SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Enzo Rucci, Carlos Garcia, Guillermo Botella, Armando De Giusti, Marcelo Naiouf, Manuel Prieto-Matias

ABSTRACT

BACKGROUND: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as Graphics Processing Units (GPUs), Xeon Phi accelerators and Field Programmable Gate Arrays (FGPAs) to speed up large-scale workloads. RESULTS: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset. CONCLUSIONS: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS. More... »

PAGES

96

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12918-018-0614-6

DOI

http://dx.doi.org/10.1186/s12918-018-0614-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110062713

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30458766


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "III-LIDI, CONICET, Facultad de Inform\u00e1tica, Universidad Nacional de La Plata, 1900, La Plata (Buenos Aires), Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rucci", 
        "givenName": "Enzo", 
        "id": "sg:person.0737301461.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737301461.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Depto. Arquitectura de Computadores y Autom\u00e1tica, Universidad Complutense de Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Carlos", 
        "id": "sg:person.012762576303.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762576303.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Depto. Arquitectura de Computadores y Autom\u00e1tica, Universidad Complutense de Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Botella", 
        "givenName": "Guillermo", 
        "id": "sg:person.016574110506.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574110506.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "III-LIDI, CONICET, Facultad de Inform\u00e1tica, Universidad Nacional de La Plata, 1900, La Plata (Buenos Aires), Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Giusti", 
        "givenName": "Armando", 
        "id": "sg:person.013017320261.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013017320261.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of La Plata", 
          "id": "https://www.grid.ac/institutes/grid.9499.d", 
          "name": [
            "III-LIDI, Facultad de Inform\u00e1tica, Universidad Nacional de La Plata, 1900, La Plata (Buenos Aires), Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naiouf", 
        "givenName": "Marcelo", 
        "id": "sg:person.016551155603.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551155603.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Depto. Arquitectura de Computadores y Autom\u00e1tica, Universidad Complutense de Madrid, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prieto-Matias", 
        "givenName": "Manuel", 
        "id": "sg:person.011517105361.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517105361.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-14-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000348056", 
          "https://doi.org/10.1186/1471-2105-14-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2858656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005231917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-19475-7_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005738279", 
          "https://doi.org/10.1007/978-3-642-19475-7_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-19475-7_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005738279", 
          "https://doi.org/10.1007/978-3-642-19475-7_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-41279-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008563487", 
          "https://doi.org/10.1007/978-3-319-41279-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-1791-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010387495", 
          "https://doi.org/10.1007/978-1-4614-1791-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012228952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032649695", 
          "https://doi.org/10.1186/1471-2105-14-117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpe.3598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035010756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.8.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035928070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036518556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/498255a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042946700", 
          "https://doi.org/10.1038/498255a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048911367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-016-0930-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052522445", 
          "https://doi.org/10.1186/s12859-016-0930-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpds.2016.2515597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061755003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218126607003575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062951643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342016654215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342016654215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063977417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-56154-7_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084754024", 
          "https://doi.org/10.1007/978-3-319-56154-7_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ccgrid.2014.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094297846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asap.2014.6868657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094370952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cluster.2014.6968772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095386109"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "BACKGROUND: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as Graphics Processing Units (GPUs), Xeon Phi accelerators and Field Programmable Gate Arrays (FGPAs) to speed up large-scale workloads.\nRESULTS: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset.\nCONCLUSIONS: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12918-018-0614-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences", 
    "pagination": "96", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "57e6f70abe59b129fca3d6137804fe04fb0edb1b5460b1915510854cfa8b97c7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30458766"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12918-018-0614-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110062713"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12918-018-0614-6", 
      "https://app.dimensions.ai/details/publication/pub.1110062713"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs12918-018-0614-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0614-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0614-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0614-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0614-6'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12918-018-0614-6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N2a263c3b98114932a148d1aa9d8a35da
4 schema:citation sg:pub.10.1007/978-1-4614-1791-0_3
5 sg:pub.10.1007/978-3-319-41279-5_6
6 sg:pub.10.1007/978-3-319-56154-7_45
7 sg:pub.10.1007/978-3-642-19475-7_20
8 sg:pub.10.1038/498255a
9 sg:pub.10.1186/1471-2105-14-1
10 sg:pub.10.1186/1471-2105-14-117
11 sg:pub.10.1186/s12859-016-0930-z
12 https://doi.org/10.1002/cpe.3598
13 https://doi.org/10.1016/0022-2836(81)90087-5
14 https://doi.org/10.1016/0022-2836(82)90398-9
15 https://doi.org/10.1073/pnas.85.8.2444
16 https://doi.org/10.1093/bioinformatics/btt410
17 https://doi.org/10.1093/nar/25.17.3389
18 https://doi.org/10.1093/nar/gki423
19 https://doi.org/10.1109/asap.2014.6868657
20 https://doi.org/10.1109/ccgrid.2014.18
21 https://doi.org/10.1109/cluster.2014.6968772
22 https://doi.org/10.1109/tpds.2016.2515597
23 https://doi.org/10.1142/s0218126607003575
24 https://doi.org/10.1145/2858656
25 https://doi.org/10.1177/1094342016654215
26 https://doi.org/10.1371/journal.pone.0082138
27 schema:datePublished 2018-11
28 schema:datePublishedReg 2018-11-01
29 schema:description BACKGROUND: The Smith-Waterman (SW) algorithm is the best choice for searching similar regions between two DNA or protein sequences. However, it may become impracticable in some contexts due to its high computational demands. Consequently, the computer science community has focused on the use of modern parallel architectures such as Graphics Processing Units (GPUs), Xeon Phi accelerators and Field Programmable Gate Arrays (FGPAs) to speed up large-scale workloads. RESULTS: This paper presents and evaluates SWIFOLD: a Smith-Waterman parallel Implementation on FPGA with OpenCL for Long DNA sequences. First, we evaluate its performance and resource usage for different kernel configurations. Next, we carry out a performance comparison between our tool and other state-of-the-art implementations considering three different datasets. SWIFOLD offers the best average performance for small and medium test sets, achieving a performance that is independent of input size and sequence similarity. In addition, SWIFOLD provides competitive performance rates in comparison with GPU-based implementations on the latest GPU generation for the large dataset. CONCLUSIONS: The results suggest that SWIFOLD can be a serious contender for accelerating the SW alignment of DNA sequences of unrestricted size in an affordable way reaching on average 125 GCUPS and almost a peak of 270 GCUPS.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N2015162db3ec45c08f0dd609e2c9d7dd
34 Nd753d213e6364064a5a1b73c7a8f1bcf
35 sg:journal.1327442
36 schema:name SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences
37 schema:pagination 96
38 schema:productId N275321dc78334ac3a8f8e74103f4b303
39 N3f66ddea526440698a2a95701126b508
40 N6bced99be4d74f2f9614cbbff628a930
41 N93a902efaac447f7bb5bfa1275c99a7f
42 Ne0d0e7d7555b4b3a91732927538b8fb0
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110062713
44 https://doi.org/10.1186/s12918-018-0614-6
45 schema:sdDatePublished 2019-04-11T14:26
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nd8101656ef0f4e33b4a4d9abec57e80a
48 schema:url https://link.springer.com/10.1186%2Fs12918-018-0614-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0add05d348594412984ab0d0fa2672b8 schema:name III-LIDI, CONICET, Facultad de Informática, Universidad Nacional de La Plata, 1900, La Plata (Buenos Aires), Argentina
53 rdf:type schema:Organization
54 N0ca2bc26ca2f4a16a648e1bd6b4b8ebc rdf:first sg:person.013017320261.86
55 rdf:rest Nfccdd5dd0b324723ab63bcb49f8c6bd7
56 N2015162db3ec45c08f0dd609e2c9d7dd schema:volumeNumber 12
57 rdf:type schema:PublicationVolume
58 N275321dc78334ac3a8f8e74103f4b303 schema:name nlm_unique_id
59 schema:value 101301827
60 rdf:type schema:PropertyValue
61 N2a263c3b98114932a148d1aa9d8a35da rdf:first sg:person.0737301461.16
62 rdf:rest N51794541df8b47cd9657aec3ee31b09a
63 N3f66ddea526440698a2a95701126b508 schema:name dimensions_id
64 schema:value pub.1110062713
65 rdf:type schema:PropertyValue
66 N51794541df8b47cd9657aec3ee31b09a rdf:first sg:person.012762576303.73
67 rdf:rest N7629a730845c4d75895f0c18befe83e8
68 N6bced99be4d74f2f9614cbbff628a930 schema:name readcube_id
69 schema:value 57e6f70abe59b129fca3d6137804fe04fb0edb1b5460b1915510854cfa8b97c7
70 rdf:type schema:PropertyValue
71 N7629a730845c4d75895f0c18befe83e8 rdf:first sg:person.016574110506.55
72 rdf:rest N0ca2bc26ca2f4a16a648e1bd6b4b8ebc
73 N93a902efaac447f7bb5bfa1275c99a7f schema:name doi
74 schema:value 10.1186/s12918-018-0614-6
75 rdf:type schema:PropertyValue
76 Nb71796383e29459eac86dc4d533d7164 rdf:first sg:person.011517105361.24
77 rdf:rest rdf:nil
78 Nd753d213e6364064a5a1b73c7a8f1bcf schema:issueNumber Suppl 5
79 rdf:type schema:PublicationIssue
80 Nd8101656ef0f4e33b4a4d9abec57e80a schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Ne0d0e7d7555b4b3a91732927538b8fb0 schema:name pubmed_id
83 schema:value 30458766
84 rdf:type schema:PropertyValue
85 Nef687ae664f943b9a8f52f6011547390 schema:name III-LIDI, CONICET, Facultad de Informática, Universidad Nacional de La Plata, 1900, La Plata (Buenos Aires), Argentina
86 rdf:type schema:Organization
87 Nfccdd5dd0b324723ab63bcb49f8c6bd7 rdf:first sg:person.016551155603.22
88 rdf:rest Nb71796383e29459eac86dc4d533d7164
89 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
90 schema:name Biological Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
93 schema:name Genetics
94 rdf:type schema:DefinedTerm
95 sg:journal.1327442 schema:issn 1752-0509
96 schema:name BMC Systems Biology
97 rdf:type schema:Periodical
98 sg:person.011517105361.24 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
99 schema:familyName Prieto-Matias
100 schema:givenName Manuel
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517105361.24
102 rdf:type schema:Person
103 sg:person.012762576303.73 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
104 schema:familyName Garcia
105 schema:givenName Carlos
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762576303.73
107 rdf:type schema:Person
108 sg:person.013017320261.86 schema:affiliation Nef687ae664f943b9a8f52f6011547390
109 schema:familyName De Giusti
110 schema:givenName Armando
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013017320261.86
112 rdf:type schema:Person
113 sg:person.016551155603.22 schema:affiliation https://www.grid.ac/institutes/grid.9499.d
114 schema:familyName Naiouf
115 schema:givenName Marcelo
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551155603.22
117 rdf:type schema:Person
118 sg:person.016574110506.55 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
119 schema:familyName Botella
120 schema:givenName Guillermo
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574110506.55
122 rdf:type schema:Person
123 sg:person.0737301461.16 schema:affiliation N0add05d348594412984ab0d0fa2672b8
124 schema:familyName Rucci
125 schema:givenName Enzo
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737301461.16
127 rdf:type schema:Person
128 sg:pub.10.1007/978-1-4614-1791-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010387495
129 https://doi.org/10.1007/978-1-4614-1791-0_3
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-319-41279-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008563487
132 https://doi.org/10.1007/978-3-319-41279-5_6
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/978-3-319-56154-7_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084754024
135 https://doi.org/10.1007/978-3-319-56154-7_45
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/978-3-642-19475-7_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005738279
138 https://doi.org/10.1007/978-3-642-19475-7_20
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/498255a schema:sameAs https://app.dimensions.ai/details/publication/pub.1042946700
141 https://doi.org/10.1038/498255a
142 rdf:type schema:CreativeWork
143 sg:pub.10.1186/1471-2105-14-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000348056
144 https://doi.org/10.1186/1471-2105-14-1
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/1471-2105-14-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032649695
147 https://doi.org/10.1186/1471-2105-14-117
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/s12859-016-0930-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052522445
150 https://doi.org/10.1186/s12859-016-0930-z
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/cpe.3598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035010756
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.85.8.2444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928070
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/btt410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036518556
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/nar/gki423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048911367
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/asap.2014.6868657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094370952
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/ccgrid.2014.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094297846
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/cluster.2014.6968772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095386109
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tpds.2016.2515597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061755003
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1142/s0218126607003575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062951643
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/2858656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005231917
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1177/1094342016654215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063977417
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1371/journal.pone.0082138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012228952
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
183 schema:name Depto. Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040, Madrid, Spain
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.9499.d schema:alternateName National University of La Plata
186 schema:name III-LIDI, Facultad de Informática, Universidad Nacional de La Plata, 1900, La Plata (Buenos Aires), Argentina
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...