Genetic variants in CYP11B1 influence the susceptibility to coronary heart disease View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-13

AUTHORS

Xiaoli Huang, Yimin Cheng, Na Wang

ABSTRACT

BackgroundGenetic factors are important risk factors to develop coronary heart disease (CHD). In this study, we mainly explored whether CYP11B1 mutations influence CHD risk among Chinese Han population.MethodsSix variants were genotyped using Agena MassARRAY system from 509 CHD patients and 509 healthy controls. The correlations between CYP11B1 mutations and CHD risk were assessed using odds ratio (OR) and 95% confidence interval (95% CI) by logistic regression. The haplotype analysis and were ultifactor dimensionality reduction (MDR) were conducted.ResultsIn the overall analysis, CYP11B1 polymorphisms were not correlated with CHD susceptibility. In the stratified analysis, we found that rs5283, rs6410, and rs4534 are significantly associated with susceptibility to CHD dependent on age and gender (p < 0.05). Moreover, we also observed that rs5283 and rs4534 could affect diabetes/hypertension risk among CHD patients (p < 0.05). In addition, the Crs4736312Ars5017238Crs5301Grs5283Trs6410Crs4534 haplotype of CYP11B1 reduce the susceptibility to CHD (p < 0.05).ConclusionsWe found that rs4534, rs6410 and rs5283 in CYP11B1 gene influence the susceptibility to CHD, which depend on age and gender. More... »

PAGES

158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12920-022-01307-8

DOI

http://dx.doi.org/10.1186/s12920-022-01307-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149448377

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35831903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Steroid 11-beta-Hydroxylase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Department of Cardiovascology, Xi\u2019an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng Eighth Road, Weiyang District, 710021, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Department of Cardiovascology, Xi\u2019an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng Eighth Road, Weiyang District, 710021, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Xiaoli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Department of Obstetrics and Gynecology, The Hospital of Xi\u2019an Shiyou University, 710065, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440727.2", 
          "name": [
            "The Department of Obstetrics and Gynecology, The Hospital of Xi\u2019an Shiyou University, 710065, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Yimin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Department of Cardiovascology, Xi\u2019an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng Eighth Road, Weiyang District, 710021, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The Department of Cardiovascology, Xi\u2019an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng Eighth Road, Weiyang District, 710021, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Na", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hr.2010.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015521829", 
          "https://doi.org/10.1038/hr.2010.21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00059-019-4806-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113833584", 
          "https://doi.org/10.1007/s00059-019-4806-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040832507", 
          "https://doi.org/10.1038/nrg3051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2350-13-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028663532", 
          "https://doi.org/10.1186/1471-2350-13-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024601187", 
          "https://doi.org/10.1038/ng.2480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12885-015-1650-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024407386", 
          "https://doi.org/10.1186/s12885-015-1650-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42003-021-02774-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1142432731", 
          "https://doi.org/10.1038/s42003-021-02774-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12902-018-0295-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107123511", 
          "https://doi.org/10.1186/s12902-018-0295-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-010-1296-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016907167", 
          "https://doi.org/10.1007/s00198-010-1296-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-13", 
    "datePublishedReg": "2022-07-13", 
    "description": "BackgroundGenetic factors are important risk factors to develop coronary heart disease (CHD). In this study, we mainly explored whether CYP11B1 mutations influence CHD risk among Chinese Han population.MethodsSix variants were genotyped using Agena MassARRAY system from 509 CHD patients and 509 healthy controls. The correlations between CYP11B1 mutations and CHD risk were assessed using odds ratio (OR) and 95% confidence interval (95% CI) by logistic regression. The haplotype analysis and were ultifactor dimensionality reduction (MDR) were conducted.ResultsIn the overall analysis, CYP11B1 polymorphisms were not correlated with CHD susceptibility. In the stratified analysis, we found that rs5283, rs6410, and rs4534 are significantly associated with susceptibility to CHD dependent on age and gender (p\u2009<\u20090.05). Moreover, we also observed that rs5283 and rs4534 could affect diabetes/hypertension risk among CHD patients (p\u2009<\u20090.05). In addition, the Crs4736312Ars5017238Crs5301Grs5283Trs6410Crs4534 haplotype of CYP11B1 reduce the susceptibility to CHD (p\u2009<\u20090.05).ConclusionsWe found that rs4534, rs6410 and rs5283 in CYP11B1 gene influence the susceptibility to CHD, which depend on age and gender.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s12920-022-01307-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "coronary heart disease", 
      "CHD risk", 
      "CHD patients", 
      "heart disease", 
      "odds ratio", 
      "CYP11B1 mutations", 
      "important risk factor", 
      "Chinese Han population", 
      "Agena MassARRAY system", 
      "hypertension risk", 
      "risk factors", 
      "healthy controls", 
      "stratified analysis", 
      "logistic regression", 
      "MassARRAY system", 
      "Han population", 
      "CHD susceptibility", 
      "confidence intervals", 
      "CYP11B1 gene", 
      "patients", 
      "disease", 
      "genetic variants", 
      "risk", 
      "haplotype analysis", 
      "age", 
      "susceptibility", 
      "BackgroundGenetic factors", 
      "overall analysis", 
      "gender", 
      "mutations", 
      "ResultsIn", 
      "factors", 
      "variants", 
      "ConclusionsWe", 
      "polymorphism", 
      "regression", 
      "population", 
      "interval", 
      "control", 
      "haplotypes", 
      "analysis", 
      "study", 
      "genes", 
      "correlation", 
      "reduction", 
      "addition", 
      "ratio", 
      "influence", 
      "system", 
      "dimensionality reduction"
    ], 
    "name": "Genetic variants in CYP11B1 influence the susceptibility to coronary heart disease", 
    "pagination": "158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149448377"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12920-022-01307-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35831903"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12920-022-01307-8", 
      "https://app.dimensions.ai/details/publication/pub.1149448377"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_949.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s12920-022-01307-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01307-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01307-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01307-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12920-022-01307-8'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      95 URIs      77 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12920-022-01307-8 schema:about N05baade8a4fa42a49d140cb26a6bbd32
2 N533fcd9b1df3446c998e46836c0a9142
3 N715e060968e54c228e9080da64338fe4
4 N8353eb3db5c3475da3cbaeeede9d6ac9
5 Nab75cbb03b87497b84499b093d01eb01
6 Nb254f829cafb40c39f6fad80a8bf9cee
7 Nbba8cd5f3ab34c758e32fd9c43f91af1
8 Nc69a660e34694356bf7890917b49cb58
9 Nc6f73a6afa7f41d4b2f4acd7813f9746
10 Nd6eb650b4fac4cd3aedf47865eee2755
11 anzsrc-for:11
12 anzsrc-for:1102
13 anzsrc-for:1117
14 schema:author N196a87df6b9740bb9d431ad6038e2383
15 schema:citation sg:pub.10.1007/s00059-019-4806-7
16 sg:pub.10.1007/s00198-010-1296-0
17 sg:pub.10.1038/hr.2010.21
18 sg:pub.10.1038/ng.2480
19 sg:pub.10.1038/nrg3051
20 sg:pub.10.1038/s42003-021-02774-y
21 sg:pub.10.1186/1471-2350-13-39
22 sg:pub.10.1186/s12885-015-1650-x
23 sg:pub.10.1186/s12902-018-0295-6
24 schema:datePublished 2022-07-13
25 schema:datePublishedReg 2022-07-13
26 schema:description BackgroundGenetic factors are important risk factors to develop coronary heart disease (CHD). In this study, we mainly explored whether CYP11B1 mutations influence CHD risk among Chinese Han population.MethodsSix variants were genotyped using Agena MassARRAY system from 509 CHD patients and 509 healthy controls. The correlations between CYP11B1 mutations and CHD risk were assessed using odds ratio (OR) and 95% confidence interval (95% CI) by logistic regression. The haplotype analysis and were ultifactor dimensionality reduction (MDR) were conducted.ResultsIn the overall analysis, CYP11B1 polymorphisms were not correlated with CHD susceptibility. In the stratified analysis, we found that rs5283, rs6410, and rs4534 are significantly associated with susceptibility to CHD dependent on age and gender (p < 0.05). Moreover, we also observed that rs5283 and rs4534 could affect diabetes/hypertension risk among CHD patients (p < 0.05). In addition, the Crs4736312Ars5017238Crs5301Grs5283Trs6410Crs4534 haplotype of CYP11B1 reduce the susceptibility to CHD (p < 0.05).ConclusionsWe found that rs4534, rs6410 and rs5283 in CYP11B1 gene influence the susceptibility to CHD, which depend on age and gender.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N6cbaf271a2254190979a2b30932273a6
30 N9add664581f141568e6a4259f1c8816b
31 sg:journal.1039191
32 schema:keywords Agena MassARRAY system
33 BackgroundGenetic factors
34 CHD patients
35 CHD risk
36 CHD susceptibility
37 CYP11B1 gene
38 CYP11B1 mutations
39 Chinese Han population
40 ConclusionsWe
41 Han population
42 MassARRAY system
43 ResultsIn
44 addition
45 age
46 analysis
47 confidence intervals
48 control
49 coronary heart disease
50 correlation
51 dimensionality reduction
52 disease
53 factors
54 gender
55 genes
56 genetic variants
57 haplotype analysis
58 haplotypes
59 healthy controls
60 heart disease
61 hypertension risk
62 important risk factor
63 influence
64 interval
65 logistic regression
66 mutations
67 odds ratio
68 overall analysis
69 patients
70 polymorphism
71 population
72 ratio
73 reduction
74 regression
75 risk
76 risk factors
77 stratified analysis
78 study
79 susceptibility
80 system
81 variants
82 schema:name Genetic variants in CYP11B1 influence the susceptibility to coronary heart disease
83 schema:pagination 158
84 schema:productId N3f200ebaeb2f4278bc8579a553abf491
85 N4cf243c21f12411680ff9e2990e82569
86 N5ec545cbdaae4b53844e06f329e68121
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149448377
88 https://doi.org/10.1186/s12920-022-01307-8
89 schema:sdDatePublished 2022-09-02T16:08
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nc884549b007849739bc11ea0c4c648e5
92 schema:url https://doi.org/10.1186/s12920-022-01307-8
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N05baade8a4fa42a49d140cb26a6bbd32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Genetic Predisposition to Disease
98 rdf:type schema:DefinedTerm
99 N1008677e073c431d81007b27f14c669b schema:affiliation grid-institutes:None
100 schema:familyName Wang
101 schema:givenName Na
102 rdf:type schema:Person
103 N196a87df6b9740bb9d431ad6038e2383 rdf:first N70ffe43f2deb4e1cb2b83d81167265b3
104 rdf:rest Nfc955e4d499240acaf60930ff6c0260c
105 N3f200ebaeb2f4278bc8579a553abf491 schema:name doi
106 schema:value 10.1186/s12920-022-01307-8
107 rdf:type schema:PropertyValue
108 N4cf243c21f12411680ff9e2990e82569 schema:name dimensions_id
109 schema:value pub.1149448377
110 rdf:type schema:PropertyValue
111 N533fcd9b1df3446c998e46836c0a9142 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Genotype
113 rdf:type schema:DefinedTerm
114 N5ec545cbdaae4b53844e06f329e68121 schema:name pubmed_id
115 schema:value 35831903
116 rdf:type schema:PropertyValue
117 N6cbaf271a2254190979a2b30932273a6 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 N70ffe43f2deb4e1cb2b83d81167265b3 schema:affiliation grid-institutes:None
120 schema:familyName Huang
121 schema:givenName Xiaoli
122 rdf:type schema:Person
123 N715e060968e54c228e9080da64338fe4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Polymorphism, Single Nucleotide
125 rdf:type schema:DefinedTerm
126 N8353eb3db5c3475da3cbaeeede9d6ac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Case-Control Studies
128 rdf:type schema:DefinedTerm
129 N91355851add8430484b7a8746a67e787 schema:affiliation grid-institutes:grid.440727.2
130 schema:familyName Cheng
131 schema:givenName Yimin
132 rdf:type schema:Person
133 N9add664581f141568e6a4259f1c8816b schema:volumeNumber 15
134 rdf:type schema:PublicationVolume
135 Nab75cbb03b87497b84499b093d01eb01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Haplotypes
137 rdf:type schema:DefinedTerm
138 Nb1d602911bb04369a3febb9aac251c3f rdf:first N1008677e073c431d81007b27f14c669b
139 rdf:rest rdf:nil
140 Nb254f829cafb40c39f6fad80a8bf9cee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Coronary Disease
142 rdf:type schema:DefinedTerm
143 Nbba8cd5f3ab34c758e32fd9c43f91af1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Humans
145 rdf:type schema:DefinedTerm
146 Nc69a660e34694356bf7890917b49cb58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name China
148 rdf:type schema:DefinedTerm
149 Nc6f73a6afa7f41d4b2f4acd7813f9746 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Risk Factors
151 rdf:type schema:DefinedTerm
152 Nc884549b007849739bc11ea0c4c648e5 schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 Nd6eb650b4fac4cd3aedf47865eee2755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Steroid 11-beta-Hydroxylase
156 rdf:type schema:DefinedTerm
157 Nfc955e4d499240acaf60930ff6c0260c rdf:first N91355851add8430484b7a8746a67e787
158 rdf:rest Nb1d602911bb04369a3febb9aac251c3f
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
163 schema:name Cardiorespiratory Medicine and Haematology
164 rdf:type schema:DefinedTerm
165 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
166 schema:name Public Health and Health Services
167 rdf:type schema:DefinedTerm
168 sg:journal.1039191 schema:issn 1755-8794
169 schema:name BMC Medical Genomics
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:pub.10.1007/s00059-019-4806-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113833584
173 https://doi.org/10.1007/s00059-019-4806-7
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00198-010-1296-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016907167
176 https://doi.org/10.1007/s00198-010-1296-0
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/hr.2010.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015521829
179 https://doi.org/10.1038/hr.2010.21
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/ng.2480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024601187
182 https://doi.org/10.1038/ng.2480
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nrg3051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040832507
185 https://doi.org/10.1038/nrg3051
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/s42003-021-02774-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1142432731
188 https://doi.org/10.1038/s42003-021-02774-y
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2350-13-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028663532
191 https://doi.org/10.1186/1471-2350-13-39
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/s12885-015-1650-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024407386
194 https://doi.org/10.1186/s12885-015-1650-x
195 rdf:type schema:CreativeWork
196 sg:pub.10.1186/s12902-018-0295-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107123511
197 https://doi.org/10.1186/s12902-018-0295-6
198 rdf:type schema:CreativeWork
199 grid-institutes:None schema:alternateName The Department of Cardiovascology, Xi’an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng Eighth Road, Weiyang District, 710021, Xi’an, People’s Republic of China
200 schema:name The Department of Cardiovascology, Xi’an Hospital of Traditional Chinese Medicine, No. 69, Fengcheng Eighth Road, Weiyang District, 710021, Xi’an, People’s Republic of China
201 rdf:type schema:Organization
202 grid-institutes:grid.440727.2 schema:alternateName The Department of Obstetrics and Gynecology, The Hospital of Xi’an Shiyou University, 710065, Xi’an, People’s Republic of China
203 schema:name The Department of Obstetrics and Gynecology, The Hospital of Xi’an Shiyou University, 710065, Xi’an, People’s Republic of China
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...