A method to reduce ancestry related germline false positives in tumor only somatic variant calling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10-19

AUTHORS

Rebecca F. Halperin, John D. Carpten, Zarko Manojlovic, Jessica Aldrich, Jonathan Keats, Sara Byron, Winnie S. Liang, Megan Russell, Daniel Enriquez, Ana Claasen, Irene Cherni, Baffour Awuah, Joseph Oppong, Max S. Wicha, Lisa A. Newman, Evelyn Jaigge, Seungchan Kim, David W. Craig

ABSTRACT

BackgroundSignificant clinical and research applications are driving large scale adoption of individualized tumor sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available, somatic mutations may be identified using comparative callers. However, matched germline samples are frequently not available such as with archival tissues, which makes it difficult to distinguish somatic from germline variants. While population databases may be used to filter out known germline variants, recent studies have shown private germline variants result in an inflated false positive rate in unmatched tumor samples, and the number germline false positives in an individual may be related to ancestry.MethodsFirst, we examined the relationship between the germline false positives and ancestry. Then we developed and implemented a tumor only caller (LumosVar) that leverages differences in allelic frequency between somatic and germline variants in impure tumors. We used simulated data to systematically examine how copy number alterations, tumor purity, and sequencing depth should affect the sensitivity of our caller. Finally, we evaluated the caller on real data.ResultsWe find the germline false-positive rate is significantly higher for individuals of non-European Ancestry largely due to the limited diversity in public polymorphism databases and due to population-specific characteristics such as admixture or recent expansions. Our Bayesian tumor only caller (LumosVar) is able to greatly reduce false positives from private germline variants, and our sensitivity is similar to predictions based on simulated data.ConclusionsTaken together, our results suggest that studies of individuals of non-European ancestry would most benefit from our approach. However, high sensitivity requires sufficiently impure tumors and adequate sequencing depth. Even in impure tumors, there are copy number alterations that result in germline and somatic variants having similar allele frequencies, limiting the sensitivity of the approach. We believe our approach could greatly improve the analysis of archival samples in a research setting where the normal is not available. More... »

PAGES

61

References to SciGraph publications

  • 2014-12-15. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes in NATURE GENETICS
  • 2013-02-10. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples in NATURE BIOTECHNOLOGY
  • 2012-10-31. An integrated map of genetic variation from 1,092 human genomes in NATURE
  • 2013-07-29. THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data in GENOME BIOLOGY
  • 2013-05-04. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs in BMC GENOMICS
  • 2014-10-02. FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer in GENOME BIOLOGY
  • 2015-05-18. Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection in NATURE METHODS
  • 2016-01-19. Role of non-coding sequence variants in cancer in NATURE REVIEWS GENETICS
  • 2013-07-26. Frequency of TERT promoter mutations in human cancers in NATURE COMMUNICATIONS
  • 2014-03-16. PyClone: statistical inference of clonal population structure in cancer in NATURE METHODS
  • 2013-06-16. Mutational heterogeneity in cancer and the search for new cancer-associated genes in NATURE
  • 2015-12-04. Systematic pan-cancer analysis of tumour purity in NATURE COMMUNICATIONS
  • 2016-07-26. The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine in GENOME MEDICINE
  • 2011-04-10. A framework for variation discovery and genotyping using next-generation DNA sequencing data in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12920-017-0296-8

    DOI

    http://dx.doi.org/10.1186/s12920-017-0296-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092304065

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29052513


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bayes Theorem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Copy Number Variations", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Frequency", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Germ-Line Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Precision Medicine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Principal Component Analysis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Halperin", 
            "givenName": "Rebecca F.", 
            "id": "sg:person.01040423501.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040423501.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carpten", 
            "givenName": "John D.", 
            "id": "sg:person.01251103757.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251103757.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manojlovic", 
            "givenName": "Zarko", 
            "id": "sg:person.01073437074.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073437074.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aldrich", 
            "givenName": "Jessica", 
            "id": "sg:person.0624603706.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624603706.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keats", 
            "givenName": "Jonathan", 
            "id": "sg:person.0724413450.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724413450.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Byron", 
            "givenName": "Sara", 
            "id": "sg:person.0727017310.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727017310.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Winnie S.", 
            "id": "sg:person.01272316037.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272316037.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russell", 
            "givenName": "Megan", 
            "id": "sg:person.0612062374.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612062374.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Enriquez", 
            "givenName": "Daniel", 
            "id": "sg:person.01311145315.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311145315.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Claasen", 
            "givenName": "Ana", 
            "id": "sg:person.010405160535.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405160535.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cherni", 
            "givenName": "Irene", 
            "id": "sg:person.0761001234.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761001234.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Komfo Anokye Teaching Hospital, Kumasi, Ghana", 
              "id": "http://www.grid.ac/institutes/grid.415450.1", 
              "name": [
                "Komfo Anokye Teaching Hospital, Kumasi, Ghana"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Awuah", 
            "givenName": "Baffour", 
            "id": "sg:person.01127110527.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127110527.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Komfo Anokye Teaching Hospital, Kumasi, Ghana", 
              "id": "http://www.grid.ac/institutes/grid.415450.1", 
              "name": [
                "Komfo Anokye Teaching Hospital, Kumasi, Ghana"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oppong", 
            "givenName": "Joseph", 
            "id": "sg:person.01143065340.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143065340.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "University of Michigan, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wicha", 
            "givenName": "Max S.", 
            "id": "sg:person.0753375704.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753375704.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Henry Ford Health Systems, Detroit, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.239864.2", 
              "name": [
                "Henry Ford Health Systems, Detroit, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Newman", 
            "givenName": "Lisa A.", 
            "id": "sg:person.01271226545.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271226545.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "University of Michigan, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jaigge", 
            "givenName": "Evelyn", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Seungchan", 
            "id": "sg:person.014746122007.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746122007.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.250942.8", 
              "name": [
                "Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA", 
                "Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Craig", 
            "givenName": "David W.", 
            "id": "sg:person.01051210667.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051210667.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng.806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010244476", 
              "https://doi.org/10.1038/ng.806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033106726", 
              "https://doi.org/10.1038/ncomms9971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2015.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053266182", 
              "https://doi.org/10.1038/nrg.2015.17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-7-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052949539", 
              "https://doi.org/10.1186/gb-2013-14-7-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021761707", 
              "https://doi.org/10.1038/nature12213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047351077", 
              "https://doi.org/10.1038/ncomms3185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018877372", 
              "https://doi.org/10.1038/nmeth.2883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-016-0333-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027389265", 
              "https://doi.org/10.1186/s13073-016-0333-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000477771", 
              "https://doi.org/10.1038/nbt.2514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0480-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008818642", 
              "https://doi.org/10.1186/s13059-014-0480-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000661742", 
              "https://doi.org/10.1038/nature11632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052675624", 
              "https://doi.org/10.1038/ng.3168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048857840", 
              "https://doi.org/10.1186/1471-2164-14-302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020099324", 
              "https://doi.org/10.1038/nmeth.3407"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10-19", 
        "datePublishedReg": "2017-10-19", 
        "description": "BackgroundSignificant clinical and research applications are driving large scale adoption of individualized tumor sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available, somatic mutations may be identified using comparative callers. However, matched germline samples are frequently not available such as with archival tissues, which makes it difficult to distinguish somatic from germline variants. While population databases may be used to filter out known germline variants, recent studies have shown private germline variants result in an inflated false positive rate in unmatched tumor samples, and the number germline false positives in an individual may be related to ancestry.MethodsFirst, we examined the relationship between the germline false positives and ancestry. Then we developed and implemented a tumor only caller (LumosVar) that leverages differences in allelic frequency between somatic and germline variants in impure tumors. We used simulated data to systematically examine how copy number alterations, tumor purity, and sequencing depth should affect the sensitivity of our caller. Finally, we evaluated the caller on real data.ResultsWe find the germline false-positive rate is significantly higher for individuals of non-European Ancestry largely due to the limited diversity in public polymorphism databases and due to population-specific characteristics such as admixture or recent expansions. Our Bayesian tumor only caller (LumosVar) is able to greatly reduce false positives from private germline variants, and our sensitivity is similar to predictions based on simulated data.ConclusionsTaken together, our results suggest that studies of individuals of non-European ancestry would most benefit from our approach. However, high sensitivity requires sufficiently impure tumors and adequate sequencing depth. Even in impure tumors, there are copy number alterations that result in germline and somatic variants having similar allele frequencies, limiting the sensitivity of the approach. We believe our approach could greatly improve the analysis of archival samples in a research setting where the normal is not available.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12920-017-0296-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4897906", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039191", 
            "issn": [
              "1755-8794"
            ], 
            "name": "BMC Medical Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "germline variants", 
          "copy number alterations", 
          "germline samples", 
          "non-European ancestry", 
          "tumor-specific mutations", 
          "number alterations", 
          "tumor samples", 
          "false positive rate", 
          "tumor sequencing", 
          "archival tissue", 
          "tumors", 
          "study of individuals", 
          "population database", 
          "population-specific characteristics", 
          "somatic mutations", 
          "tumor purity", 
          "archival samples", 
          "positive rate", 
          "somatic variants", 
          "allelic frequencies", 
          "Recent studies", 
          "similar allele frequencies", 
          "false positives", 
          "alterations", 
          "allele frequencies", 
          "individuals", 
          "BackgroundSignificant", 
          "variants", 
          "somatic variant calling", 
          "cancer", 
          "mutations", 
          "positives", 
          "ResultsWe", 
          "ConclusionsTaken", 
          "sensitivity", 
          "polymorphism database", 
          "callers", 
          "database", 
          "tissue", 
          "study", 
          "rate", 
          "ancestry", 
          "samples", 
          "MethodsFirst", 
          "data", 
          "high sensitivity", 
          "research applications", 
          "frequency", 
          "limited diversity", 
          "differences", 
          "sequencing", 
          "germline", 
          "variant calling", 
          "sequencing depth", 
          "relationship", 
          "analysis", 
          "approach", 
          "inflated false positive rates", 
          "results", 
          "recent expansion", 
          "characteristics", 
          "research", 
          "method", 
          "expansion", 
          "adoption", 
          "order", 
          "depth", 
          "calling", 
          "admixture", 
          "prediction", 
          "diversity", 
          "purity", 
          "applications", 
          "large-scale adoption", 
          "scale adoption", 
          "real data"
        ], 
        "name": "A method to reduce ancestry related germline false positives in tumor only somatic variant calling", 
        "pagination": "61", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092304065"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12920-017-0296-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29052513"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12920-017-0296-8", 
          "https://app.dimensions.ai/details/publication/pub.1092304065"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_746.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12920-017-0296-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12920-017-0296-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12920-017-0296-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12920-017-0296-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12920-017-0296-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    377 TRIPLES      21 PREDICATES      127 URIs      105 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12920-017-0296-8 schema:about N0916db070bab4556bd5c2d4eaac316db
    2 N0e78a629e90a4fa5a37988849de9d548
    3 N37e569df0a6a46f5b4086c7715e62620
    4 N5caddd2f57b34acf8dabf27bd93d5f6e
    5 N7590d59d27d74191aa79808d68b4b697
    6 N77b70e2d4bc24a66b935b7ccd9b825c7
    7 Nabc921eb1f554627ae1a59dfb4de4c94
    8 Nbef72931490c40988213770a96140ef1
    9 Nd107a750e25e46a8b2238679371acdd8
    10 Ndc9e286e26ac4b5ca03be3de20be0f10
    11 Ne966d43601b94b2991640e2d3b7c2268
    12 Nfc9be568c3d64e8e843a82b58fbaf698
    13 anzsrc-for:11
    14 anzsrc-for:1112
    15 schema:author N1011bc09656e49ccaf9bfa5d9bafc204
    16 schema:citation sg:pub.10.1038/nature11632
    17 sg:pub.10.1038/nature12213
    18 sg:pub.10.1038/nbt.2514
    19 sg:pub.10.1038/ncomms3185
    20 sg:pub.10.1038/ncomms9971
    21 sg:pub.10.1038/ng.3168
    22 sg:pub.10.1038/ng.806
    23 sg:pub.10.1038/nmeth.2883
    24 sg:pub.10.1038/nmeth.3407
    25 sg:pub.10.1038/nrg.2015.17
    26 sg:pub.10.1186/1471-2164-14-302
    27 sg:pub.10.1186/gb-2013-14-7-r80
    28 sg:pub.10.1186/s13059-014-0480-5
    29 sg:pub.10.1186/s13073-016-0333-9
    30 schema:datePublished 2017-10-19
    31 schema:datePublishedReg 2017-10-19
    32 schema:description BackgroundSignificant clinical and research applications are driving large scale adoption of individualized tumor sequencing in cancer in order to identify tumors-specific mutations. When a matched germline sample is available, somatic mutations may be identified using comparative callers. However, matched germline samples are frequently not available such as with archival tissues, which makes it difficult to distinguish somatic from germline variants. While population databases may be used to filter out known germline variants, recent studies have shown private germline variants result in an inflated false positive rate in unmatched tumor samples, and the number germline false positives in an individual may be related to ancestry.MethodsFirst, we examined the relationship between the germline false positives and ancestry. Then we developed and implemented a tumor only caller (LumosVar) that leverages differences in allelic frequency between somatic and germline variants in impure tumors. We used simulated data to systematically examine how copy number alterations, tumor purity, and sequencing depth should affect the sensitivity of our caller. Finally, we evaluated the caller on real data.ResultsWe find the germline false-positive rate is significantly higher for individuals of non-European Ancestry largely due to the limited diversity in public polymorphism databases and due to population-specific characteristics such as admixture or recent expansions. Our Bayesian tumor only caller (LumosVar) is able to greatly reduce false positives from private germline variants, and our sensitivity is similar to predictions based on simulated data.ConclusionsTaken together, our results suggest that studies of individuals of non-European ancestry would most benefit from our approach. However, high sensitivity requires sufficiently impure tumors and adequate sequencing depth. Even in impure tumors, there are copy number alterations that result in germline and somatic variants having similar allele frequencies, limiting the sensitivity of the approach. We believe our approach could greatly improve the analysis of archival samples in a research setting where the normal is not available.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N0db8bbcef46146458ab12cd6e7c6a018
    36 N25a1bb368e8d4e3a961d7e9681dfaeb7
    37 sg:journal.1039191
    38 schema:keywords BackgroundSignificant
    39 ConclusionsTaken
    40 MethodsFirst
    41 Recent studies
    42 ResultsWe
    43 admixture
    44 adoption
    45 allele frequencies
    46 allelic frequencies
    47 alterations
    48 analysis
    49 ancestry
    50 applications
    51 approach
    52 archival samples
    53 archival tissue
    54 callers
    55 calling
    56 cancer
    57 characteristics
    58 copy number alterations
    59 data
    60 database
    61 depth
    62 differences
    63 diversity
    64 expansion
    65 false positive rate
    66 false positives
    67 frequency
    68 germline
    69 germline samples
    70 germline variants
    71 high sensitivity
    72 individuals
    73 inflated false positive rates
    74 large-scale adoption
    75 limited diversity
    76 method
    77 mutations
    78 non-European ancestry
    79 number alterations
    80 order
    81 polymorphism database
    82 population database
    83 population-specific characteristics
    84 positive rate
    85 positives
    86 prediction
    87 purity
    88 rate
    89 real data
    90 recent expansion
    91 relationship
    92 research
    93 research applications
    94 results
    95 samples
    96 scale adoption
    97 sensitivity
    98 sequencing
    99 sequencing depth
    100 similar allele frequencies
    101 somatic mutations
    102 somatic variant calling
    103 somatic variants
    104 study
    105 study of individuals
    106 tissue
    107 tumor purity
    108 tumor samples
    109 tumor sequencing
    110 tumor-specific mutations
    111 tumors
    112 variant calling
    113 variants
    114 schema:name A method to reduce ancestry related germline false positives in tumor only somatic variant calling
    115 schema:pagination 61
    116 schema:productId N0d8407c433ae4b53879b4ad4ae32e4b3
    117 N55d14daae1594980a2e92fcab2e988a5
    118 Na222c2d8622c4ba397ba702535471a9c
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092304065
    120 https://doi.org/10.1186/s12920-017-0296-8
    121 schema:sdDatePublished 2022-10-01T06:43
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher Nd9a980d47fb84b06a12763ba98adcd8a
    124 schema:url https://doi.org/10.1186/s12920-017-0296-8
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N0916db070bab4556bd5c2d4eaac316db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Computational Biology
    130 rdf:type schema:DefinedTerm
    131 N0d8407c433ae4b53879b4ad4ae32e4b3 schema:name doi
    132 schema:value 10.1186/s12920-017-0296-8
    133 rdf:type schema:PropertyValue
    134 N0db8bbcef46146458ab12cd6e7c6a018 schema:issueNumber 1
    135 rdf:type schema:PublicationIssue
    136 N0e78a629e90a4fa5a37988849de9d548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name DNA
    138 rdf:type schema:DefinedTerm
    139 N1011bc09656e49ccaf9bfa5d9bafc204 rdf:first sg:person.01040423501.33
    140 rdf:rest Nada04193780b4a43bd59a7c9745217f0
    141 N214ad67de44b41c1a1f6e2ccba9e670c rdf:first Na4ef58aa91924be3b23ecac84501a952
    142 rdf:rest Nb2eebf0f655d4aeb888b96cfe0f01c67
    143 N241c58324c07423489b1eb82ebcd4b6c rdf:first sg:person.01127110527.37
    144 rdf:rest N8e5077be9f694072b2c3337a6032feb5
    145 N25a1bb368e8d4e3a961d7e9681dfaeb7 schema:volumeNumber 10
    146 rdf:type schema:PublicationVolume
    147 N37e569df0a6a46f5b4086c7715e62620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Germ-Line Mutation
    149 rdf:type schema:DefinedTerm
    150 N3f8fc86b7e5042dba97919a60a431032 rdf:first sg:person.01051210667.55
    151 rdf:rest rdf:nil
    152 N55d14daae1594980a2e92fcab2e988a5 schema:name pubmed_id
    153 schema:value 29052513
    154 rdf:type schema:PropertyValue
    155 N5bff399ea2dd4b538fa148edf505bd29 rdf:first sg:person.01271226545.90
    156 rdf:rest N214ad67de44b41c1a1f6e2ccba9e670c
    157 N5caddd2f57b34acf8dabf27bd93d5f6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Humans
    159 rdf:type schema:DefinedTerm
    160 N6150753d2406409fa2312b26245bd842 rdf:first sg:person.010405160535.11
    161 rdf:rest Nde2a41ae4be841f8b49a659f6657f8ef
    162 N6f8624592c4d44bc9673a4a74e7a7d26 rdf:first sg:person.0753375704.58
    163 rdf:rest N5bff399ea2dd4b538fa148edf505bd29
    164 N7590d59d27d74191aa79808d68b4b697 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Principal Component Analysis
    166 rdf:type schema:DefinedTerm
    167 N77b70e2d4bc24a66b935b7ccd9b825c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Precision Medicine
    169 rdf:type schema:DefinedTerm
    170 N8e5077be9f694072b2c3337a6032feb5 rdf:first sg:person.01143065340.48
    171 rdf:rest N6f8624592c4d44bc9673a4a74e7a7d26
    172 N963fc5e1d96f4f51b7cf03e28ce64667 rdf:first sg:person.01073437074.54
    173 rdf:rest N9f1e405252db405e8978e4c9bd17f319
    174 N9f1e405252db405e8978e4c9bd17f319 rdf:first sg:person.0624603706.69
    175 rdf:rest Naa87fda7b0ac4cc499da6bf2c64fdc52
    176 Na222c2d8622c4ba397ba702535471a9c schema:name dimensions_id
    177 schema:value pub.1092304065
    178 rdf:type schema:PropertyValue
    179 Na4ef58aa91924be3b23ecac84501a952 schema:affiliation grid-institutes:grid.214458.e
    180 schema:familyName Jaigge
    181 schema:givenName Evelyn
    182 rdf:type schema:Person
    183 Naa87fda7b0ac4cc499da6bf2c64fdc52 rdf:first sg:person.0724413450.76
    184 rdf:rest Nf8f5a34f6a6c496aac1cb9ae41110c43
    185 Nabc921eb1f554627ae1a59dfb4de4c94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name High-Throughput Nucleotide Sequencing
    187 rdf:type schema:DefinedTerm
    188 Nada04193780b4a43bd59a7c9745217f0 rdf:first sg:person.01251103757.60
    189 rdf:rest N963fc5e1d96f4f51b7cf03e28ce64667
    190 Nb2eebf0f655d4aeb888b96cfe0f01c67 rdf:first sg:person.014746122007.81
    191 rdf:rest N3f8fc86b7e5042dba97919a60a431032
    192 Nb4225475153148fbb5aaa1aec85805fb rdf:first sg:person.01272316037.95
    193 rdf:rest Nb9bc8b95c7f3422795944181fe52b94c
    194 Nb9bc8b95c7f3422795944181fe52b94c rdf:first sg:person.0612062374.40
    195 rdf:rest Nf5e97bdfbc8146fdbba3e92a98ef0e80
    196 Nbef72931490c40988213770a96140ef1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Neoplasms
    198 rdf:type schema:DefinedTerm
    199 Nd107a750e25e46a8b2238679371acdd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name DNA Copy Number Variations
    201 rdf:type schema:DefinedTerm
    202 Nd9a980d47fb84b06a12763ba98adcd8a schema:name Springer Nature - SN SciGraph project
    203 rdf:type schema:Organization
    204 Ndc9e286e26ac4b5ca03be3de20be0f10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Gene Frequency
    206 rdf:type schema:DefinedTerm
    207 Nde2a41ae4be841f8b49a659f6657f8ef rdf:first sg:person.0761001234.15
    208 rdf:rest N241c58324c07423489b1eb82ebcd4b6c
    209 Ne966d43601b94b2991640e2d3b7c2268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Bayes Theorem
    211 rdf:type schema:DefinedTerm
    212 Nf5e97bdfbc8146fdbba3e92a98ef0e80 rdf:first sg:person.01311145315.76
    213 rdf:rest N6150753d2406409fa2312b26245bd842
    214 Nf8f5a34f6a6c496aac1cb9ae41110c43 rdf:first sg:person.0727017310.19
    215 rdf:rest Nb4225475153148fbb5aaa1aec85805fb
    216 Nfc9be568c3d64e8e843a82b58fbaf698 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Databases, Genetic
    218 rdf:type schema:DefinedTerm
    219 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    220 schema:name Medical and Health Sciences
    221 rdf:type schema:DefinedTerm
    222 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    223 schema:name Oncology and Carcinogenesis
    224 rdf:type schema:DefinedTerm
    225 sg:grant.4897906 http://pending.schema.org/fundedItem sg:pub.10.1186/s12920-017-0296-8
    226 rdf:type schema:MonetaryGrant
    227 sg:journal.1039191 schema:issn 1755-8794
    228 schema:name BMC Medical Genomics
    229 schema:publisher Springer Nature
    230 rdf:type schema:Periodical
    231 sg:person.01040423501.33 schema:affiliation grid-institutes:grid.250942.8
    232 schema:familyName Halperin
    233 schema:givenName Rebecca F.
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040423501.33
    235 rdf:type schema:Person
    236 sg:person.010405160535.11 schema:affiliation grid-institutes:grid.250942.8
    237 schema:familyName Claasen
    238 schema:givenName Ana
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405160535.11
    240 rdf:type schema:Person
    241 sg:person.01051210667.55 schema:affiliation grid-institutes:grid.250942.8
    242 schema:familyName Craig
    243 schema:givenName David W.
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051210667.55
    245 rdf:type schema:Person
    246 sg:person.01073437074.54 schema:affiliation grid-institutes:grid.42505.36
    247 schema:familyName Manojlovic
    248 schema:givenName Zarko
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073437074.54
    250 rdf:type schema:Person
    251 sg:person.01127110527.37 schema:affiliation grid-institutes:grid.415450.1
    252 schema:familyName Awuah
    253 schema:givenName Baffour
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127110527.37
    255 rdf:type schema:Person
    256 sg:person.01143065340.48 schema:affiliation grid-institutes:grid.415450.1
    257 schema:familyName Oppong
    258 schema:givenName Joseph
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143065340.48
    260 rdf:type schema:Person
    261 sg:person.01251103757.60 schema:affiliation grid-institutes:grid.42505.36
    262 schema:familyName Carpten
    263 schema:givenName John D.
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251103757.60
    265 rdf:type schema:Person
    266 sg:person.01271226545.90 schema:affiliation grid-institutes:grid.239864.2
    267 schema:familyName Newman
    268 schema:givenName Lisa A.
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271226545.90
    270 rdf:type schema:Person
    271 sg:person.01272316037.95 schema:affiliation grid-institutes:grid.250942.8
    272 schema:familyName Liang
    273 schema:givenName Winnie S.
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272316037.95
    275 rdf:type schema:Person
    276 sg:person.01311145315.76 schema:affiliation grid-institutes:grid.250942.8
    277 schema:familyName Enriquez
    278 schema:givenName Daniel
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311145315.76
    280 rdf:type schema:Person
    281 sg:person.014746122007.81 schema:affiliation grid-institutes:grid.250942.8
    282 schema:familyName Kim
    283 schema:givenName Seungchan
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746122007.81
    285 rdf:type schema:Person
    286 sg:person.0612062374.40 schema:affiliation grid-institutes:grid.250942.8
    287 schema:familyName Russell
    288 schema:givenName Megan
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612062374.40
    290 rdf:type schema:Person
    291 sg:person.0624603706.69 schema:affiliation grid-institutes:grid.250942.8
    292 schema:familyName Aldrich
    293 schema:givenName Jessica
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624603706.69
    295 rdf:type schema:Person
    296 sg:person.0724413450.76 schema:affiliation grid-institutes:grid.250942.8
    297 schema:familyName Keats
    298 schema:givenName Jonathan
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724413450.76
    300 rdf:type schema:Person
    301 sg:person.0727017310.19 schema:affiliation grid-institutes:grid.250942.8
    302 schema:familyName Byron
    303 schema:givenName Sara
    304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727017310.19
    305 rdf:type schema:Person
    306 sg:person.0753375704.58 schema:affiliation grid-institutes:grid.214458.e
    307 schema:familyName Wicha
    308 schema:givenName Max S.
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753375704.58
    310 rdf:type schema:Person
    311 sg:person.0761001234.15 schema:affiliation grid-institutes:grid.250942.8
    312 schema:familyName Cherni
    313 schema:givenName Irene
    314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761001234.15
    315 rdf:type schema:Person
    316 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
    317 https://doi.org/10.1038/nature11632
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/nature12213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021761707
    320 https://doi.org/10.1038/nature12213
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/nbt.2514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000477771
    323 https://doi.org/10.1038/nbt.2514
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/ncomms3185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047351077
    326 https://doi.org/10.1038/ncomms3185
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/ncomms9971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033106726
    329 https://doi.org/10.1038/ncomms9971
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/ng.3168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052675624
    332 https://doi.org/10.1038/ng.3168
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/ng.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244476
    335 https://doi.org/10.1038/ng.806
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nmeth.2883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018877372
    338 https://doi.org/10.1038/nmeth.2883
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nmeth.3407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020099324
    341 https://doi.org/10.1038/nmeth.3407
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/nrg.2015.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053266182
    344 https://doi.org/10.1038/nrg.2015.17
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1186/1471-2164-14-302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048857840
    347 https://doi.org/10.1186/1471-2164-14-302
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1186/gb-2013-14-7-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052949539
    350 https://doi.org/10.1186/gb-2013-14-7-r80
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1186/s13059-014-0480-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008818642
    353 https://doi.org/10.1186/s13059-014-0480-5
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1186/s13073-016-0333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027389265
    356 https://doi.org/10.1186/s13073-016-0333-9
    357 rdf:type schema:CreativeWork
    358 grid-institutes:grid.214458.e schema:alternateName University of Michigan, Ann Arbor, MI, USA
    359 schema:name University of Michigan, Ann Arbor, MI, USA
    360 rdf:type schema:Organization
    361 grid-institutes:grid.239864.2 schema:alternateName Henry Ford Health Systems, Detroit, MI, USA
    362 schema:name Henry Ford Health Systems, Detroit, MI, USA
    363 rdf:type schema:Organization
    364 grid-institutes:grid.250942.8 schema:alternateName Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA
    365 Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA
    366 Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
    367 schema:name Center for Translational Innovation, Translational Genomics Research Institute, Phoenix, AZ, USA
    368 Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
    369 Integrated Cancer Division, Translational Genomics Research Institute, Phoenix, AZ, USA
    370 Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
    371 rdf:type schema:Organization
    372 grid-institutes:grid.415450.1 schema:alternateName Komfo Anokye Teaching Hospital, Kumasi, Ghana
    373 schema:name Komfo Anokye Teaching Hospital, Kumasi, Ghana
    374 rdf:type schema:Organization
    375 grid-institutes:grid.42505.36 schema:alternateName Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
    376 schema:name Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
    377 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...