https://doi.org/10.7150/ijms.15548
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description BACKGROUND: Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal). METHODS: To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n = 115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated. RESULTS: We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-naïve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used. CONCLUSIONS: our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N1b8abf6285a8421fb09694608f525de4
60 N94a02ad4678c408081b260b7223bd4b8
61 sg:journal.1031021
62 schema:name Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D
63 schema:pagination 18
64 schema:productId N07acc435d1a24a6d8daed4b7334f94b6
65 N0c2877f24f714f03bc125eabd725b5b0
66 N668df7511e92469aa12946f8f5b14e98
67 N9b0fed30f5134fda9db8f12253d074e0
68 Nd6c1d67ff9154fbb94606fc37544a8d9
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112386039
70 https://doi.org/10.1186/s12933-019-0824-2
71 schema:sdDatePublished 2019-04-11T13:21
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N3110197265d446d6b39a346492e11831
74 schema:url https://link.springer.com/10.1186%2Fs12933-019-0824-2
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N07acc435d1a24a6d8daed4b7334f94b6 schema:name pubmed_id
79 schema:value 30803440
80 rdf:type schema:PropertyValue
81 N0c2877f24f714f03bc125eabd725b5b0 schema:name dimensions_id
82 schema:value pub.1112386039
83 rdf:type schema:PropertyValue
84 N12525ad8591a4e0684e1e0c584407ee1 rdf:first N761a3dc3128548c099b905b72ec4107b
85 rdf:rest N5c327dabefc746a8b17a5d41eb0561d9
86 N146d3dcf3d6a4d72857c7aeeea5d6e39 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
87 schema:familyName Ceriello
88 schema:givenName Antonio
89 rdf:type schema:Person
90 N16ba9c18e3984f0b82b196cf3b84f767 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
91 schema:familyName Lupini
92 schema:givenName Silvia
93 rdf:type schema:Person
94 N1b8abf6285a8421fb09694608f525de4 schema:volumeNumber 18
95 rdf:type schema:PublicationVolume
96 N1cb843f2a8d5480493e7b1413a29f0b9 rdf:first N16ba9c18e3984f0b82b196cf3b84f767
97 rdf:rest N8fe17d5f6dd848439ff42a85e31f625f
98 N3110197265d446d6b39a346492e11831 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N4d4659b7e2d84f1d9889a3c8467a9554 rdf:first N99e3b6cb4dd7450abb4d918bee29bae2
101 rdf:rest N1cb843f2a8d5480493e7b1413a29f0b9
102 N5c327dabefc746a8b17a5d41eb0561d9 rdf:first Nae2342d296f34ea7bc9f0d44cb1e6658
103 rdf:rest N746a5aec5b5a4235acda1a5adf057acd
104 N5df8a2cba40941efb16cdb523abd599c schema:affiliation https://www.grid.ac/institutes/grid.428490.3
105 schema:familyName Mrakic-Sposta
106 schema:givenName Simona
107 rdf:type schema:Person
108 N668df7511e92469aa12946f8f5b14e98 schema:name readcube_id
109 schema:value d33fe2dc514e35d493ad1bdca14b9d5b1811e303cea36ceac2d9ccf65c4d2042
110 rdf:type schema:PropertyValue
111 N746a5aec5b5a4235acda1a5adf057acd rdf:first Nb567d28a947441198bdfe274e1af1098
112 rdf:rest Need779058be84aaabf50d5062c21be32
113 N761a3dc3128548c099b905b72ec4107b schema:affiliation https://www.grid.ac/institutes/grid.420421.1
114 schema:familyName Prattichizzo
115 schema:givenName Francesco
116 rdf:type schema:Person
117 N7e20b6a4bd494631aed0496daa354308 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
118 schema:familyName Spinetti
119 schema:givenName Gaia
120 rdf:type schema:Person
121 N8fe17d5f6dd848439ff42a85e31f625f rdf:first N7e20b6a4bd494631aed0496daa354308
122 rdf:rest Ne563e104ef104cdcb31e4453bbe0b2b2
123 N94a02ad4678c408081b260b7223bd4b8 schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 N99e3b6cb4dd7450abb4d918bee29bae2 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
126 schema:familyName Uccellatore
127 schema:givenName Anna Chiara
128 rdf:type schema:Person
129 N9b0fed30f5134fda9db8f12253d074e0 schema:name doi
130 schema:value 10.1186/s12933-019-0824-2
131 rdf:type schema:PropertyValue
132 Nae2342d296f34ea7bc9f0d44cb1e6658 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
133 schema:familyName Micheloni
134 schema:givenName Stefano
135 rdf:type schema:Person
136 Nb567d28a947441198bdfe274e1af1098 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
137 schema:familyName Sangalli
138 schema:givenName Elena
139 rdf:type schema:Person
140 Nb65f6ee1a8f9454b93f49c74ccda35c7 rdf:first N146d3dcf3d6a4d72857c7aeeea5d6e39
141 rdf:rest rdf:nil
142 Nc2d56664de184529b73f88037db765f0 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
143 schema:familyName Tagliabue
144 schema:givenName Elena
145 rdf:type schema:Person
146 Nc4f8e31b99ba45eabea58c3584ed0fa4 rdf:first Nc2d56664de184529b73f88037db765f0
147 rdf:rest N12525ad8591a4e0684e1e0c584407ee1
148 Nc5fbffd5742e44a6aaf9da48dbf54db9 rdf:first Ndbcd80fefbbf4b53b5c057ae8c39b43f
149 rdf:rest Nd44b3c0359cb4950a9c8e0a72b0fb81f
150 Nc7b43f0200204a89bf2fea9fd45a34a9 schema:affiliation https://www.grid.ac/institutes/grid.420421.1
151 schema:familyName de Candia
152 schema:givenName Paola
153 rdf:type schema:Person
154 Nd44b3c0359cb4950a9c8e0a72b0fb81f rdf:first N5df8a2cba40941efb16cdb523abd599c
155 rdf:rest Nc4f8e31b99ba45eabea58c3584ed0fa4
156 Nd6c1d67ff9154fbb94606fc37544a8d9 schema:name nlm_unique_id
157 schema:value 101147637
158 rdf:type schema:PropertyValue
159 Ndbcd80fefbbf4b53b5c057ae8c39b43f schema:affiliation https://www.grid.ac/institutes/grid.420421.1
160 schema:familyName La Sala
161 schema:givenName Lucia
162 rdf:type schema:Person
163 Ne563e104ef104cdcb31e4453bbe0b2b2 rdf:first Nc7b43f0200204a89bf2fea9fd45a34a9
164 rdf:rest Nb65f6ee1a8f9454b93f49c74ccda35c7
165 Need779058be84aaabf50d5062c21be32 rdf:first Nf4bd5309220c4c5dbb373a23fd1e6a5f
166 rdf:rest N4d4659b7e2d84f1d9889a3c8467a9554
167 Nf4bd5309220c4c5dbb373a23fd1e6a5f schema:affiliation https://www.grid.ac/institutes/grid.7637.5
168 schema:familyName Specchia
169 schema:givenName Claudia
170 rdf:type schema:Person
171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
172 schema:name Medical and Health Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
175 schema:name Clinical Sciences
176 rdf:type schema:DefinedTerm
177 sg:journal.1031021 schema:issn 1475-2840
178 schema:name Cardiovascular Diabetology
179 rdf:type schema:Periodical
180 sg:pub.10.1007/s00125-017-4237-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084018828
181 https://doi.org/10.1007/s00125-017-4237-z
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00592-016-0837-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039198488
184 https://doi.org/10.1007/s00592-016-0837-1
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00592-018-1149-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103836914
187 https://doi.org/10.1007/s00592-018-1149-4
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature03076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050225907
190 https://doi.org/10.1038/nature03076
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nature07511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028723946
193 https://doi.org/10.1038/nature07511
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/srep31479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014593608
196 https://doi.org/10.1038/srep31479
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/s12933-016-0390-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033583427
199 https://doi.org/10.1186/s12933-016-0390-9
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/s12933-017-0604-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091990360
202 https://doi.org/10.1186/s12933-017-0604-9
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/s12933-018-0748-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105775693
205 https://doi.org/10.1186/s12933-018-0748-2
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1002/mnfr.200500090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039038539
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.cell.2009.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023682432
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.clinthera.2005.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031207866
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.cmet.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052534178
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.freeradbiomed.2011.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021177145
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.freeradbiomed.2013.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445433
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.molmet.2018.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109914476
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s2213-8587(16)30328-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021100658
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s2213-8587(18)30027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101243675
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1046/j.1365-2362.1998.00295.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048025120
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1074/jbc.m110.208066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037297000
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/cvr/cvp015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008945957
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/dom.12688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017949900
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.1104343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011297901
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/scitranslmed.3003205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341351
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1136/bmj.i6538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004994346
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1155/2014/306179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004414442
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1155/2018/6872635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103199994
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1159/000366374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046207912
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1161/circresaha.110.223545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045876868
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1161/circresaha.110.226357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702492
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1161/circresaha.111.300418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006653007
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1177/1479164118816659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110565357
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1210/jc.2014-2574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064295328
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pone.0188980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093164046
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1530/eje.0.1480157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048067533
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2337/cd16-0067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083399967
262 rdf:type schema:CreativeWork
263 https://doi.org/10.2337/db08-0063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033267669
264 rdf:type schema:CreativeWork
265 https://doi.org/10.2337/db11-1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008363834
266 rdf:type schema:CreativeWork
267 https://doi.org/10.2337/db16-1246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084404971
268 rdf:type schema:CreativeWork
269 https://doi.org/10.2337/dc15-s005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018088379
270 rdf:type schema:CreativeWork
271 https://doi.org/10.2337/diab.46.11.1853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070738033
272 rdf:type schema:CreativeWork
273 https://doi.org/10.2337/diabetes.49.12.2170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043747622
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2337/diacare.28.5.1187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006005898
276 rdf:type schema:CreativeWork
277 https://doi.org/10.3389/fgene.2013.00094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044604833
278 rdf:type schema:CreativeWork
279 https://doi.org/10.3389/fimmu.2014.00043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044504036
280 rdf:type schema:CreativeWork
281 https://doi.org/10.3791/56326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092426654
282 rdf:type schema:CreativeWork
283 https://doi.org/10.3892/mmr.2014.3107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071522388
284 rdf:type schema:CreativeWork
285 https://doi.org/10.7150/ijms.15548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010719765
286 rdf:type schema:CreativeWork
287 https://www.grid.ac/institutes/grid.420421.1 schema:alternateName MultiMedica
288 schema:name Biostatistic Unit, IRCCS MultiMedica, Milan, Italy
289 Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.428490.3 schema:alternateName Institute of Molecular Bioimaging and Physiology
292 schema:name Institute of Molecular Bioimaging and Physiology, National Research Council, Segrate, Italy
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
295 schema:name University of Milan, Milan, Italy
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
298 schema:name Department of Cardiovascular and Dysmetabolic Diseases, IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
299 Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.7637.5 schema:alternateName University of Brescia
302 schema:name Department of Translational Biomedicine, University of Brescia, Brescia, Italy
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...