Predicting disease-related phenotypes using an integrated phenotype similarity measurement based on HPO. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hansheng Xue, Jiajie Peng, Xuequn Shang

ABSTRACT

BACKGROUND: Improving efficiency of disease diagnosis based on phenotype ontology is a critical yet challenging research area. Recently, Human Phenotype Ontology (HPO)-based semantic similarity has been affectively and widely used to identify causative genes and diseases. However, current phenotype similarity measurements just consider the annotations and hierarchy structure of HPO, neglecting the definition description of phenotype terms. RESULTS: In this paper, we propose a novel phenotype similarity measurement, termed as DisPheno, which adequately incorporates the definition of phenotype terms in addition to HPO structure and annotations to measure the similarity between phenotype terms. DisPheno also integrates phenotype term associations into phenotype-set similarity measurement using gene and disease annotations of phenotype terms. CONCLUSIONS: Compared with five existing state-of-the-art methods, DisPheno shows great performance in HPO-based phenotype semantic similarity measurement and improves the efficiency of disease identification, especially on noisy patients dataset. More... »

PAGES

34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12918-019-0697-8

DOI

http://dx.doi.org/10.1186/s12918-019-0697-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113262145

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30953559


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science, Northwestern Polytechnical University, Xi'an, China.", 
            "School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Hansheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Computer Science, Northwestern Polytechnical University, Xi'an, China. jiajiepeng@nwpu.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Jiajie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Computer Science, Northwestern Polytechnical University, Xi'an, China. shang@nwpu.edu.cn."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shang", 
        "givenName": "Xuequn", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-9-s5-s4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000460515", 
          "https://doi.org/10.1186/1471-2105-9-s5-s4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003632168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003632168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2015.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003632168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0115692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005313800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0115692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005313800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007784461", 
          "https://doi.org/10.1038/nature14135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008228824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1206524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011029531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015770966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-s11-s20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016413612", 
          "https://doi.org/10.1186/1471-2105-10-s11-s20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016645228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020214306", 
          "https://doi.org/10.1038/srep30024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2010.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2828-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029098400", 
          "https://doi.org/10.1186/s12864-016-2828-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2828-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029098400", 
          "https://doi.org/10.1186/s12864-016-2828-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030316365", 
          "https://doi.org/10.1186/1471-2105-13-261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031579304", 
          "https://doi.org/10.1186/1471-2105-15-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031579304", 
          "https://doi.org/10.1186/1471-2105-15-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2014.14601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035740594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036859506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045390698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045712253", 
          "https://doi.org/10.1186/1471-2105-7-302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045712253", 
          "https://doi.org/10.1186/1471-2105-7-302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048238292", 
          "https://doi.org/10.1186/s12859-015-0474-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048238292", 
          "https://doi.org/10.1186/s12859-015-0474-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048238292", 
          "https://doi.org/10.1186/s12859-015-0474-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3009262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062688408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijdmb.2017.084268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085629661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13326-017-0144-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091894837", 
          "https://doi.org/10.1186/s13326-017-0144-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bibm.2016.7822617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093620676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-017-1959-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100107686", 
          "https://doi.org/10.1186/s12859-017-1959-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bty079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101010150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-018-0539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101622440", 
          "https://doi.org/10.1186/s12918-018-0539-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-018-0539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101622440", 
          "https://doi.org/10.1186/s12918-018-0539-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-018-0539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101622440", 
          "https://doi.org/10.1186/s12918-018-0539-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-018-0539-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101622440", 
          "https://doi.org/10.1186/s12918-018-0539-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-018-2102-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103225959", 
          "https://doi.org/10.1186/s12859-018-2102-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-018-2102-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103225959", 
          "https://doi.org/10.1186/s12859-018-2102-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-018-2102-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103225959", 
          "https://doi.org/10.1186/s12859-018-2102-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13023-018-0830-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104327765", 
          "https://doi.org/10.1186/s13023-018-0830-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13023-018-0830-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104327765", 
          "https://doi.org/10.1186/s13023-018-0830-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-018-4927-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106141172", 
          "https://doi.org/10.1186/s12864-018-4927-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-018-4927-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106141172", 
          "https://doi.org/10.1186/s12864-018-4927-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "BACKGROUND: Improving efficiency of disease diagnosis based on phenotype ontology is a critical yet challenging research area. Recently, Human Phenotype Ontology (HPO)-based semantic similarity has been affectively and widely used to identify causative genes and diseases. However, current phenotype similarity measurements just consider the annotations and hierarchy structure of HPO, neglecting the definition description of phenotype terms.\nRESULTS: In this paper, we propose a novel phenotype similarity measurement, termed as DisPheno, which adequately incorporates the definition of phenotype terms in addition to HPO structure and annotations to measure the similarity between phenotype terms. DisPheno also integrates phenotype term associations into phenotype-set similarity measurement using gene and disease annotations of phenotype terms.\nCONCLUSIONS: Compared with five existing state-of-the-art methods, DisPheno shows great performance in HPO-based phenotype semantic similarity measurement and improves the efficiency of disease identification, especially on noisy patients dataset.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12918-019-0697-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Predicting disease-related phenotypes using an integrated phenotype similarity measurement based on HPO.", 
    "pagination": "34", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12918-019-0697-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113262145"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30953559"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12918-019-0697-8", 
      "https://app.dimensions.ai/details/publication/pub.1113262145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91450_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-019-0697-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12918-019-0697-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12918-019-0697-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12918-019-0697-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12918-019-0697-8'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      59 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12918-019-0697-8 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N29c60b8e154643e38003e8864f64ceb9
4 schema:citation sg:pub.10.1038/nature14135
5 sg:pub.10.1038/srep30024
6 sg:pub.10.1186/1471-2105-10-s11-s20
7 sg:pub.10.1186/1471-2105-13-261
8 sg:pub.10.1186/1471-2105-15-248
9 sg:pub.10.1186/1471-2105-7-302
10 sg:pub.10.1186/1471-2105-9-s5-s4
11 sg:pub.10.1186/s12859-015-0474-7
12 sg:pub.10.1186/s12859-017-1959-3
13 sg:pub.10.1186/s12859-018-2102-9
14 sg:pub.10.1186/s12864-016-2828-6
15 sg:pub.10.1186/s12864-018-4927-z
16 sg:pub.10.1186/s12918-018-0539-0
17 sg:pub.10.1186/s13023-018-0830-6
18 sg:pub.10.1186/s13326-017-0144-y
19 https://doi.org/10.1001/jama.2014.14601
20 https://doi.org/10.1016/j.ajhg.2008.09.017
21 https://doi.org/10.1016/j.ajhg.2009.09.003
22 https://doi.org/10.1016/j.ajhg.2015.05.020
23 https://doi.org/10.1016/j.jbi.2010.09.002
24 https://doi.org/10.1056/nejmoa1206524
25 https://doi.org/10.1093/bioinformatics/btm087
26 https://doi.org/10.1093/bioinformatics/btt160
27 https://doi.org/10.1093/bioinformatics/btu144
28 https://doi.org/10.1093/bioinformatics/bty079
29 https://doi.org/10.1093/nar/gkr538
30 https://doi.org/10.1109/bibm.2016.7822617
31 https://doi.org/10.1126/scitranslmed.3009262
32 https://doi.org/10.1371/journal.pbio.1000247
33 https://doi.org/10.1371/journal.pone.0115692
34 https://doi.org/10.1504/ijdmb.2017.084268
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description BACKGROUND: Improving efficiency of disease diagnosis based on phenotype ontology is a critical yet challenging research area. Recently, Human Phenotype Ontology (HPO)-based semantic similarity has been affectively and widely used to identify causative genes and diseases. However, current phenotype similarity measurements just consider the annotations and hierarchy structure of HPO, neglecting the definition description of phenotype terms. RESULTS: In this paper, we propose a novel phenotype similarity measurement, termed as DisPheno, which adequately incorporates the definition of phenotype terms in addition to HPO structure and annotations to measure the similarity between phenotype terms. DisPheno also integrates phenotype term associations into phenotype-set similarity measurement using gene and disease annotations of phenotype terms. CONCLUSIONS: Compared with five existing state-of-the-art methods, DisPheno shows great performance in HPO-based phenotype semantic similarity measurement and improves the efficiency of disease identification, especially on noisy patients dataset.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N50ea32f5db134b3cbf516ce9b2dc3b9b
42 Nba8a99e3e0e044fc86eb18d0cdb5cd05
43 sg:journal.1327442
44 schema:name Predicting disease-related phenotypes using an integrated phenotype similarity measurement based on HPO.
45 schema:pagination 34
46 schema:productId N10a3f72935e84b55a7f6ca9909264e2d
47 N2f358eb80746496caae11b769ccc98f0
48 Nf5346f987baa4e5db6b8a1bf3ae98437
49 Nf9af16c378c64409b8e041418b731df4
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113262145
51 https://doi.org/10.1186/s12918-019-0697-8
52 schema:sdDatePublished 2019-04-15T09:02
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nf3f5f46f0be74e018d711b174ef4eb6d
55 schema:url https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-019-0697-8
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N10a3f72935e84b55a7f6ca9909264e2d schema:name dimensions_id
60 schema:value pub.1113262145
61 rdf:type schema:PropertyValue
62 N119f9e27930f4ab3918942ecbeaa41a8 rdf:first N819cd81276a4474a92c5f6ef7ccbe2dc
63 rdf:rest N2449ff9c23b644ed90cd49d68f62da77
64 N2449ff9c23b644ed90cd49d68f62da77 rdf:first N94b7337f303d418aab6fdd1ed00658b2
65 rdf:rest rdf:nil
66 N29c60b8e154643e38003e8864f64ceb9 rdf:first Ne14ee400cc1149fcb9d6c8e2f51c3310
67 rdf:rest N119f9e27930f4ab3918942ecbeaa41a8
68 N2f358eb80746496caae11b769ccc98f0 schema:name doi
69 schema:value 10.1186/s12918-019-0697-8
70 rdf:type schema:PropertyValue
71 N50ea32f5db134b3cbf516ce9b2dc3b9b schema:volumeNumber 13
72 rdf:type schema:PublicationVolume
73 N819cd81276a4474a92c5f6ef7ccbe2dc schema:affiliation https://www.grid.ac/institutes/grid.440588.5
74 schema:familyName Peng
75 schema:givenName Jiajie
76 rdf:type schema:Person
77 N94b7337f303d418aab6fdd1ed00658b2 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
78 schema:familyName Shang
79 schema:givenName Xuequn
80 rdf:type schema:Person
81 Nba8a99e3e0e044fc86eb18d0cdb5cd05 schema:issueNumber Suppl 2
82 rdf:type schema:PublicationIssue
83 Ne14ee400cc1149fcb9d6c8e2f51c3310 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
84 schema:familyName Xue
85 schema:givenName Hansheng
86 rdf:type schema:Person
87 Nf3f5f46f0be74e018d711b174ef4eb6d schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nf5346f987baa4e5db6b8a1bf3ae98437 schema:name pubmed_id
90 schema:value 30953559
91 rdf:type schema:PropertyValue
92 Nf9af16c378c64409b8e041418b731df4 schema:name nlm_unique_id
93 schema:value 101301827
94 rdf:type schema:PropertyValue
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
99 schema:name Genetics
100 rdf:type schema:DefinedTerm
101 sg:journal.1327442 schema:issn 1752-0509
102 schema:name BMC Systems Biology
103 rdf:type schema:Periodical
104 sg:pub.10.1038/nature14135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007784461
105 https://doi.org/10.1038/nature14135
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/srep30024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020214306
108 https://doi.org/10.1038/srep30024
109 rdf:type schema:CreativeWork
110 sg:pub.10.1186/1471-2105-10-s11-s20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016413612
111 https://doi.org/10.1186/1471-2105-10-s11-s20
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/1471-2105-13-261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030316365
114 https://doi.org/10.1186/1471-2105-13-261
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/1471-2105-15-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031579304
117 https://doi.org/10.1186/1471-2105-15-248
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/1471-2105-7-302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045712253
120 https://doi.org/10.1186/1471-2105-7-302
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1471-2105-9-s5-s4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000460515
123 https://doi.org/10.1186/1471-2105-9-s5-s4
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/s12859-015-0474-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048238292
126 https://doi.org/10.1186/s12859-015-0474-7
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/s12859-017-1959-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100107686
129 https://doi.org/10.1186/s12859-017-1959-3
130 rdf:type schema:CreativeWork
131 sg:pub.10.1186/s12859-018-2102-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103225959
132 https://doi.org/10.1186/s12859-018-2102-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1186/s12864-016-2828-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029098400
135 https://doi.org/10.1186/s12864-016-2828-6
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/s12864-018-4927-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106141172
138 https://doi.org/10.1186/s12864-018-4927-z
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/s12918-018-0539-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101622440
141 https://doi.org/10.1186/s12918-018-0539-0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/s13023-018-0830-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104327765
144 https://doi.org/10.1186/s13023-018-0830-6
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/s13326-017-0144-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091894837
147 https://doi.org/10.1186/s13326-017-0144-y
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1001/jama.2014.14601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035740594
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ajhg.2008.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605009
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ajhg.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008228824
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ajhg.2015.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003632168
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jbi.2010.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356654
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1056/nejmoa1206524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011029531
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/btm087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754099
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/btt160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015770966
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/btu144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016645228
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/bty079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101010150
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/nar/gkr538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036859506
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/bibm.2016.7822617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093620676
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/scitranslmed.3009262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062688408
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pbio.1000247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045390698
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pone.0115692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005313800
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1504/ijdmb.2017.084268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085629661
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
182 schema:name School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China.
183 School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.440588.5 schema:alternateName Northwestern Polytechnical University
186 schema:name School of Computer Science, Northwestern Polytechnical University, Xi'an, China. jiajiepeng@nwpu.edu.cn.
187 School of Computer Science, Northwestern Polytechnical University, Xi'an, China. shang@nwpu.edu.cn.
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...