Identifying the role of transient receptor potential channels (TRPs) in kidney renal clear cell carcinoma and their potential therapeutic significances ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-13

AUTHORS

Jie Ren, Qihang Yuan, Jifeng Liu, Lei Zhong, Hanshuo Li, Guangzhen Wu, Feng Chen, Qizhen Tang

ABSTRACT

Kidney renal clear cell carcinoma (KIRC) is among the major causes of cancer-caused mortality around the world. Transient receptor potential channels (TRPs), due to their role in various human diseases, might become potential drug targets in cancer. The mRNA expression, copy number variation, single-nucleotide variation, prognostic values, drug sensitivity, and pathway regulation of TRPs were studied across cancer types. The ArrayExpress and The Cancer Genome Atlas (TCGA) databases were used to retrieve KIRC samples. Simultaneously, training, internal, and external cohorts were grouped. In KIRC, a prognostic signature with superior survival prediction in contrast with other well-established signatures was created after a stepwise screening of optimized genes linked to TRPs using univariate Cox, weighted gene co-expression network analysis, multivariate Cox, and least absolute shrinkage and selection operator regression analyses. Subsequent to the determination of risk levels, the variations in the expression of immune checkpoint genes, tumor mutation burden, and immune subtypes and response between low-risk and high-risk subgroups were studied using a variety of bioinformatics algorithms, including ESTIMATE, XCELL, EPIC, CIBERSORT-ABS, CIBERSORT, MCPCOUNTER, TIMER, and QUANTISEQ. Gene set enrichment analysis helped in the identification of abnormal pathways across the low- and high-risk subgroups. Besides, high-risk KIRC patients might benefit from ABT888, AZD6244, AZD7762, Bosutinib, Camptothecin, CI1040, JNK inhibitor VIII, KU55933, Lenalidomide, Nilotinib, PLX4720, RO3306, Vinblastine, and ZM.447439; however, low-risk populations might benefit from Bicalutamide, FH535, and OSI906. Finally, calibration curves were used to validate the nomogram with a satisfactory predictive survival probability. In conclusion, this research provides useful insight that can aid and guide clinical practice and scientific research. More... »

PAGES

156

References to SciGraph publications

  • 2019-06-24. Targeting Translation of mRNA as a Therapeutic Strategy in Cancer in CURRENT HEMATOLOGIC MALIGNANCY REPORTS
  • 2021-09-15. Advances in TRP channel drug discovery: from target validation to clinical studies in NATURE REVIEWS DRUG DISCOVERY
  • 2016-12-14. Selection of epitopes from self-antigens for eliciting Th2 or Th1 activity in the treatment of autoimmune disease or cancer in SEMINARS IN IMMUNOPATHOLOGY
  • 2018-06-11. Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans in BMC GENOMICS
  • 2021-06-25. The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus in SCIENTIFIC REPORTS
  • 2019-04-16. Overexpression of HHLA2 in human clear cell renal cell carcinoma is significantly associated with poor survival of the patients in CANCER CELL INTERNATIONAL
  • 2008-02-13. Sequence analysis of 21 genes located in the Kartagener syndrome linkage region on chromosome 15q in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2012-07-22. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1 in NATURE MEDICINE
  • 2009-01. Transient receptor potential channels: targeting pain at the source in NATURE REVIEWS DRUG DISCOVERY
  • 2016-02-15. Loss of DAB2IP in RCC cells enhances their growth and resistance to mTOR-targeted therapies in ONCOGENE
  • 2017-04-06. Deregulated AJAP1/β-catenin/ZEB1 signaling promotes hepatocellular carcinoma carcinogenesis and metastasis in CELL DEATH & DISEASE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12920-022-01312-x

    DOI

    http://dx.doi.org/10.1186/s12920-022-01312-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149435542

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35831825


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Renal Cell", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Copy Number Variations", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kidney Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transient Receptor Potential Channels", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ren", 
            "givenName": "Jie", 
            "id": "sg:person.015253370345.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253370345.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yuan", 
            "givenName": "Qihang", 
            "id": "sg:person.011444474417.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444474417.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Jifeng", 
            "id": "sg:person.016156642114.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016156642114.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhong", 
            "givenName": "Lei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Hanshuo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Guangzhen", 
            "id": "sg:person.014727564747.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727564747.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Feng", 
            "id": "sg:person.01311002165.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311002165.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China", 
              "id": "http://www.grid.ac/institutes/grid.452435.1", 
              "name": [
                "Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Qizhen", 
            "id": "sg:person.0663477741.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663477741.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41573-021-00268-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141113456", 
              "https://doi.org/10.1038/s41573-021-00268-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2016.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029671926", 
              "https://doi.org/10.1038/onc.2016.4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00281-016-0596-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052661052", 
              "https://doi.org/10.1007/s00281-016-0596-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12935-019-0813-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113483248", 
              "https://doi.org/10.1186/s12935-019-0813-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-018-4827-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104510054", 
              "https://doi.org/10.1186/s12864-018-4827-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd2757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034172429", 
              "https://doi.org/10.1038/nrd2757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2017.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084537504", 
              "https://doi.org/10.1038/cddis.2017.126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11899-019-00530-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117476577", 
              "https://doi.org/10.1007/s11899-019-00530-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023224788", 
              "https://doi.org/10.1038/nm.2827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-92495-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139147276", 
              "https://doi.org/10.1038/s41598-021-92495-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2008.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001542855", 
              "https://doi.org/10.1038/ejhg.2008.5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-13", 
        "datePublishedReg": "2022-07-13", 
        "description": "Kidney renal clear cell carcinoma (KIRC) is among the major causes of cancer-caused mortality around the world. Transient receptor potential channels (TRPs), due to their role in various human diseases, might become potential drug targets in cancer. The mRNA expression, copy number variation, single-nucleotide variation, prognostic values, drug sensitivity, and pathway regulation of TRPs were studied across cancer types. The ArrayExpress and The Cancer Genome Atlas (TCGA) databases were used to retrieve KIRC samples. Simultaneously, training, internal, and external cohorts were grouped. In KIRC, a prognostic signature with superior survival prediction in contrast with other well-established signatures was created after a stepwise screening of optimized genes linked to TRPs using univariate Cox, weighted gene co-expression network analysis, multivariate Cox, and least absolute shrinkage and selection operator regression analyses. Subsequent to the determination of risk levels, the variations in the expression of immune checkpoint genes, tumor mutation burden, and immune subtypes and response between low-risk and high-risk subgroups were studied using a variety of bioinformatics algorithms, including ESTIMATE, XCELL, EPIC, CIBERSORT-ABS, CIBERSORT, MCPCOUNTER, TIMER, and QUANTISEQ. Gene set enrichment analysis helped in the identification of abnormal pathways across the low- and high-risk subgroups. Besides, high-risk KIRC patients might benefit from ABT888, AZD6244, AZD7762, Bosutinib, Camptothecin, CI1040, JNK inhibitor VIII, KU55933, Lenalidomide, Nilotinib, PLX4720, RO3306, Vinblastine, and ZM.447439; however, low-risk populations might benefit from Bicalutamide, FH535, and OSI906. Finally, calibration curves were used to validate the nomogram with a satisfactory predictive survival probability. In conclusion, this research provides useful insight that can aid and guide clinical practice and scientific research.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12920-022-01312-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1039191", 
            "issn": [
              "1755-8794"
            ], 
            "name": "BMC Medical Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "transient receptor potential channels", 
          "kidney renal clear cell carcinoma", 
          "gene co-expression network analysis", 
          "co-expression network analysis", 
          "renal clear cell carcinoma", 
          "high-risk subgroups", 
          "single nucleotide variations", 
          "clear cell carcinoma", 
          "potential drug targets", 
          "transcriptome analysis", 
          "Cancer Genome Atlas (TCGA) database", 
          "pathway regulation", 
          "enrichment analysis", 
          "potential channels", 
          "checkpoint genes", 
          "cell carcinoma", 
          "bioinformatics algorithms", 
          "human diseases", 
          "drug targets", 
          "inhibitor VIII", 
          "number variations", 
          "genes", 
          "Atlas database", 
          "tumor mutation burden", 
          "low-risk population", 
          "selection operator (LASSO) regression analysis", 
          "immune checkpoint genes", 
          "cancer-caused mortality", 
          "KIRC patients", 
          "potential therapeutic significance", 
          "cancer types", 
          "network analysis", 
          "prognostic value", 
          "multivariate Cox", 
          "immune subtypes", 
          "drug sensitivity", 
          "abnormal pathways", 
          "external cohort", 
          "mutation burden", 
          "KIRC samples", 
          "univariate Cox", 
          "prognostic signature", 
          "clinical practice", 
          "expression", 
          "mRNA expression", 
          "therapeutic significance", 
          "survival prediction", 
          "major cause", 
          "RO3306", 
          "least absolute shrinkage", 
          "KU55933", 
          "regression analysis", 
          "carcinoma", 
          "ArrayExpress", 
          "CI1040", 
          "stepwise screening", 
          "AZD6244", 
          "absolute shrinkage", 
          "PLX4720", 
          "regulation", 
          "pathway", 
          "FH535", 
          "AZD7762", 
          "subgroups", 
          "role", 
          "camptothecin", 
          "variation", 
          "signatures", 
          "quanTIseq", 
          "survival probability", 
          "MCPcounter", 
          "lenalidomide", 
          "Cox", 
          "CIBERSORT", 
          "patients", 
          "nilotinib", 
          "bosutinib", 
          "cohort", 
          "bicalutamide", 
          "mortality", 
          "cancer", 
          "xCell", 
          "subtypes", 
          "target", 
          "disease", 
          "nomogram", 
          "identification", 
          "vinblastine", 
          "insights", 
          "analysis", 
          "risk level", 
          "burden", 
          "population", 
          "cause", 
          "screening", 
          "conclusion", 
          "contrast", 
          "response", 
          "variety", 
          "VIII", 
          "useful insights", 
          "channels", 
          "levels", 
          "database", 
          "significance", 
          "sensitivity", 
          "training", 
          "types", 
          "timer", 
          "practice", 
          "samples", 
          "research", 
          "calibration curve", 
          "ZM", 
          "curves", 
          "prediction", 
          "determination", 
          "world", 
          "scientific research", 
          "values", 
          "shrinkage", 
          "estimates", 
          "probability", 
          "epic", 
          "algorithm"
        ], 
        "name": "Identifying the role of transient receptor potential channels (TRPs) in kidney renal clear cell carcinoma and their potential therapeutic significances using genomic and transcriptome analyses", 
        "pagination": "156", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149435542"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12920-022-01312-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35831825"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12920-022-01312-x", 
          "https://app.dimensions.ai/details/publication/pub.1149435542"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_944.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12920-022-01312-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01312-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01312-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01312-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01312-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    324 TRIPLES      21 PREDICATES      172 URIs      153 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12920-022-01312-x schema:about N079391d979c84b6185e525eb57a5ddde
    2 N340c51586e6245eda2c884a9232667e0
    3 N3dbc9ea9bdb941be90a0179721b9ae14
    4 N40e66750c2174db5a98a2a8c9dc107e9
    5 N50d1a8599df740c89eb19d80666421e4
    6 N6717183b27d448eeb3204bcb9058923d
    7 N6f9337d09dbe4402b1189920f7fe6c2e
    8 N9b1111f74b7246bca9f7d1535d679838
    9 Nc4e5399196094db4b2baab0228ed5aa0
    10 Nc814b4c723204f4ea2874cbb25d905c2
    11 Nd5772e0e4bf740318eda19106c7b17f4
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author Nd188c108d83b48c39d7f1c9ba830a216
    15 schema:citation sg:pub.10.1007/s00281-016-0596-7
    16 sg:pub.10.1007/s11899-019-00530-y
    17 sg:pub.10.1038/cddis.2017.126
    18 sg:pub.10.1038/ejhg.2008.5
    19 sg:pub.10.1038/nm.2827
    20 sg:pub.10.1038/nrd2757
    21 sg:pub.10.1038/onc.2016.4
    22 sg:pub.10.1038/s41573-021-00268-4
    23 sg:pub.10.1038/s41598-021-92495-3
    24 sg:pub.10.1186/s12864-018-4827-2
    25 sg:pub.10.1186/s12935-019-0813-2
    26 schema:datePublished 2022-07-13
    27 schema:datePublishedReg 2022-07-13
    28 schema:description Kidney renal clear cell carcinoma (KIRC) is among the major causes of cancer-caused mortality around the world. Transient receptor potential channels (TRPs), due to their role in various human diseases, might become potential drug targets in cancer. The mRNA expression, copy number variation, single-nucleotide variation, prognostic values, drug sensitivity, and pathway regulation of TRPs were studied across cancer types. The ArrayExpress and The Cancer Genome Atlas (TCGA) databases were used to retrieve KIRC samples. Simultaneously, training, internal, and external cohorts were grouped. In KIRC, a prognostic signature with superior survival prediction in contrast with other well-established signatures was created after a stepwise screening of optimized genes linked to TRPs using univariate Cox, weighted gene co-expression network analysis, multivariate Cox, and least absolute shrinkage and selection operator regression analyses. Subsequent to the determination of risk levels, the variations in the expression of immune checkpoint genes, tumor mutation burden, and immune subtypes and response between low-risk and high-risk subgroups were studied using a variety of bioinformatics algorithms, including ESTIMATE, XCELL, EPIC, CIBERSORT-ABS, CIBERSORT, MCPCOUNTER, TIMER, and QUANTISEQ. Gene set enrichment analysis helped in the identification of abnormal pathways across the low- and high-risk subgroups. Besides, high-risk KIRC patients might benefit from ABT888, AZD6244, AZD7762, Bosutinib, Camptothecin, CI1040, JNK inhibitor VIII, KU55933, Lenalidomide, Nilotinib, PLX4720, RO3306, Vinblastine, and ZM.447439; however, low-risk populations might benefit from Bicalutamide, FH535, and OSI906. Finally, calibration curves were used to validate the nomogram with a satisfactory predictive survival probability. In conclusion, this research provides useful insight that can aid and guide clinical practice and scientific research.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N4f30cfba16994faeb200842b193e4734
    32 N84c03482e43344868134db8994153f5a
    33 sg:journal.1039191
    34 schema:keywords AZD6244
    35 AZD7762
    36 ArrayExpress
    37 Atlas database
    38 CI1040
    39 CIBERSORT
    40 Cancer Genome Atlas (TCGA) database
    41 Cox
    42 FH535
    43 KIRC patients
    44 KIRC samples
    45 KU55933
    46 MCPcounter
    47 PLX4720
    48 RO3306
    49 VIII
    50 ZM
    51 abnormal pathways
    52 absolute shrinkage
    53 algorithm
    54 analysis
    55 bicalutamide
    56 bioinformatics algorithms
    57 bosutinib
    58 burden
    59 calibration curve
    60 camptothecin
    61 cancer
    62 cancer types
    63 cancer-caused mortality
    64 carcinoma
    65 cause
    66 cell carcinoma
    67 channels
    68 checkpoint genes
    69 clear cell carcinoma
    70 clinical practice
    71 co-expression network analysis
    72 cohort
    73 conclusion
    74 contrast
    75 curves
    76 database
    77 determination
    78 disease
    79 drug sensitivity
    80 drug targets
    81 enrichment analysis
    82 epic
    83 estimates
    84 expression
    85 external cohort
    86 gene co-expression network analysis
    87 genes
    88 high-risk subgroups
    89 human diseases
    90 identification
    91 immune checkpoint genes
    92 immune subtypes
    93 inhibitor VIII
    94 insights
    95 kidney renal clear cell carcinoma
    96 least absolute shrinkage
    97 lenalidomide
    98 levels
    99 low-risk population
    100 mRNA expression
    101 major cause
    102 mortality
    103 multivariate Cox
    104 mutation burden
    105 network analysis
    106 nilotinib
    107 nomogram
    108 number variations
    109 pathway
    110 pathway regulation
    111 patients
    112 population
    113 potential channels
    114 potential drug targets
    115 potential therapeutic significance
    116 practice
    117 prediction
    118 probability
    119 prognostic signature
    120 prognostic value
    121 quanTIseq
    122 regression analysis
    123 regulation
    124 renal clear cell carcinoma
    125 research
    126 response
    127 risk level
    128 role
    129 samples
    130 scientific research
    131 screening
    132 selection operator (LASSO) regression analysis
    133 sensitivity
    134 shrinkage
    135 signatures
    136 significance
    137 single nucleotide variations
    138 stepwise screening
    139 subgroups
    140 subtypes
    141 survival prediction
    142 survival probability
    143 target
    144 therapeutic significance
    145 timer
    146 training
    147 transcriptome analysis
    148 transient receptor potential channels
    149 tumor mutation burden
    150 types
    151 univariate Cox
    152 useful insights
    153 values
    154 variation
    155 variety
    156 vinblastine
    157 world
    158 xCell
    159 schema:name Identifying the role of transient receptor potential channels (TRPs) in kidney renal clear cell carcinoma and their potential therapeutic significances using genomic and transcriptome analyses
    160 schema:pagination 156
    161 schema:productId N2323c467c25c42e281c6b7bec99b3808
    162 N30efd07273444c4d9a3ea114fd713767
    163 N44cc716c98134803a737a7907b80f6a8
    164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149435542
    165 https://doi.org/10.1186/s12920-022-01312-x
    166 schema:sdDatePublished 2022-09-02T16:08
    167 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    168 schema:sdPublisher N3d5bba9efffc49c2a224d0639eecc747
    169 schema:url https://doi.org/10.1186/s12920-022-01312-x
    170 sgo:license sg:explorer/license/
    171 sgo:sdDataset articles
    172 rdf:type schema:ScholarlyArticle
    173 N079391d979c84b6185e525eb57a5ddde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Carcinoma, Renal Cell
    175 rdf:type schema:DefinedTerm
    176 N1022184f425447a1be227fb981c494d3 rdf:first sg:person.0663477741.04
    177 rdf:rest rdf:nil
    178 N2323c467c25c42e281c6b7bec99b3808 schema:name doi
    179 schema:value 10.1186/s12920-022-01312-x
    180 rdf:type schema:PropertyValue
    181 N2c235722da734ec29bafd18b22f81f4a rdf:first sg:person.014727564747.93
    182 rdf:rest Nd96fa282f17d473e8276d82ba69f496d
    183 N30efd07273444c4d9a3ea114fd713767 schema:name pubmed_id
    184 schema:value 35831825
    185 rdf:type schema:PropertyValue
    186 N340c51586e6245eda2c884a9232667e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Transcriptome
    188 rdf:type schema:DefinedTerm
    189 N3b0f95abfc38440bb8b388bc2f16f14d schema:affiliation grid-institutes:grid.452435.1
    190 schema:familyName Zhong
    191 schema:givenName Lei
    192 rdf:type schema:Person
    193 N3d5bba9efffc49c2a224d0639eecc747 schema:name Springer Nature - SN SciGraph project
    194 rdf:type schema:Organization
    195 N3dbc9ea9bdb941be90a0179721b9ae14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Prognosis
    197 rdf:type schema:DefinedTerm
    198 N40e66750c2174db5a98a2a8c9dc107e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Genomics
    200 rdf:type schema:DefinedTerm
    201 N41b53d1916074382bf8d768345cd2009 schema:affiliation grid-institutes:grid.452435.1
    202 schema:familyName Li
    203 schema:givenName Hanshuo
    204 rdf:type schema:Person
    205 N44cc716c98134803a737a7907b80f6a8 schema:name dimensions_id
    206 schema:value pub.1149435542
    207 rdf:type schema:PropertyValue
    208 N4f30cfba16994faeb200842b193e4734 schema:volumeNumber 15
    209 rdf:type schema:PublicationVolume
    210 N50d1a8599df740c89eb19d80666421e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name DNA Copy Number Variations
    212 rdf:type schema:DefinedTerm
    213 N5ef10c8529ae41329292a3908debeb1d rdf:first sg:person.016156642114.68
    214 rdf:rest N9e780d2eab42490a915ed7e300649ec5
    215 N6717183b27d448eeb3204bcb9058923d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Gene Expression Regulation, Neoplastic
    217 rdf:type schema:DefinedTerm
    218 N6f9337d09dbe4402b1189920f7fe6c2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Gene Expression Profiling
    220 rdf:type schema:DefinedTerm
    221 N84c03482e43344868134db8994153f5a schema:issueNumber 1
    222 rdf:type schema:PublicationIssue
    223 N9b1111f74b7246bca9f7d1535d679838 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    224 schema:name Kidney Neoplasms
    225 rdf:type schema:DefinedTerm
    226 N9e780d2eab42490a915ed7e300649ec5 rdf:first N3b0f95abfc38440bb8b388bc2f16f14d
    227 rdf:rest Nefc2e5fb1834449ea86147d16b8ec523
    228 Nc4e5399196094db4b2baab0228ed5aa0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    229 schema:name Transient Receptor Potential Channels
    230 rdf:type schema:DefinedTerm
    231 Nc814b4c723204f4ea2874cbb25d905c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    232 schema:name Kidney
    233 rdf:type schema:DefinedTerm
    234 Nd188c108d83b48c39d7f1c9ba830a216 rdf:first sg:person.015253370345.41
    235 rdf:rest Nff1a99effb764b999dc75191362a0818
    236 Nd5772e0e4bf740318eda19106c7b17f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    237 schema:name Humans
    238 rdf:type schema:DefinedTerm
    239 Nd96fa282f17d473e8276d82ba69f496d rdf:first sg:person.01311002165.18
    240 rdf:rest N1022184f425447a1be227fb981c494d3
    241 Nefc2e5fb1834449ea86147d16b8ec523 rdf:first N41b53d1916074382bf8d768345cd2009
    242 rdf:rest N2c235722da734ec29bafd18b22f81f4a
    243 Nff1a99effb764b999dc75191362a0818 rdf:first sg:person.011444474417.54
    244 rdf:rest N5ef10c8529ae41329292a3908debeb1d
    245 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    246 schema:name Biological Sciences
    247 rdf:type schema:DefinedTerm
    248 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    249 schema:name Genetics
    250 rdf:type schema:DefinedTerm
    251 sg:journal.1039191 schema:issn 1755-8794
    252 schema:name BMC Medical Genomics
    253 schema:publisher Springer Nature
    254 rdf:type schema:Periodical
    255 sg:person.011444474417.54 schema:affiliation grid-institutes:grid.452435.1
    256 schema:familyName Yuan
    257 schema:givenName Qihang
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011444474417.54
    259 rdf:type schema:Person
    260 sg:person.01311002165.18 schema:affiliation grid-institutes:grid.452435.1
    261 schema:familyName Chen
    262 schema:givenName Feng
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311002165.18
    264 rdf:type schema:Person
    265 sg:person.014727564747.93 schema:affiliation grid-institutes:grid.452435.1
    266 schema:familyName Wu
    267 schema:givenName Guangzhen
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014727564747.93
    269 rdf:type schema:Person
    270 sg:person.015253370345.41 schema:affiliation grid-institutes:grid.452435.1
    271 schema:familyName Ren
    272 schema:givenName Jie
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253370345.41
    274 rdf:type schema:Person
    275 sg:person.016156642114.68 schema:affiliation grid-institutes:grid.452435.1
    276 schema:familyName Liu
    277 schema:givenName Jifeng
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016156642114.68
    279 rdf:type schema:Person
    280 sg:person.0663477741.04 schema:affiliation grid-institutes:grid.452435.1
    281 schema:familyName Tang
    282 schema:givenName Qizhen
    283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663477741.04
    284 rdf:type schema:Person
    285 sg:pub.10.1007/s00281-016-0596-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052661052
    286 https://doi.org/10.1007/s00281-016-0596-7
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s11899-019-00530-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1117476577
    289 https://doi.org/10.1007/s11899-019-00530-y
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/cddis.2017.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084537504
    292 https://doi.org/10.1038/cddis.2017.126
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ejhg.2008.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001542855
    295 https://doi.org/10.1038/ejhg.2008.5
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nm.2827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023224788
    298 https://doi.org/10.1038/nm.2827
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nrd2757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034172429
    301 https://doi.org/10.1038/nrd2757
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/onc.2016.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029671926
    304 https://doi.org/10.1038/onc.2016.4
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/s41573-021-00268-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141113456
    307 https://doi.org/10.1038/s41573-021-00268-4
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/s41598-021-92495-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139147276
    310 https://doi.org/10.1038/s41598-021-92495-3
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/s12864-018-4827-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104510054
    313 https://doi.org/10.1186/s12864-018-4827-2
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/s12935-019-0813-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113483248
    316 https://doi.org/10.1186/s12935-019-0813-2
    317 rdf:type schema:CreativeWork
    318 grid-institutes:grid.452435.1 schema:alternateName Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
    319 Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
    320 Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
    321 schema:name Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
    322 Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
    323 Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
    324 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...