Implications of altered NAD metabolism in metabolic disorders View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-05-11

AUTHORS

Keisuke Okabe, Keisuke Yaku, Kazuyuki Tobe, Takashi Nakagawa

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that participates in various energy metabolism pathways, including glycolysis, β-oxidation, and oxidative phosphorylation. Besides, it is a required cofactor for post-translational modifications such as ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response through these enzymes. Numerous studies have shown that NAD levels decrease with aging and under disturbed nutrient conditions, such as obesity. Additionally, a decline in NAD levels is closely related to the development of various metabolic disorders, including diabetes and fatty liver disease. In addition, many studies have revealed that administration of NAD precursors, such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), efficiently increase NAD levels in various tissues and prevent such metabolic diseases. These NAD precursors are contained in natural foods, such as cow milk, vegetables, and meats. Therefore, altered NAD metabolism can be a practical target for nutritional intervention. Recently, several human clinical trials using NAD precursors have been conducted to investigate the safety, pharmacokinetics, and efficacy against metabolic disorders such as glucose intolerance. In this review, we summarize current knowledge on the implications of NAD metabolism in metabolic diseases and discuss the outcomes of recent human clinical trials. More... »

PAGES

34

References to SciGraph publications

  • 2017-11-24. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study in NPJ AGING AND MECHANISMS OF DISEASE
  • 2018-11-26. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation in NATURE IMMUNOLOGY
  • 2018-02-26. The Global Epidemic of the Metabolic Syndrome in CURRENT HYPERTENSION REPORTS
  • 2016-10-11. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells in NATURE COMMUNICATIONS
  • 2013-12-29. Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice in DIABETOLOGIA
  • 2013-09-29. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide in NATURE CHEMICAL BIOLOGY
  • 2010-03. SIRT3 regulates fatty acid oxidation via reversible enzyme deacetylation in NATURE
  • 2011-09-08. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function in DIABETOLOGIA
  • 2016-10-27. The first human clinical study for NMN has started in Japan in NPJ AGING AND MECHANISMS OF DISEASE
  • 2019-01-07. Slc12a8 is a nicotinamide mononucleotide transporter in NATURE METABOLISM
  • 2003-02-03. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect in NATURE MEDICINE
  • 2016-05-27. Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice in SCIENTIFIC REPORTS
  • 2019-02-06. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study in EUROPEAN JOURNAL OF NUTRITION
  • 2018-03-29. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults in NATURE COMMUNICATIONS
  • 2017-04-27. Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway in LIPIDS IN HEALTH AND DISEASE
  • 2016-10-10. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12929-019-0527-8

    DOI

    http://dx.doi.org/10.1186/s12929-019-0527-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1114107466

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31078136


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolic Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "NAD", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan", 
              "id": "http://www.grid.ac/institutes/grid.267346.2", 
              "name": [
                "Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan", 
                "First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okabe", 
            "givenName": "Keisuke", 
            "id": "sg:person.01262122516.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262122516.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan", 
              "id": "http://www.grid.ac/institutes/grid.267346.2", 
              "name": [
                "Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yaku", 
            "givenName": "Keisuke", 
            "id": "sg:person.01235035024.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235035024.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan", 
              "id": "http://www.grid.ac/institutes/grid.267346.2", 
              "name": [
                "First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tobe", 
            "givenName": "Kazuyuki", 
            "id": "sg:person.01100423277.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100423277.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Natural Medicine, University of Toyama, Toyama, 930-0194 Japan", 
              "id": "http://www.grid.ac/institutes/grid.267346.2", 
              "name": [
                "Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan", 
                "Institute of Natural Medicine, University of Toyama, Toyama, 930-0194 Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakagawa", 
            "givenName": "Takashi", 
            "id": "sg:person.01067673130.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067673130.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41514-017-0016-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092832037", 
              "https://doi.org/10.1038/s41514-017-0016-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-011-2288-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029128527", 
              "https://doi.org/10.1007/s00125-011-2288-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032028240", 
              "https://doi.org/10.1038/nature08778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42255-018-0009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110537250", 
              "https://doi.org/10.1038/s42255-018-0009-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031045880", 
              "https://doi.org/10.1038/ncomms13103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010643384", 
              "https://doi.org/10.1038/ncomms12948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018678803", 
              "https://doi.org/10.1038/nm824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep26933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037674507", 
              "https://doi.org/10.1038/srep26933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020308578", 
              "https://doi.org/10.1038/nchembio.1352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjamd.2016.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036543817", 
              "https://doi.org/10.1038/npjamd.2016.21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12944-017-0464-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084955788", 
              "https://doi.org/10.1186/s12944-017-0464-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41590-018-0255-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110065980", 
              "https://doi.org/10.1038/s41590-018-0255-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03421-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101833593", 
              "https://doi.org/10.1038/s41467-018-03421-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11906-018-0812-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101222216", 
              "https://doi.org/10.1007/s11906-018-0812-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00394-019-01919-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111933432", 
              "https://doi.org/10.1007/s00394-019-01919-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00125-013-3140-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047296902", 
              "https://doi.org/10.1007/s00125-013-3140-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05-11", 
        "datePublishedReg": "2019-05-11", 
        "description": "Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that participates in various energy metabolism pathways, including glycolysis, \u03b2-oxidation, and oxidative phosphorylation. Besides, it is a required cofactor for post-translational modifications such as ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response through these enzymes. Numerous studies have shown that NAD levels decrease with aging and under disturbed nutrient conditions, such as obesity. Additionally, a decline in NAD levels is closely related to the development of various metabolic disorders, including diabetes and fatty liver disease. In addition, many studies have revealed that administration of NAD precursors, such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), efficiently increase NAD levels in various tissues and prevent such metabolic diseases. These NAD precursors are contained in natural foods, such as cow milk, vegetables, and meats. Therefore, altered NAD metabolism can be a practical target for nutritional intervention. Recently, several human clinical trials using NAD precursors have been conducted to investigate the safety, pharmacokinetics, and efficacy against metabolic disorders such as glucose intolerance. In this review, we summarize current knowledge on the implications of NAD metabolism in metabolic diseases and discuss the outcomes of recent human clinical trials.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12929-019-0527-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7544751", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6834201", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7543023", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1105665", 
            "issn": [
              "1021-7770", 
              "1423-0127"
            ], 
            "name": "Journal of Biomedical Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "human clinical trials", 
          "metabolic disorders", 
          "NAD levels", 
          "clinical trials", 
          "NAD precursors", 
          "nicotinamide adenine dinucleotide", 
          "metabolic diseases", 
          "recent human clinical trials", 
          "NAD metabolism", 
          "fatty liver disease", 
          "such metabolic diseases", 
          "nicotinamide riboside", 
          "poly (ADP-ribose) polymerase", 
          "nicotinamide mononucleotide", 
          "glucose intolerance", 
          "liver disease", 
          "nutritional intervention", 
          "disease", 
          "disorders", 
          "energy metabolism pathways", 
          "cow's milk", 
          "energy metabolism", 
          "metabolism", 
          "trials", 
          "DNA damage repair", 
          "ADP-ribosylation", 
          "current knowledge", 
          "metabolism pathways", 
          "numerous studies", 
          "adenine dinucleotide", 
          "gene expression", 
          "damage repair", 
          "oxidative phosphorylation", 
          "obesity", 
          "diabetes", 
          "natural food", 
          "pharmacokinetics", 
          "levels", 
          "important coenzyme", 
          "intolerance", 
          "stress response", 
          "administration", 
          "efficacy", 
          "intervention", 
          "post-translational modifications", 
          "outcomes", 
          "study", 
          "tissue", 
          "sirtuins", 
          "repair", 
          "safety", 
          "glycolysis", 
          "review", 
          "milk", 
          "expression", 
          "practical target", 
          "pathway", 
          "vegetables", 
          "phosphorylation", 
          "response", 
          "food", 
          "aging", 
          "target", 
          "decline", 
          "meat", 
          "coenzyme", 
          "deacetylation", 
          "dinucleotide", 
          "implications", 
          "enzyme", 
          "precursors", 
          "riboside", 
          "addition", 
          "cofactor", 
          "development", 
          "knowledge", 
          "polymerase", 
          "modification", 
          "conditions", 
          "mononucleotide", 
          "oxidation", 
          "nutrient conditions", 
          "altered NAD metabolism"
        ], 
        "name": "Implications of altered NAD metabolism in metabolic disorders", 
        "pagination": "34", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1114107466"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12929-019-0527-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31078136"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12929-019-0527-8", 
          "https://app.dimensions.ai/details/publication/pub.1114107466"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_801.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12929-019-0527-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12929-019-0527-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12929-019-0527-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12929-019-0527-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12929-019-0527-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      22 PREDICATES      131 URIs      105 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12929-019-0527-8 schema:about N047eefd424754600a020d795301a7bb6
    2 N3f5ebec1370348f9bc09484fec0c45bb
    3 N8ed6d2422ca0418c9fe30eef773bc0ba
    4 Nbdfa406fac6c46af9360f71c4dcdde7a
    5 anzsrc-for:06
    6 anzsrc-for:0601
    7 anzsrc-for:11
    8 anzsrc-for:1103
    9 schema:author Nbeab9b4aada64c1883c3f06ddc9fb981
    10 schema:citation sg:pub.10.1007/s00125-011-2288-0
    11 sg:pub.10.1007/s00125-013-3140-5
    12 sg:pub.10.1007/s00394-019-01919-4
    13 sg:pub.10.1007/s11906-018-0812-z
    14 sg:pub.10.1038/nature08778
    15 sg:pub.10.1038/nchembio.1352
    16 sg:pub.10.1038/ncomms12948
    17 sg:pub.10.1038/ncomms13103
    18 sg:pub.10.1038/nm824
    19 sg:pub.10.1038/npjamd.2016.21
    20 sg:pub.10.1038/s41467-018-03421-7
    21 sg:pub.10.1038/s41514-017-0016-9
    22 sg:pub.10.1038/s41590-018-0255-3
    23 sg:pub.10.1038/s42255-018-0009-4
    24 sg:pub.10.1038/srep26933
    25 sg:pub.10.1186/s12944-017-0464-z
    26 schema:datePublished 2019-05-11
    27 schema:datePublishedReg 2019-05-11
    28 schema:description Nicotinamide adenine dinucleotide (NAD) is an important coenzyme that participates in various energy metabolism pathways, including glycolysis, β-oxidation, and oxidative phosphorylation. Besides, it is a required cofactor for post-translational modifications such as ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerases (PARPs) and sirtuins, respectively. Thus, NAD regulates energy metabolism, DNA damage repair, gene expression, and stress response through these enzymes. Numerous studies have shown that NAD levels decrease with aging and under disturbed nutrient conditions, such as obesity. Additionally, a decline in NAD levels is closely related to the development of various metabolic disorders, including diabetes and fatty liver disease. In addition, many studies have revealed that administration of NAD precursors, such as nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), efficiently increase NAD levels in various tissues and prevent such metabolic diseases. These NAD precursors are contained in natural foods, such as cow milk, vegetables, and meats. Therefore, altered NAD metabolism can be a practical target for nutritional intervention. Recently, several human clinical trials using NAD precursors have been conducted to investigate the safety, pharmacokinetics, and efficacy against metabolic disorders such as glucose intolerance. In this review, we summarize current knowledge on the implications of NAD metabolism in metabolic diseases and discuss the outcomes of recent human clinical trials.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf Na1a8be9ae0ed4eea91f9ff6b8c117924
    33 Nc1459ffec7f347f0b7672113b9adc51d
    34 sg:journal.1105665
    35 schema:keywords ADP-ribosylation
    36 DNA damage repair
    37 NAD levels
    38 NAD metabolism
    39 NAD precursors
    40 addition
    41 adenine dinucleotide
    42 administration
    43 aging
    44 altered NAD metabolism
    45 clinical trials
    46 coenzyme
    47 cofactor
    48 conditions
    49 cow's milk
    50 current knowledge
    51 damage repair
    52 deacetylation
    53 decline
    54 development
    55 diabetes
    56 dinucleotide
    57 disease
    58 disorders
    59 efficacy
    60 energy metabolism
    61 energy metabolism pathways
    62 enzyme
    63 expression
    64 fatty liver disease
    65 food
    66 gene expression
    67 glucose intolerance
    68 glycolysis
    69 human clinical trials
    70 implications
    71 important coenzyme
    72 intervention
    73 intolerance
    74 knowledge
    75 levels
    76 liver disease
    77 meat
    78 metabolic diseases
    79 metabolic disorders
    80 metabolism
    81 metabolism pathways
    82 milk
    83 modification
    84 mononucleotide
    85 natural food
    86 nicotinamide adenine dinucleotide
    87 nicotinamide mononucleotide
    88 nicotinamide riboside
    89 numerous studies
    90 nutrient conditions
    91 nutritional intervention
    92 obesity
    93 outcomes
    94 oxidation
    95 oxidative phosphorylation
    96 pathway
    97 pharmacokinetics
    98 phosphorylation
    99 poly (ADP-ribose) polymerase
    100 polymerase
    101 post-translational modifications
    102 practical target
    103 precursors
    104 recent human clinical trials
    105 repair
    106 response
    107 review
    108 riboside
    109 safety
    110 sirtuins
    111 stress response
    112 study
    113 such metabolic diseases
    114 target
    115 tissue
    116 trials
    117 vegetables
    118 schema:name Implications of altered NAD metabolism in metabolic disorders
    119 schema:pagination 34
    120 schema:productId N2d265460fc594f1d8a9d127a2c4b87e4
    121 N590f4b997e374ccf891373b4e02f26cd
    122 Nf74b40030c1643cea5e15b2589db9201
    123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114107466
    124 https://doi.org/10.1186/s12929-019-0527-8
    125 schema:sdDatePublished 2022-01-01T18:51
    126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    127 schema:sdPublisher Nc873903e14144e378ebf79d1d67c3188
    128 schema:url https://doi.org/10.1186/s12929-019-0527-8
    129 sgo:license sg:explorer/license/
    130 sgo:sdDataset articles
    131 rdf:type schema:ScholarlyArticle
    132 N047eefd424754600a020d795301a7bb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Diet
    134 rdf:type schema:DefinedTerm
    135 N2d265460fc594f1d8a9d127a2c4b87e4 schema:name doi
    136 schema:value 10.1186/s12929-019-0527-8
    137 rdf:type schema:PropertyValue
    138 N3f5ebec1370348f9bc09484fec0c45bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Humans
    140 rdf:type schema:DefinedTerm
    141 N590f4b997e374ccf891373b4e02f26cd schema:name dimensions_id
    142 schema:value pub.1114107466
    143 rdf:type schema:PropertyValue
    144 N62e804005fe141f793e102ee5ec8abdf rdf:first sg:person.01100423277.59
    145 rdf:rest N80a37dc560cf4a6ea4a1bd05ce3478be
    146 N80a37dc560cf4a6ea4a1bd05ce3478be rdf:first sg:person.01067673130.15
    147 rdf:rest rdf:nil
    148 N8ed6d2422ca0418c9fe30eef773bc0ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Metabolic Diseases
    150 rdf:type schema:DefinedTerm
    151 Na1a8be9ae0ed4eea91f9ff6b8c117924 schema:volumeNumber 26
    152 rdf:type schema:PublicationVolume
    153 Nbdfa406fac6c46af9360f71c4dcdde7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name NAD
    155 rdf:type schema:DefinedTerm
    156 Nbeab9b4aada64c1883c3f06ddc9fb981 rdf:first sg:person.01262122516.01
    157 rdf:rest Nd9c484fc1b1746fe921785ce96766528
    158 Nc1459ffec7f347f0b7672113b9adc51d schema:issueNumber 1
    159 rdf:type schema:PublicationIssue
    160 Nc873903e14144e378ebf79d1d67c3188 schema:name Springer Nature - SN SciGraph project
    161 rdf:type schema:Organization
    162 Nd9c484fc1b1746fe921785ce96766528 rdf:first sg:person.01235035024.78
    163 rdf:rest N62e804005fe141f793e102ee5ec8abdf
    164 Nf74b40030c1643cea5e15b2589db9201 schema:name pubmed_id
    165 schema:value 31078136
    166 rdf:type schema:PropertyValue
    167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Biological Sciences
    169 rdf:type schema:DefinedTerm
    170 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    171 schema:name Biochemistry and Cell Biology
    172 rdf:type schema:DefinedTerm
    173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Medical and Health Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Clinical Sciences
    178 rdf:type schema:DefinedTerm
    179 sg:grant.6834201 http://pending.schema.org/fundedItem sg:pub.10.1186/s12929-019-0527-8
    180 rdf:type schema:MonetaryGrant
    181 sg:grant.7543023 http://pending.schema.org/fundedItem sg:pub.10.1186/s12929-019-0527-8
    182 rdf:type schema:MonetaryGrant
    183 sg:grant.7544751 http://pending.schema.org/fundedItem sg:pub.10.1186/s12929-019-0527-8
    184 rdf:type schema:MonetaryGrant
    185 sg:journal.1105665 schema:issn 1021-7770
    186 1423-0127
    187 schema:name Journal of Biomedical Science
    188 schema:publisher Springer Nature
    189 rdf:type schema:Periodical
    190 sg:person.01067673130.15 schema:affiliation grid-institutes:grid.267346.2
    191 schema:familyName Nakagawa
    192 schema:givenName Takashi
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067673130.15
    194 rdf:type schema:Person
    195 sg:person.01100423277.59 schema:affiliation grid-institutes:grid.267346.2
    196 schema:familyName Tobe
    197 schema:givenName Kazuyuki
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100423277.59
    199 rdf:type schema:Person
    200 sg:person.01235035024.78 schema:affiliation grid-institutes:grid.267346.2
    201 schema:familyName Yaku
    202 schema:givenName Keisuke
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235035024.78
    204 rdf:type schema:Person
    205 sg:person.01262122516.01 schema:affiliation grid-institutes:grid.267346.2
    206 schema:familyName Okabe
    207 schema:givenName Keisuke
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262122516.01
    209 rdf:type schema:Person
    210 sg:pub.10.1007/s00125-011-2288-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029128527
    211 https://doi.org/10.1007/s00125-011-2288-0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00125-013-3140-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047296902
    214 https://doi.org/10.1007/s00125-013-3140-5
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00394-019-01919-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111933432
    217 https://doi.org/10.1007/s00394-019-01919-4
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s11906-018-0812-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1101222216
    220 https://doi.org/10.1007/s11906-018-0812-z
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature08778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032028240
    223 https://doi.org/10.1038/nature08778
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nchembio.1352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020308578
    226 https://doi.org/10.1038/nchembio.1352
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/ncomms12948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010643384
    229 https://doi.org/10.1038/ncomms12948
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/ncomms13103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031045880
    232 https://doi.org/10.1038/ncomms13103
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nm824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018678803
    235 https://doi.org/10.1038/nm824
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/npjamd.2016.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036543817
    238 https://doi.org/10.1038/npjamd.2016.21
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/s41467-018-03421-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101833593
    241 https://doi.org/10.1038/s41467-018-03421-7
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/s41514-017-0016-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092832037
    244 https://doi.org/10.1038/s41514-017-0016-9
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/s41590-018-0255-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065980
    247 https://doi.org/10.1038/s41590-018-0255-3
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/s42255-018-0009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110537250
    250 https://doi.org/10.1038/s42255-018-0009-4
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/srep26933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037674507
    253 https://doi.org/10.1038/srep26933
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/s12944-017-0464-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084955788
    256 https://doi.org/10.1186/s12944-017-0464-z
    257 rdf:type schema:CreativeWork
    258 grid-institutes:grid.267346.2 schema:alternateName Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
    259 First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan
    260 Institute of Natural Medicine, University of Toyama, Toyama, 930-0194 Japan
    261 schema:name Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
    262 First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194 Japan
    263 Institute of Natural Medicine, University of Toyama, Toyama, 930-0194 Japan
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...