Exome, transcriptome and miRNA analysis don’t reveal any molecular markers of TKI efficacy in primary CML patients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Alexander V. Lavrov, Ekaterina Yu. Chelysheva, Elmira P. Adilgereeva, Oleg A. Shukhov, Svetlana A. Smirnikhina, Konstantin S. Kochergin-Nikitsky, Valentina D. Yakushina, Grigory A. Tsaur, Sergey V. Mordanov, Anna G. Turkina, Sergey I. Kutsev

ABSTRACT

BACKGROUND: Approximately 5-20% of chronic myeloid leukemia (CML) patients demonstrate primary resistance or intolerance to imatinib. None of the existing predictive scores gives a good prognosis of TKI efficacy. Gene polymorphisms, expression and microRNAs are known to be involved in the pathogenesis of TKI resistance in CML. The aim of our study is to find new molecular markers of TKI therapy efficacy in CML patients. METHODS: Newly diagnosed patients with Ph+ CML in chronic phase were included in this study. Optimal and non-optimal responses to TKI were estimated according to ELN 2013 recommendation. We performed genotyping of selected polymorphisms in 62 blood samples of CML patients, expression profiling of 33 RNA samples extracted from blood and miRNA profiling of 800 miRNA in 12 blood samples of CML patients. RESULTS: The frequencies of genotypes at the studied loci did not differ between groups of patients with an optimal and non-optimal response to TKI therapy. Analysis of the expression of 34,681 genes revealed 26 differently expressed genes (p < 0.05) in groups of patients with different TKI responses, but differences were very small and were not confirmed by qPCR. Finally, we did not find difference in miRNA expression between the groups. CONCLUSIONS: Using modern high-throughput methods such as whole-exome sequencing, transcriptome and miRNA analysis, we could not find reliable molecular markers for early prediction of TKI efficiency in Ph+ CML patients. More... »

PAGES

37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12920-019-0481-z

DOI

http://dx.doi.org/10.1186/s12920-019-0481-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112759273

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30871622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Centre for Medical Genetics", 
          "id": "https://www.grid.ac/institutes/grid.415876.9", 
          "name": [
            "Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, 115522, Moscow, Russian Federation", 
            "Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education \u201cRussian National Research Medical University named after N.I. Pirogov\u201d of Ministry of Health of the Russian Federation, Ostrovityanova str., 1, 117997, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavrov", 
        "givenName": "Alexander V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, 125167, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chelysheva", 
        "givenName": "Ekaterina Yu.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Centre for Medical Genetics", 
          "id": "https://www.grid.ac/institutes/grid.415876.9", 
          "name": [
            "Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, 115522, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adilgereeva", 
        "givenName": "Elmira P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, 125167, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukhov", 
        "givenName": "Oleg A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Centre for Medical Genetics", 
          "id": "https://www.grid.ac/institutes/grid.415876.9", 
          "name": [
            "Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, 115522, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnikhina", 
        "givenName": "Svetlana A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Centre for Medical Genetics", 
          "id": "https://www.grid.ac/institutes/grid.415876.9", 
          "name": [
            "Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, 115522, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kochergin-Nikitsky", 
        "givenName": "Konstantin S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Centre for Medical Genetics", 
          "id": "https://www.grid.ac/institutes/grid.415876.9", 
          "name": [
            "Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, 115522, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakushina", 
        "givenName": "Valentina D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rybinsk State Aviation Technological Academy", 
          "id": "https://www.grid.ac/institutes/grid.445732.3", 
          "name": [
            "Regional Children Hospital 1, S. Deryabinoy str., 32, 620149, Ekaterinburg, Russian Federation", 
            "Research Institute of Medical Cell Technologies, Soboleva str., 25, 620905, Ekaterinburg, Russian Federation", 
            "Federal State Budgetary Educational Institution of Higher Education, Urals State Medical University of the Ministry of Healthcare of the Russian Federation, Repina str., 3, 620028, Ekaterinburg, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsaur", 
        "givenName": "Grigory A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rostov State Medical University", 
          "id": "https://www.grid.ac/institutes/grid.445717.4", 
          "name": [
            "Laboratory of Medical Genetics, The Rostov State Medical University, Nahichevansky av., 29, 344022, Rostov-on-Don, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mordanov", 
        "givenName": "Sergey V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, 125167, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turkina", 
        "givenName": "Anna G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Centre for Medical Genetics", 
          "id": "https://www.grid.ac/institutes/grid.415876.9", 
          "name": [
            "Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, 115522, Moscow, Russian Federation", 
            "Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education \u201cRussian National Research Medical University named after N.I. Pirogov\u201d of Ministry of Health of the Russian Federation, Ostrovityanova str., 1, 117997, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kutsev", 
        "givenName": "Sergey I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.canlet.2014.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000015548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0078582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000599900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13402-012-0095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008433119", 
          "https://doi.org/10.1007/s13402-012-0095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009161850", 
          "https://doi.org/10.1038/sj.leu.2404310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009161850", 
          "https://doi.org/10.1038/sj.leu.2404310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ijlh.12351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015995704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-015-0308-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016105653", 
          "https://doi.org/10.1186/s12863-015-0308-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3324/haematol.2012.066480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016392933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020601174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2006.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021714681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023991454", 
          "https://doi.org/10.1038/sj.leu.2404270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023991454", 
          "https://doi.org/10.1038/sj.leu.2404270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-8-69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024687121", 
          "https://doi.org/10.1186/1476-4598-8-69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0035501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026228024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ddr.21266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029187860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12185-014-1649-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030645972", 
          "https://doi.org/10.1007/s12185-014-1649-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canlet.2015.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031613167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0568-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036099705", 
          "https://doi.org/10.1186/s13059-014-0568-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-014-0568-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036099705", 
          "https://doi.org/10.1186/s13059-014-0568-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cgt.2015.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036456732", 
          "https://doi.org/10.1038/cgt.2015.63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2013-05-501569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037386922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038679239", 
          "https://doi.org/10.1038/sj.leu.2404197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.leu.2404197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038679239", 
          "https://doi.org/10.1038/sj.leu.2404197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bcmd.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040295071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00277-015-2327-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046103684", 
          "https://doi.org/10.1007/s00277-015-2327-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2010.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049183210", 
          "https://doi.org/10.1038/leu.2010.238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12967-016-0837-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051773169", 
          "https://doi.org/10.1186/s12967-016-0837-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12032-015-0665-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052141625", 
          "https://doi.org/10.1007/s12032-015-0665-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cas.12321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052155256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1582-4934.2010.01213.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053702655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4149/neo_2015_115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072262775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107327480901600204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077880948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/107327480901600204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077880948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078675713", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.leukres.2017.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086066033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hoc.2017.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090320101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajh.24865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090742320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2017.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091207323", 
          "https://doi.org/10.1038/leu.2017.253"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "BACKGROUND: Approximately 5-20% of chronic myeloid leukemia (CML) patients demonstrate primary resistance or intolerance to imatinib. None of the existing predictive scores gives a good prognosis of TKI efficacy. Gene polymorphisms, expression and microRNAs are known to be involved in the pathogenesis of TKI resistance in CML. The aim of our study is to find new molecular markers of TKI therapy efficacy in CML patients.\nMETHODS: Newly diagnosed patients with Ph+\u2009CML in chronic phase were included in this study. Optimal and non-optimal responses to TKI were estimated according to ELN 2013 recommendation. We performed genotyping of selected polymorphisms in 62 blood samples of CML patients, expression profiling of 33 RNA samples extracted from blood and miRNA profiling of 800 miRNA in 12 blood samples of CML patients.\nRESULTS: The frequencies of genotypes at the studied loci did not differ between groups of patients with an optimal and non-optimal response to TKI therapy. Analysis of the expression of 34,681 genes revealed 26 differently expressed genes (p\u2009<\u20090.05) in groups of patients with different TKI responses, but differences were very small and were not confirmed by qPCR. Finally, we did not find difference in miRNA expression between the groups.\nCONCLUSIONS: Using modern high-throughput methods such as whole-exome sequencing, transcriptome and miRNA analysis, we could not find reliable molecular markers for early prediction of TKI efficiency in Ph+\u2009CML patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12920-019-0481-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Exome, transcriptome and miRNA analysis don\u2019t reveal any molecular markers of TKI efficacy in primary CML patients", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1929462a3a0aabba894e9ae4cfc11d4fef6bd678bd72b33822cef306b91f44f1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30871622"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101319628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12920-019-0481-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112759273"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12920-019-0481-z", 
      "https://app.dimensions.ai/details/publication/pub.1112759273"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12920-019-0481-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12920-019-0481-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12920-019-0481-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12920-019-0481-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12920-019-0481-z'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12920-019-0481-z schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N974141f0709947649e537f3bc9baa19c
4 schema:citation sg:pub.10.1007/s00277-015-2327-x
5 sg:pub.10.1007/s12032-015-0665-0
6 sg:pub.10.1007/s12185-014-1649-0
7 sg:pub.10.1007/s13402-012-0095-3
8 sg:pub.10.1038/cgt.2015.63
9 sg:pub.10.1038/leu.2010.238
10 sg:pub.10.1038/leu.2017.253
11 sg:pub.10.1038/sj.leu.2404197
12 sg:pub.10.1038/sj.leu.2404270
13 sg:pub.10.1038/sj.leu.2404310
14 sg:pub.10.1186/1476-4598-8-69
15 sg:pub.10.1186/s12863-015-0308-7
16 sg:pub.10.1186/s12967-016-0837-5
17 sg:pub.10.1186/s13059-014-0568-y
18 https://app.dimensions.ai/details/publication/pub.1078675713
19 https://doi.org/10.1002/ajh.24865
20 https://doi.org/10.1002/ddr.21266
21 https://doi.org/10.1016/j.bcmd.2014.02.008
22 https://doi.org/10.1016/j.canlet.2014.10.006
23 https://doi.org/10.1016/j.canlet.2015.02.031
24 https://doi.org/10.1016/j.gene.2006.09.028
25 https://doi.org/10.1016/j.hoc.2017.04.007
26 https://doi.org/10.1016/j.leukres.2017.06.009
27 https://doi.org/10.1093/nar/gks494
28 https://doi.org/10.1111/cas.12321
29 https://doi.org/10.1111/ijlh.12351
30 https://doi.org/10.1111/j.1582-4934.2010.01213.x
31 https://doi.org/10.1177/107327480901600204
32 https://doi.org/10.1182/blood-2013-05-501569
33 https://doi.org/10.1371/journal.pone.0035501
34 https://doi.org/10.1371/journal.pone.0078582
35 https://doi.org/10.3324/haematol.2012.066480
36 https://doi.org/10.4149/neo_2015_115
37 schema:datePublished 2019-03
38 schema:datePublishedReg 2019-03-01
39 schema:description BACKGROUND: Approximately 5-20% of chronic myeloid leukemia (CML) patients demonstrate primary resistance or intolerance to imatinib. None of the existing predictive scores gives a good prognosis of TKI efficacy. Gene polymorphisms, expression and microRNAs are known to be involved in the pathogenesis of TKI resistance in CML. The aim of our study is to find new molecular markers of TKI therapy efficacy in CML patients. METHODS: Newly diagnosed patients with Ph+ CML in chronic phase were included in this study. Optimal and non-optimal responses to TKI were estimated according to ELN 2013 recommendation. We performed genotyping of selected polymorphisms in 62 blood samples of CML patients, expression profiling of 33 RNA samples extracted from blood and miRNA profiling of 800 miRNA in 12 blood samples of CML patients. RESULTS: The frequencies of genotypes at the studied loci did not differ between groups of patients with an optimal and non-optimal response to TKI therapy. Analysis of the expression of 34,681 genes revealed 26 differently expressed genes (p < 0.05) in groups of patients with different TKI responses, but differences were very small and were not confirmed by qPCR. Finally, we did not find difference in miRNA expression between the groups. CONCLUSIONS: Using modern high-throughput methods such as whole-exome sequencing, transcriptome and miRNA analysis, we could not find reliable molecular markers for early prediction of TKI efficiency in Ph+ CML patients.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N77d288b1cbec41d09f69337446033487
44 N8d3d693fca2b49089e0b415455bce3c4
45 sg:journal.1039191
46 schema:name Exome, transcriptome and miRNA analysis don’t reveal any molecular markers of TKI efficacy in primary CML patients
47 schema:pagination 37
48 schema:productId N2cf63a456d764f6bb853134d7013a3ca
49 N525fb8e14d364aadae6b706d5810acdb
50 Na205498dd8f146a4897659dbf3780416
51 Na2831fcf54f244358929887eeab681ce
52 Na73129b353f2456580318f5e30266c94
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112759273
54 https://doi.org/10.1186/s12920-019-0481-z
55 schema:sdDatePublished 2019-04-11T13:19
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nb55b56b0e69743fc9dd3ebd741badae8
58 schema:url https://link.springer.com/10.1186%2Fs12920-019-0481-z
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N08a37ff64d4a4a0f940d958e345d1ec7 rdf:first Nf0b97634366340b2b906cf79f750915e
63 rdf:rest N373ca37872c746139ee6d925ab257dd5
64 N156e623df2524579b8daaaf4cd5cbeeb rdf:first Nbe5cbe46933340919f5aa900435d3678
65 rdf:rest N529264f5703a468eb6fb5324970faaac
66 N1713e9ae1251453894531b4cb29fc735 schema:affiliation https://www.grid.ac/institutes/grid.445717.4
67 schema:familyName Mordanov
68 schema:givenName Sergey V.
69 rdf:type schema:Person
70 N1bd7064c9777470fb093285161d21928 schema:name Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, 125167, Moscow, Russian Federation
71 rdf:type schema:Organization
72 N23182d5708854eeaa669919612ff256d schema:affiliation https://www.grid.ac/institutes/grid.445732.3
73 schema:familyName Tsaur
74 schema:givenName Grigory A.
75 rdf:type schema:Person
76 N2cf63a456d764f6bb853134d7013a3ca schema:name dimensions_id
77 schema:value pub.1112759273
78 rdf:type schema:PropertyValue
79 N321ff5a087de4e8d99543d116e3053c3 rdf:first Nd66d74e1f61d4916afe6a6a501737777
80 rdf:rest N57224db405a8420caf317d2a6d275bdf
81 N373ca37872c746139ee6d925ab257dd5 rdf:first N81ffff6454a0476c99b3a829d805f31d
82 rdf:rest rdf:nil
83 N3ca65ee34f6d4950b104b015231303be rdf:first Na6fdfc39a46d435b8877caf64c44ab1d
84 rdf:rest Na1b085e251224536be16f4e7122413c3
85 N525fb8e14d364aadae6b706d5810acdb schema:name doi
86 schema:value 10.1186/s12920-019-0481-z
87 rdf:type schema:PropertyValue
88 N529264f5703a468eb6fb5324970faaac rdf:first Ncbd880ba6d1544998b00162fc2f3d724
89 rdf:rest N95fbf87a861e4caebb6a53b9bc20659b
90 N57224db405a8420caf317d2a6d275bdf rdf:first Nb31f3cdc4e9247b98e3fc243f301883a
91 rdf:rest N3ca65ee34f6d4950b104b015231303be
92 N584a34e13d4842119be6f4149af022e4 schema:affiliation https://www.grid.ac/institutes/grid.415876.9
93 schema:familyName Lavrov
94 schema:givenName Alexander V.
95 rdf:type schema:Person
96 N62fcd48fcacb4236aa0caf7873ef5546 schema:name Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, 125167, Moscow, Russian Federation
97 rdf:type schema:Organization
98 N77d288b1cbec41d09f69337446033487 schema:volumeNumber 12
99 rdf:type schema:PublicationVolume
100 N80047ea5fb97427a9ab0fa11eec426bc schema:name Scientific and Advisory Department of Chemotherapy of Myeloproliferative disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Novy Zykovki proezd, 4, 125167, Moscow, Russian Federation
101 rdf:type schema:Organization
102 N81ffff6454a0476c99b3a829d805f31d schema:affiliation https://www.grid.ac/institutes/grid.415876.9
103 schema:familyName Kutsev
104 schema:givenName Sergey I.
105 rdf:type schema:Person
106 N89e78d1c58ac45d499411a8db48380c0 rdf:first N1713e9ae1251453894531b4cb29fc735
107 rdf:rest N08a37ff64d4a4a0f940d958e345d1ec7
108 N8d3d693fca2b49089e0b415455bce3c4 schema:issueNumber Suppl 2
109 rdf:type schema:PublicationIssue
110 N95fbf87a861e4caebb6a53b9bc20659b rdf:first N23182d5708854eeaa669919612ff256d
111 rdf:rest N89e78d1c58ac45d499411a8db48380c0
112 N974141f0709947649e537f3bc9baa19c rdf:first N584a34e13d4842119be6f4149af022e4
113 rdf:rest N321ff5a087de4e8d99543d116e3053c3
114 Na1b085e251224536be16f4e7122413c3 rdf:first Nd4b493418cba45dcbe2a8d47a4983a2d
115 rdf:rest N156e623df2524579b8daaaf4cd5cbeeb
116 Na205498dd8f146a4897659dbf3780416 schema:name readcube_id
117 schema:value 1929462a3a0aabba894e9ae4cfc11d4fef6bd678bd72b33822cef306b91f44f1
118 rdf:type schema:PropertyValue
119 Na2831fcf54f244358929887eeab681ce schema:name nlm_unique_id
120 schema:value 101319628
121 rdf:type schema:PropertyValue
122 Na6fdfc39a46d435b8877caf64c44ab1d schema:affiliation N62fcd48fcacb4236aa0caf7873ef5546
123 schema:familyName Shukhov
124 schema:givenName Oleg A.
125 rdf:type schema:Person
126 Na73129b353f2456580318f5e30266c94 schema:name pubmed_id
127 schema:value 30871622
128 rdf:type schema:PropertyValue
129 Nb31f3cdc4e9247b98e3fc243f301883a schema:affiliation https://www.grid.ac/institutes/grid.415876.9
130 schema:familyName Adilgereeva
131 schema:givenName Elmira P.
132 rdf:type schema:Person
133 Nb55b56b0e69743fc9dd3ebd741badae8 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nbe5cbe46933340919f5aa900435d3678 schema:affiliation https://www.grid.ac/institutes/grid.415876.9
136 schema:familyName Kochergin-Nikitsky
137 schema:givenName Konstantin S.
138 rdf:type schema:Person
139 Ncbd880ba6d1544998b00162fc2f3d724 schema:affiliation https://www.grid.ac/institutes/grid.415876.9
140 schema:familyName Yakushina
141 schema:givenName Valentina D.
142 rdf:type schema:Person
143 Nd4b493418cba45dcbe2a8d47a4983a2d schema:affiliation https://www.grid.ac/institutes/grid.415876.9
144 schema:familyName Smirnikhina
145 schema:givenName Svetlana A.
146 rdf:type schema:Person
147 Nd66d74e1f61d4916afe6a6a501737777 schema:affiliation N1bd7064c9777470fb093285161d21928
148 schema:familyName Chelysheva
149 schema:givenName Ekaterina Yu.
150 rdf:type schema:Person
151 Nf0b97634366340b2b906cf79f750915e schema:affiliation N80047ea5fb97427a9ab0fa11eec426bc
152 schema:familyName Turkina
153 schema:givenName Anna G.
154 rdf:type schema:Person
155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biological Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
159 schema:name Genetics
160 rdf:type schema:DefinedTerm
161 sg:journal.1039191 schema:issn 1755-8794
162 schema:name BMC Medical Genomics
163 rdf:type schema:Periodical
164 sg:pub.10.1007/s00277-015-2327-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046103684
165 https://doi.org/10.1007/s00277-015-2327-x
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s12032-015-0665-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052141625
168 https://doi.org/10.1007/s12032-015-0665-0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s12185-014-1649-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030645972
171 https://doi.org/10.1007/s12185-014-1649-0
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s13402-012-0095-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008433119
174 https://doi.org/10.1007/s13402-012-0095-3
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/cgt.2015.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036456732
177 https://doi.org/10.1038/cgt.2015.63
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/leu.2010.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049183210
180 https://doi.org/10.1038/leu.2010.238
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/leu.2017.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091207323
183 https://doi.org/10.1038/leu.2017.253
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/sj.leu.2404197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038679239
186 https://doi.org/10.1038/sj.leu.2404197
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/sj.leu.2404270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023991454
189 https://doi.org/10.1038/sj.leu.2404270
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/sj.leu.2404310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009161850
192 https://doi.org/10.1038/sj.leu.2404310
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/1476-4598-8-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024687121
195 https://doi.org/10.1186/1476-4598-8-69
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/s12863-015-0308-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016105653
198 https://doi.org/10.1186/s12863-015-0308-7
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/s12967-016-0837-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051773169
201 https://doi.org/10.1186/s12967-016-0837-5
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/s13059-014-0568-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036099705
204 https://doi.org/10.1186/s13059-014-0568-y
205 rdf:type schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1078675713 schema:CreativeWork
207 https://doi.org/10.1002/ajh.24865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090742320
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/ddr.21266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029187860
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.bcmd.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040295071
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.canlet.2014.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000015548
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.canlet.2015.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031613167
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.gene.2006.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021714681
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.hoc.2017.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090320101
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.leukres.2017.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086066033
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gks494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020601174
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1111/cas.12321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052155256
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/ijlh.12351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015995704
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/j.1582-4934.2010.01213.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053702655
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1177/107327480901600204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077880948
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1182/blood-2013-05-501569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037386922
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pone.0035501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026228024
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1371/journal.pone.0078582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000599900
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3324/haematol.2012.066480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016392933
240 rdf:type schema:CreativeWork
241 https://doi.org/10.4149/neo_2015_115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072262775
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.415876.9 schema:alternateName Research Centre for Medical Genetics
244 schema:name Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education “Russian National Research Medical University named after N.I. Pirogov” of Ministry of Health of the Russian Federation, Ostrovityanova str., 1, 117997, Moscow, Russian Federation
245 Laboratory of Mutagenesis, Federal State Budgetary Institution, Research Centre for Medical Genetics, Moskvorechie str., 1, 115522, Moscow, Russian Federation
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.445717.4 schema:alternateName Rostov State Medical University
248 schema:name Laboratory of Medical Genetics, The Rostov State Medical University, Nahichevansky av., 29, 344022, Rostov-on-Don, Russian Federation
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.445732.3 schema:alternateName Rybinsk State Aviation Technological Academy
251 schema:name Federal State Budgetary Educational Institution of Higher Education, Urals State Medical University of the Ministry of Healthcare of the Russian Federation, Repina str., 3, 620028, Ekaterinburg, Russian Federation
252 Regional Children Hospital 1, S. Deryabinoy str., 32, 620149, Ekaterinburg, Russian Federation
253 Research Institute of Medical Cell Technologies, Soboleva str., 25, 620905, Ekaterinburg, Russian Federation
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...