FLAGS, frequently mutated genes in public exomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Casper Shyr, Maja Tarailo-Graovac, Michael Gottlieb, Jessica JY Lee, Clara van Karnebeek, Wyeth W Wasserman

ABSTRACT

BACKGROUND: Dramatic improvements in DNA-sequencing technologies and computational analyses have led to wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations. METHODS: We used publicly available exome cohorts, together with the dbSNP database, to derive a list of genes (n = 100) that most frequently exhibit rare (<1%) non-synonymous/splice-site variants in general populations. We termed these genes FLAGS for FrequentLy mutAted GeneS and analyzed their properties. RESULTS: Analysis of FLAGS revealed that these genes have significantly longer protein coding sequences, a greater number of paralogs and display less evolutionarily selective pressure than expected. FLAGS are more frequently reported in PubMed clinical literature and more frequently associated with diseased phenotypes compared to the set of human protein-coding genes. We demonstrated an overlap between FLAGS and the rare-disease causing genes recently discovered through WES studies (n = 10) and the need for replication studies and rigorous statistical and biological analyses when associating FLAGS to rare disease. Finally, we showed how FLAGS are applied in disease-causing variant prioritization approach on exome data from a family affected by an unknown rare genetic disorder. CONCLUSIONS: We showed that some genes are frequently affected by rare, likely functional variants in general population, and are frequently observed in WES studies analyzing diverse rare phenotypes. We found that the rate at which genes accumulate rare mutations is beneficial information for prioritizing candidates. We provided a ranking system based on the mutation accumulation rates for prioritizing exome-captured human genes, and propose that clinical reports associating any disease/phenotype to FLAGS be evaluated with extra caution. More... »

PAGES

64

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12920-014-0064-y

DOI

http://dx.doi.org/10.1186/s12920-014-0064-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008675542

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25466818


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Factual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Datasets as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Frequency", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada", 
            "Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada", 
            "Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shyr", 
        "givenName": "Casper", 
        "id": "sg:person.01166054153.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166054153.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada", 
            "Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada", 
            "Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarailo-Graovac", 
        "givenName": "Maja", 
        "id": "sg:person.01016721737.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016721737.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gottlieb", 
        "givenName": "Michael", 
        "id": "sg:person.0764773472.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764773472.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada", 
            "Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jessica JY", 
        "id": "sg:person.0665735235.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665735235.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada", 
            "Division of Biochemical Diseases, BC Children\u2019s Hospital, Vancouver, BC, Canada", 
            "Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Karnebeek", 
        "givenName": "Clara", 
        "id": "sg:person.01037477313.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037477313.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada", 
            "Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada", 
            "Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wasserman", 
        "givenName": "Wyeth W", 
        "id": "sg:person.01164162122.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4137/ebo.s12813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000827324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001268995", 
          "https://doi.org/10.1038/nrg3555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-013-1358-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001440472", 
          "https://doi.org/10.1007/s00439-013-1358-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-013-1358-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001440472", 
          "https://doi.org/10.1007/s00439-013-1358-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002821806", 
          "https://doi.org/10.1038/nature13127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002821806", 
          "https://doi.org/10.1038/nature13127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0208-124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002893574", 
          "https://doi.org/10.1038/ng0208-124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1215040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005548694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005817660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.20092215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006157385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783083", 
          "https://doi.org/10.1038/nrg3253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jhg.2012.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008178877", 
          "https://doi.org/10.1038/jhg.2012.91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009987680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-6-s2-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010386267", 
          "https://doi.org/10.1186/1755-8794-6-s2-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010434151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010454294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jhg.2014.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013281647", 
          "https://doi.org/10.1038/jhg.2014.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jhg.2014.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013281647", 
          "https://doi.org/10.1038/jhg.2014.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013368129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.b.22555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015094625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2009.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015642657", 
          "https://doi.org/10.1038/nprot.2009.86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015989191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2014.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016608185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017293702", 
          "https://doi.org/10.1038/nature04226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/514346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017937639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018269189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2011-12-9-228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019772105", 
          "https://doi.org/10.1186/gb-2011-12-9-228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021093950", 
          "https://doi.org/10.1038/nature11011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbt013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021253735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbs086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021271185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.22237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021560240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0248-8663(98)90021-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021689000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0248-8663(98)90021-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021689000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymgme.2014.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022834924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmedgenet-2012-101367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023449353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-61779-582-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023979622", 
          "https://doi.org/10.1007/978-1-61779-582-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025856526", 
          "https://doi.org/10.1038/nrg2344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2012-001563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025978126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddu156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026835646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027113143", 
          "https://doi.org/10.1038/nature10989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.122549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028850611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.122549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028850611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471142905.hg0720s76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029270941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000355930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034082350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034526448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-011-0964-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035732863", 
          "https://doi.org/10.1007/s00439-011-0964-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-011-0964-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035732863", 
          "https://doi.org/10.1007/s00439-011-0964-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.25.12.5171-5182.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036200460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037658930", 
          "https://doi.org/10.1038/nature09764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920210793175886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038379070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2012.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038724905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039936775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040149061", 
          "https://doi.org/10.1038/ng.646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040149061", 
          "https://doi.org/10.1038/ng.646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.14.5.316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040597967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2011.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2013.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041976887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/fly.19695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046734556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047038706", 
          "https://doi.org/10.1038/nrg3031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.097857.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047484720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00401-012-1007-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047608348", 
          "https://doi.org/10.1007/s00401-012-1007-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3715005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048048079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050249412", 
          "https://doi.org/10.1038/nature10945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050728268", 
          "https://doi.org/10.1038/ng.2892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051134045", 
          "https://doi.org/10.1038/nature06258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.21260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052120369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.21260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052120369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2013.0158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059246217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079702720", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Dramatic improvements in DNA-sequencing technologies and computational analyses have led to wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations.\nMETHODS: We used publicly available exome cohorts, together with the dbSNP database, to derive a list of genes (n\u2009=\u2009100) that most frequently exhibit rare (<1%) non-synonymous/splice-site variants in general populations. We termed these genes FLAGS for FrequentLy mutAted GeneS and analyzed their properties.\nRESULTS: Analysis of FLAGS revealed that these genes have significantly longer protein coding sequences, a greater number of paralogs and display less evolutionarily selective pressure than expected. FLAGS are more frequently reported in PubMed clinical literature and more frequently associated with diseased phenotypes compared to the set of human protein-coding genes. We demonstrated an overlap between FLAGS and the rare-disease causing genes recently discovered through WES studies (n\u2009=\u200910) and the need for replication studies and rigorous statistical and biological analyses when associating FLAGS to rare disease. Finally, we showed how FLAGS are applied in disease-causing variant prioritization approach on exome data from a family affected by an unknown rare genetic disorder.\nCONCLUSIONS: We showed that some genes are frequently affected by rare, likely functional variants in general population, and are frequently observed in WES studies analyzing diverse rare phenotypes. We found that the rate at which genes accumulate rare mutations is beneficial information for prioritizing candidates. We provided a ranking system based on the mutation accumulation rates for prioritizing exome-captured human genes, and propose that clinical reports associating any disease/phenotype to FLAGS be evaluated with extra caution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12920-014-0064-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2977320", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "FLAGS, frequently mutated genes in public exomes", 
    "pagination": "64", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "295515979f962336b7b977ebf74e6fe2d3dc1d80edbf777e1789c630fd044069"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25466818"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101319628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12920-014-0064-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008675542"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12920-014-0064-y", 
      "https://app.dimensions.ai/details/publication/pub.1008675542"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87079_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12920-014-0064-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12920-014-0064-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12920-014-0064-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12920-014-0064-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12920-014-0064-y'


 

This table displays all metadata directly associated to this object as RDF triples.

372 TRIPLES      21 PREDICATES      104 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12920-014-0064-y schema:about N0689d74b38a243ef83b4e6945f59127c
2 N08dd0f8d2ebe4b7ea8be4e8b7835682d
3 N44ec78fb4e374b038be5492f4da32045
4 N5e166f6ae59f41d593d9a88e37552baf
5 N8002b57c76a54e21a1a1b326abbc9a7d
6 N911ab6abd96142ed9aa87b7db814b947
7 N9f6e4255ccfb4da4aecc619e295d40ad
8 Na8c12af16f7841cebd98f46eb013e4b0
9 Ncfc3c5ac4f2444d89dee4a08e53e9e1e
10 Nd0a6d2e7c2e9486c9078b44f35deb68b
11 Needfcbdba0ca42bfb863554762df2cc1
12 Nf4f083d30ea64342a927bc5de57d550a
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N6811fe6419c6445e9f9ec60efba03b50
16 schema:citation sg:pub.10.1007/978-1-61779-582-4_9
17 sg:pub.10.1007/s00401-012-1007-3
18 sg:pub.10.1007/s00439-011-0964-2
19 sg:pub.10.1007/s00439-013-1358-4
20 sg:pub.10.1038/jhg.2012.91
21 sg:pub.10.1038/jhg.2014.25
22 sg:pub.10.1038/nature04226
23 sg:pub.10.1038/nature06258
24 sg:pub.10.1038/nature09534
25 sg:pub.10.1038/nature09764
26 sg:pub.10.1038/nature10945
27 sg:pub.10.1038/nature10989
28 sg:pub.10.1038/nature11011
29 sg:pub.10.1038/nature13127
30 sg:pub.10.1038/ng.2892
31 sg:pub.10.1038/ng.646
32 sg:pub.10.1038/ng0208-124
33 sg:pub.10.1038/nmeth0410-248
34 sg:pub.10.1038/nprot.2009.86
35 sg:pub.10.1038/nrg2344
36 sg:pub.10.1038/nrg3031
37 sg:pub.10.1038/nrg3253
38 sg:pub.10.1038/nrg3555
39 sg:pub.10.1186/1755-8794-6-s2-s3
40 sg:pub.10.1186/gb-2011-12-9-228
41 https://app.dimensions.ai/details/publication/pub.1079702720
42 https://doi.org/10.1002/0471142905.hg0720s76
43 https://doi.org/10.1002/humu.21260
44 https://doi.org/10.1002/humu.22237
45 https://doi.org/10.1002/humu.22547
46 https://doi.org/10.1002/jez.b.22555
47 https://doi.org/10.1016/j.ajhg.2013.06.013
48 https://doi.org/10.1016/j.ajhg.2014.01.006
49 https://doi.org/10.1016/j.molcel.2011.12.026
50 https://doi.org/10.1016/j.neuron.2012.04.009
51 https://doi.org/10.1016/j.ymgme.2014.01.011
52 https://doi.org/10.1016/s0248-8663(98)90021-2
53 https://doi.org/10.1084/jem.20092215
54 https://doi.org/10.1086/514346
55 https://doi.org/10.1089/cmb.2013.0158
56 https://doi.org/10.1093/bib/bbs086
57 https://doi.org/10.1093/bib/bbt013
58 https://doi.org/10.1093/bioinformatics/btt359
59 https://doi.org/10.1093/hmg/ddu156
60 https://doi.org/10.1093/nar/29.1.308
61 https://doi.org/10.1093/nar/gkq953
62 https://doi.org/10.1093/nar/gks1066
63 https://doi.org/10.1093/nar/gkt1026
64 https://doi.org/10.1093/nar/gkt1196
65 https://doi.org/10.1101/gr.097857.109
66 https://doi.org/10.1101/gr.3715005
67 https://doi.org/10.1126/science.1215040
68 https://doi.org/10.1128/mcb.25.12.5171-5182.2005
69 https://doi.org/10.1136/amiajnl-2012-001563
70 https://doi.org/10.1136/jmedgenet-2012-101367
71 https://doi.org/10.1136/jmg.14.5.316
72 https://doi.org/10.1159/000355930
73 https://doi.org/10.1371/journal.pcbi.1003073
74 https://doi.org/10.1371/journal.pgen.1003709
75 https://doi.org/10.1534/genetics.110.122549
76 https://doi.org/10.2174/138920210793175886
77 https://doi.org/10.4137/ebo.s12813
78 https://doi.org/10.4161/fly.19695
79 schema:datePublished 2014-12
80 schema:datePublishedReg 2014-12-01
81 schema:description BACKGROUND: Dramatic improvements in DNA-sequencing technologies and computational analyses have led to wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations. METHODS: We used publicly available exome cohorts, together with the dbSNP database, to derive a list of genes (n = 100) that most frequently exhibit rare (<1%) non-synonymous/splice-site variants in general populations. We termed these genes FLAGS for FrequentLy mutAted GeneS and analyzed their properties. RESULTS: Analysis of FLAGS revealed that these genes have significantly longer protein coding sequences, a greater number of paralogs and display less evolutionarily selective pressure than expected. FLAGS are more frequently reported in PubMed clinical literature and more frequently associated with diseased phenotypes compared to the set of human protein-coding genes. We demonstrated an overlap between FLAGS and the rare-disease causing genes recently discovered through WES studies (n = 10) and the need for replication studies and rigorous statistical and biological analyses when associating FLAGS to rare disease. Finally, we showed how FLAGS are applied in disease-causing variant prioritization approach on exome data from a family affected by an unknown rare genetic disorder. CONCLUSIONS: We showed that some genes are frequently affected by rare, likely functional variants in general population, and are frequently observed in WES studies analyzing diverse rare phenotypes. We found that the rate at which genes accumulate rare mutations is beneficial information for prioritizing candidates. We provided a ranking system based on the mutation accumulation rates for prioritizing exome-captured human genes, and propose that clinical reports associating any disease/phenotype to FLAGS be evaluated with extra caution.
82 schema:genre research_article
83 schema:inLanguage en
84 schema:isAccessibleForFree true
85 schema:isPartOf N51b3631c34d54ac8abdf1ff37529b3ef
86 N68e4fc1c6f544164a017f31838cb9206
87 sg:journal.1039191
88 schema:name FLAGS, frequently mutated genes in public exomes
89 schema:pagination 64
90 schema:productId N3cfd7592c92449a794c19d92b0d68d8c
91 N5d8c4a0a39f6441bab12678f19b1a9a2
92 N6d81a0f87c9b478e9e13ac3d6038d754
93 N8472644f30814fb291622585acf1ad6e
94 Neeb8cc73b1c74b25b0083f735ffe608c
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008675542
96 https://doi.org/10.1186/s12920-014-0064-y
97 schema:sdDatePublished 2019-04-11T12:21
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Nddbdf15925354424b236556671f945d0
100 schema:url https://link.springer.com/10.1186%2Fs12920-014-0064-y
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N0689d74b38a243ef83b4e6945f59127c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Databases, Factual
106 rdf:type schema:DefinedTerm
107 N08dd0f8d2ebe4b7ea8be4e8b7835682d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Child, Preschool
109 rdf:type schema:DefinedTerm
110 N1a09eeb80b9942f189c4f30421ea1218 rdf:first sg:person.01164162122.26
111 rdf:rest rdf:nil
112 N3b240697085d4e299d989dc95b17b1bd rdf:first sg:person.01016721737.77
113 rdf:rest Nc3d2a6f19e14415cae56306464ef0ad8
114 N3cfd7592c92449a794c19d92b0d68d8c schema:name dimensions_id
115 schema:value pub.1008675542
116 rdf:type schema:PropertyValue
117 N3d1d2a6ead1241928bdbf628acb7e823 rdf:first sg:person.0665735235.12
118 rdf:rest N90c003960c7a4d03b40ee6af2b615387
119 N44ec78fb4e374b038be5492f4da32045 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Exome
121 rdf:type schema:DefinedTerm
122 N51b3631c34d54ac8abdf1ff37529b3ef schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 N5d8c4a0a39f6441bab12678f19b1a9a2 schema:name readcube_id
125 schema:value 295515979f962336b7b977ebf74e6fe2d3dc1d80edbf777e1789c630fd044069
126 rdf:type schema:PropertyValue
127 N5e166f6ae59f41d593d9a88e37552baf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Datasets as Topic
129 rdf:type schema:DefinedTerm
130 N6811fe6419c6445e9f9ec60efba03b50 rdf:first sg:person.01166054153.39
131 rdf:rest N3b240697085d4e299d989dc95b17b1bd
132 N68e4fc1c6f544164a017f31838cb9206 schema:volumeNumber 7
133 rdf:type schema:PublicationVolume
134 N6d81a0f87c9b478e9e13ac3d6038d754 schema:name pubmed_id
135 schema:value 25466818
136 rdf:type schema:PropertyValue
137 N8002b57c76a54e21a1a1b326abbc9a7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Gene Expression Profiling
139 rdf:type schema:DefinedTerm
140 N8472644f30814fb291622585acf1ad6e schema:name nlm_unique_id
141 schema:value 101319628
142 rdf:type schema:PropertyValue
143 N90c003960c7a4d03b40ee6af2b615387 rdf:first sg:person.01037477313.40
144 rdf:rest N1a09eeb80b9942f189c4f30421ea1218
145 N911ab6abd96142ed9aa87b7db814b947 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Biomarkers
147 rdf:type schema:DefinedTerm
148 N9f6e4255ccfb4da4aecc619e295d40ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Oligonucleotide Array Sequence Analysis
150 rdf:type schema:DefinedTerm
151 Na8c12af16f7841cebd98f46eb013e4b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Sequence Analysis, RNA
153 rdf:type schema:DefinedTerm
154 Nc3d2a6f19e14415cae56306464ef0ad8 rdf:first sg:person.0764773472.70
155 rdf:rest N3d1d2a6ead1241928bdbf628acb7e823
156 Ncfc3c5ac4f2444d89dee4a08e53e9e1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Gene Frequency
158 rdf:type schema:DefinedTerm
159 Nd0a6d2e7c2e9486c9078b44f35deb68b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Mutation
161 rdf:type schema:DefinedTerm
162 Nddbdf15925354424b236556671f945d0 schema:name Springer Nature - SN SciGraph project
163 rdf:type schema:Organization
164 Neeb8cc73b1c74b25b0083f735ffe608c schema:name doi
165 schema:value 10.1186/s12920-014-0064-y
166 rdf:type schema:PropertyValue
167 Needfcbdba0ca42bfb863554762df2cc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Female
169 rdf:type schema:DefinedTerm
170 Nf4f083d30ea64342a927bc5de57d550a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Humans
172 rdf:type schema:DefinedTerm
173 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
174 schema:name Biological Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
177 schema:name Genetics
178 rdf:type schema:DefinedTerm
179 sg:grant.2977320 http://pending.schema.org/fundedItem sg:pub.10.1186/s12920-014-0064-y
180 rdf:type schema:MonetaryGrant
181 sg:journal.1039191 schema:issn 1755-8794
182 schema:name BMC Medical Genomics
183 rdf:type schema:Periodical
184 sg:person.01016721737.77 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
185 schema:familyName Tarailo-Graovac
186 schema:givenName Maja
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016721737.77
188 rdf:type schema:Person
189 sg:person.01037477313.40 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
190 schema:familyName van Karnebeek
191 schema:givenName Clara
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037477313.40
193 rdf:type schema:Person
194 sg:person.01164162122.26 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
195 schema:familyName Wasserman
196 schema:givenName Wyeth W
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26
198 rdf:type schema:Person
199 sg:person.01166054153.39 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
200 schema:familyName Shyr
201 schema:givenName Casper
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166054153.39
203 rdf:type schema:Person
204 sg:person.0665735235.12 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
205 schema:familyName Lee
206 schema:givenName Jessica JY
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665735235.12
208 rdf:type schema:Person
209 sg:person.0764773472.70 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
210 schema:familyName Gottlieb
211 schema:givenName Michael
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764773472.70
213 rdf:type schema:Person
214 sg:pub.10.1007/978-1-61779-582-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023979622
215 https://doi.org/10.1007/978-1-61779-582-4_9
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s00401-012-1007-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047608348
218 https://doi.org/10.1007/s00401-012-1007-3
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s00439-011-0964-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035732863
221 https://doi.org/10.1007/s00439-011-0964-2
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00439-013-1358-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001440472
224 https://doi.org/10.1007/s00439-013-1358-4
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/jhg.2012.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008178877
227 https://doi.org/10.1038/jhg.2012.91
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/jhg.2014.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013281647
230 https://doi.org/10.1038/jhg.2014.25
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
233 https://doi.org/10.1038/nature04226
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
236 https://doi.org/10.1038/nature06258
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
239 https://doi.org/10.1038/nature09534
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nature09764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037658930
242 https://doi.org/10.1038/nature09764
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nature10945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050249412
245 https://doi.org/10.1038/nature10945
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nature10989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027113143
248 https://doi.org/10.1038/nature10989
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nature11011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021093950
251 https://doi.org/10.1038/nature11011
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nature13127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002821806
254 https://doi.org/10.1038/nature13127
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/ng.2892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050728268
257 https://doi.org/10.1038/ng.2892
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/ng.646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040149061
260 https://doi.org/10.1038/ng.646
261 rdf:type schema:CreativeWork
262 sg:pub.10.1038/ng0208-124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002893574
263 https://doi.org/10.1038/ng0208-124
264 rdf:type schema:CreativeWork
265 sg:pub.10.1038/nmeth0410-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007489634
266 https://doi.org/10.1038/nmeth0410-248
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/nprot.2009.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015642657
269 https://doi.org/10.1038/nprot.2009.86
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/nrg2344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025856526
272 https://doi.org/10.1038/nrg2344
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/nrg3031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038706
275 https://doi.org/10.1038/nrg3031
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/nrg3253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783083
278 https://doi.org/10.1038/nrg3253
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/nrg3555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001268995
281 https://doi.org/10.1038/nrg3555
282 rdf:type schema:CreativeWork
283 sg:pub.10.1186/1755-8794-6-s2-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010386267
284 https://doi.org/10.1186/1755-8794-6-s2-s3
285 rdf:type schema:CreativeWork
286 sg:pub.10.1186/gb-2011-12-9-228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019772105
287 https://doi.org/10.1186/gb-2011-12-9-228
288 rdf:type schema:CreativeWork
289 https://app.dimensions.ai/details/publication/pub.1079702720 schema:CreativeWork
290 https://doi.org/10.1002/0471142905.hg0720s76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029270941
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1002/humu.21260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052120369
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1002/humu.22237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021560240
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1002/humu.22547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010454294
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1002/jez.b.22555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015094625
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1016/j.ajhg.2013.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041976887
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1016/j.ajhg.2014.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016608185
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1016/j.molcel.2011.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296785
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/j.neuron.2012.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038724905
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.ymgme.2014.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022834924
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/s0248-8663(98)90021-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021689000
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1084/jem.20092215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006157385
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1086/514346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017937639
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1089/cmb.2013.0158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059246217
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1093/bib/bbs086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021271185
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1093/bib/bbt013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021253735
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1093/bioinformatics/btt359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018269189
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1093/hmg/ddu156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026835646
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1093/nar/29.1.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817660
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1093/nar/gkq953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009987680
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1093/nar/gks1066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010434151
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1093/nar/gkt1026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039936775
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1093/nar/gkt1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015989191
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1101/gr.097857.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047484720
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1101/gr.3715005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048048079
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1126/science.1215040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005548694
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1128/mcb.25.12.5171-5182.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036200460
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1136/amiajnl-2012-001563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025978126
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1136/jmedgenet-2012-101367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023449353
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1136/jmg.14.5.316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040597967
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1159/000355930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034082350
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1371/journal.pcbi.1003073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034526448
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1371/journal.pgen.1003709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013368129
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1534/genetics.110.122549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028850611
357 rdf:type schema:CreativeWork
358 https://doi.org/10.2174/138920210793175886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038379070
359 rdf:type schema:CreativeWork
360 https://doi.org/10.4137/ebo.s12813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000827324
361 rdf:type schema:CreativeWork
362 https://doi.org/10.4161/fly.19695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046734556
363 rdf:type schema:CreativeWork
364 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
365 schema:name Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
366 Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
367 Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
368 Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
369 Division of Biochemical Diseases, BC Children’s Hospital, Vancouver, BC, Canada
370 Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, Canada
371 Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, Canada
372 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...