BTNET : boosted tree based gene regulatory network inference algorithm using time-course measurement data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03-19

AUTHORS

Sungjoon Park, Jung Min Kim, Wonho Shin, Sung Won Han, Minji Jeon, Hyun Jin Jang, Ik-Soon Jang, Jaewoo Kang

ABSTRACT

BACKGROUND: Identifying gene regulatory networks is an important task for understanding biological systems. Time-course measurement data became a valuable resource for inferring gene regulatory networks. Various methods have been presented for reconstructing the networks from time-course measurement data. However, existing methods have been validated on only a limited number of benchmark datasets, and rarely verified on real biological systems. RESULTS: We first integrated benchmark time-course gene expression datasets from previous studies and reassessed the baseline methods. We observed that GENIE3-time, a tree-based ensemble method, achieved the best performance among the baselines. In this study, we introduce BTNET, a boosted tree based gene regulatory network inference algorithm which improves the state-of-the-art. We quantitatively validated BTNET on the integrated benchmark dataset. The AUROC and AUPR scores of BTNET were higher than those of the baselines. We also qualitatively validated the results of BTNET through an experiment on neuroblastoma cells treated with an antidepressant. The inferred regulatory network from BTNET showed that brachyury, a transcription factor, was regulated by fluoxetine, an antidepressant, which was verified by the expression of its downstream genes. CONCLUSIONS: We present BTENT that infers a GRN from time-course measurement data using boosting algorithms. Our model achieved the highest AUROC and AUPR scores on the integrated benchmark dataset. We further validated BTNET qualitatively through a wet-lab experiment and showed that BTNET can produce biologically meaningful results. More... »

PAGES

20

References to SciGraph publications

  • 2016-02-11. Gene regulatory network inference using fused LASSO on multiple data sets in SCIENTIFIC REPORTS
  • 2016-11-23. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research in SCIENTIFIC REPORTS
  • 2006-05-10. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo in GENOME BIOLOGY
  • 2014-11-30. The T-box transcription factor Brachyury promotes renal interstitial fibrosis by repressing E-cadherin expression in CELL COMMUNICATION AND SIGNALING
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2013-10-22. ENNET: inferring large gene regulatory networks from expression data using gradient boosting in BMC SYSTEMS BIOLOGY
  • 2008-05-07. Global control of cell-cycle transcription by coupled CDK and network oscillators in NATURE
  • 2013-07-14. Network deconvolution as a general method to distinguish direct dependencies in networks in NATURE BIOTECHNOLOGY
  • 2012-07-18. Studying and modelling dynamic biological processes using time-series gene expression data in NATURE REVIEWS GENETICS
  • 2014-12-14. Overexpression of brachyury contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma in JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2010-03-25. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach in BMC BIOINFORMATICS
  • 2014-04-17. Fast Bayesian inference for gene regulatory networks using ScanBMA in BMC SYSTEMS BIOLOGY
  • 2012-05-01. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets in GENOME MEDICINE
  • 2014-12-08. Highly sensitive inference of time-delayed gene regulation by network deconvolution in BMC SYSTEMS BIOLOGY
  • 2006-03-02. Extremely randomized trees in MACHINE LEARNING
  • 2006-06-27. Reverse engineering cellular networks in NATURE PROTOCOLS
  • 2012-07-15. Wisdom of crowds for robust gene network inference in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s12918-018-0547-0

    DOI

    http://dx.doi.org/10.1186/s12918-018-0547-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101625004

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29560827


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Cycle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fluoxetine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Sungjoon", 
            "id": "sg:person.01210703411.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210703411.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genoplan Korea, Inc. and NAR Center, Inc., Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Genoplan Korea, Inc. and NAR Center, Inc., Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Jung Min", 
            "id": "sg:person.0753314234.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753314234.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shin", 
            "givenName": "Wonho", 
            "id": "sg:person.010620534765.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620534765.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Sung Won", 
            "id": "sg:person.01254722334.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254722334.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jeon", 
            "givenName": "Minji", 
            "id": "sg:person.01342457025.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342457025.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.410885.0", 
              "name": [
                "Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jang", 
            "givenName": "Hyun Jin", 
            "id": "sg:person.011353744703.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353744703.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.410885.0", 
              "name": [
                "Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jang", 
            "givenName": "Ik-Soon", 
            "id": "sg:person.01317070447.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317070447.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.222754.4", 
              "name": [
                "Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea", 
                "Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Jaewoo", 
            "id": "sg:person.01336053140.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336053140.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1752-0509-7-106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010536389", 
              "https://doi.org/10.1186/1752-0509-7-106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048562011", 
              "https://doi.org/10.1186/1471-2105-11-154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-8-47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035756556", 
              "https://doi.org/10.1186/1752-0509-8-47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-8-s4-s6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031867071", 
              "https://doi.org/10.1186/1752-0509-8-s4-s6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027029937", 
              "https://doi.org/10.1038/nature06955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046681866", 
              "https://doi.org/10.1186/gm340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026882214", 
              "https://doi.org/10.1038/nbt.2635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023029250", 
              "https://doi.org/10.1038/nmeth.2016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13046-014-0105-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010838413", 
              "https://doi.org/10.1186/s13046-014-0105-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009073159", 
              "https://doi.org/10.1038/nrg3244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-006-6226-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007730804", 
              "https://doi.org/10.1007/s10994-006-6226-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12964-014-0076-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039815772", 
              "https://doi.org/10.1186/s12964-014-0076-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2006.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020845703", 
              "https://doi.org/10.1038/nprot.2006.106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep37140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033069434", 
              "https://doi.org/10.1038/srep37140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2006-7-5-r36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036826377", 
              "https://doi.org/10.1186/gb-2006-7-5-r36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep20533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039056367", 
              "https://doi.org/10.1038/srep20533"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-03-19", 
        "datePublishedReg": "2018-03-19", 
        "description": "BACKGROUND: Identifying gene regulatory networks is an important task for understanding biological systems. Time-course measurement data became a valuable resource for inferring gene regulatory networks. Various methods have been presented for reconstructing the networks from time-course measurement data. However, existing methods have been validated on only a limited number of benchmark datasets, and rarely verified on real biological systems.\nRESULTS: We first integrated benchmark time-course gene expression datasets from previous studies and reassessed the baseline methods. We observed that GENIE3-time, a tree-based ensemble method, achieved the best performance among the baselines. In this study, we introduce BTNET, a boosted tree based gene regulatory network inference algorithm which improves the state-of-the-art. We quantitatively validated BTNET on the integrated benchmark dataset. The AUROC and AUPR scores of BTNET were higher than those of the baselines. We also qualitatively validated the results of BTNET through an experiment on neuroblastoma cells treated with an antidepressant. The inferred regulatory network from BTNET showed that brachyury, a transcription factor, was regulated by fluoxetine, an antidepressant, which was verified by the expression of its downstream genes.\nCONCLUSIONS: We present BTENT that infers a GRN from time-course measurement data using boosting algorithms. Our model achieved the highest AUROC and AUPR scores on the integrated benchmark dataset. We further validated BTNET qualitatively through a wet-lab experiment and showed that BTNET can produce biologically meaningful results.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s12918-018-0547-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327442", 
            "issn": [
              "1752-0509"
            ], 
            "name": "BMC Systems Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "gene regulatory networks", 
          "regulatory networks", 
          "gene regulatory network inference algorithms", 
          "network inference algorithms", 
          "inferred regulatory network", 
          "time-course gene expression datasets", 
          "gene expression datasets", 
          "wet-lab experiments", 
          "transcription factors", 
          "downstream genes", 
          "biological systems", 
          "expression datasets", 
          "valuable resource", 
          "neuroblastoma cells", 
          "inference algorithm", 
          "measurement data", 
          "tree-based ensemble methods", 
          "real biological systems", 
          "trees", 
          "Brachyury", 
          "genes", 
          "AUPR score", 
          "benchmark datasets", 
          "expression", 
          "GRN", 
          "limited number", 
          "previous studies", 
          "cells", 
          "ensemble method", 
          "algorithm", 
          "meaningful results", 
          "network", 
          "better performance", 
          "dataset", 
          "experiments", 
          "data", 
          "important task", 
          "study", 
          "baseline methods", 
          "system", 
          "factors", 
          "number", 
          "results", 
          "model", 
          "resources", 
          "state", 
          "performance", 
          "method", 
          "task", 
          "art", 
          "fluoxetine", 
          "antidepressants", 
          "scores", 
          "highest AUROC", 
          "baseline", 
          "AUROC", 
          "time-course measurement data", 
          "benchmark time-course gene expression datasets", 
          "GENIE3-time", 
          "BTNET", 
          "regulatory network inference algorithm", 
          "results of BTNET", 
          "BTENT"
        ], 
        "name": "BTNET : boosted tree based gene regulatory network inference algorithm using time-course measurement data", 
        "pagination": "20", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101625004"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s12918-018-0547-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29560827"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s12918-018-0547-0", 
          "https://app.dimensions.ai/details/publication/pub.1101625004"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_761.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s12918-018-0547-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0547-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0547-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0547-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12918-018-0547-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    291 TRIPLES      22 PREDICATES      116 URIs      90 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s12918-018-0547-0 schema:about N1fb9aa85dbf546998ea4e53b77636dfd
    2 N363ef80445564b8999067d9142af83d9
    3 N3ca352751122405bae857d384dda4f8b
    4 N5252b81878c944e384f97466ddc1972b
    5 N6b92803b9b804b98b8293f9f06975aef
    6 N8085fe95247846c48d404ca6b3b24558
    7 Nae6138b0bd82450090e4328ce85d9f47
    8 Nd1e0dc22140340bbba80b3ab18e5f22b
    9 Ne6f88cafa41940dca762baf33050c9b0
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N9603438a16bc47fa82ee7782b1bcfe2a
    13 schema:citation sg:pub.10.1007/s10994-006-6226-1
    14 sg:pub.10.1023/a:1010933404324
    15 sg:pub.10.1038/nature06955
    16 sg:pub.10.1038/nbt.2635
    17 sg:pub.10.1038/nmeth.1226
    18 sg:pub.10.1038/nmeth.2016
    19 sg:pub.10.1038/nprot.2006.106
    20 sg:pub.10.1038/nrg3244
    21 sg:pub.10.1038/srep20533
    22 sg:pub.10.1038/srep37140
    23 sg:pub.10.1186/1471-2105-11-154
    24 sg:pub.10.1186/1752-0509-7-106
    25 sg:pub.10.1186/1752-0509-8-47
    26 sg:pub.10.1186/1752-0509-8-s4-s6
    27 sg:pub.10.1186/gb-2006-7-5-r36
    28 sg:pub.10.1186/gm340
    29 sg:pub.10.1186/s12964-014-0076-4
    30 sg:pub.10.1186/s13046-014-0105-6
    31 schema:datePublished 2018-03-19
    32 schema:datePublishedReg 2018-03-19
    33 schema:description BACKGROUND: Identifying gene regulatory networks is an important task for understanding biological systems. Time-course measurement data became a valuable resource for inferring gene regulatory networks. Various methods have been presented for reconstructing the networks from time-course measurement data. However, existing methods have been validated on only a limited number of benchmark datasets, and rarely verified on real biological systems. RESULTS: We first integrated benchmark time-course gene expression datasets from previous studies and reassessed the baseline methods. We observed that GENIE3-time, a tree-based ensemble method, achieved the best performance among the baselines. In this study, we introduce BTNET, a boosted tree based gene regulatory network inference algorithm which improves the state-of-the-art. We quantitatively validated BTNET on the integrated benchmark dataset. The AUROC and AUPR scores of BTNET were higher than those of the baselines. We also qualitatively validated the results of BTNET through an experiment on neuroblastoma cells treated with an antidepressant. The inferred regulatory network from BTNET showed that brachyury, a transcription factor, was regulated by fluoxetine, an antidepressant, which was verified by the expression of its downstream genes. CONCLUSIONS: We present BTENT that infers a GRN from time-course measurement data using boosting algorithms. Our model achieved the highest AUROC and AUPR scores on the integrated benchmark dataset. We further validated BTNET qualitatively through a wet-lab experiment and showed that BTNET can produce biologically meaningful results.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N808192c3bd17448faedb08b955638a6d
    38 Ndd4f84189fa84aa2853533a1481271ec
    39 sg:journal.1327442
    40 schema:keywords AUPR score
    41 AUROC
    42 BTENT
    43 BTNET
    44 Brachyury
    45 GENIE3-time
    46 GRN
    47 algorithm
    48 antidepressants
    49 art
    50 baseline
    51 baseline methods
    52 benchmark datasets
    53 benchmark time-course gene expression datasets
    54 better performance
    55 biological systems
    56 cells
    57 data
    58 dataset
    59 downstream genes
    60 ensemble method
    61 experiments
    62 expression
    63 expression datasets
    64 factors
    65 fluoxetine
    66 gene expression datasets
    67 gene regulatory network inference algorithms
    68 gene regulatory networks
    69 genes
    70 highest AUROC
    71 important task
    72 inference algorithm
    73 inferred regulatory network
    74 limited number
    75 meaningful results
    76 measurement data
    77 method
    78 model
    79 network
    80 network inference algorithms
    81 neuroblastoma cells
    82 number
    83 performance
    84 previous studies
    85 real biological systems
    86 regulatory network inference algorithm
    87 regulatory networks
    88 resources
    89 results
    90 results of BTNET
    91 scores
    92 state
    93 study
    94 system
    95 task
    96 time-course gene expression datasets
    97 time-course measurement data
    98 transcription factors
    99 tree-based ensemble methods
    100 trees
    101 valuable resource
    102 wet-lab experiments
    103 schema:name BTNET : boosted tree based gene regulatory network inference algorithm using time-course measurement data
    104 schema:pagination 20
    105 schema:productId N1309e4543bb44036a7f795b1f87623b7
    106 N27a5164bd7db458599722d0903a1dd8a
    107 Nfc86684e5f4149fb8e38eb387103402a
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101625004
    109 https://doi.org/10.1186/s12918-018-0547-0
    110 schema:sdDatePublished 2022-01-01T18:48
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N7b28091e1e364391a83bf0fe5d04ef3f
    113 schema:url https://doi.org/10.1186/s12918-018-0547-0
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N07c9e114aa054dc0a00dd5e10fae16db rdf:first sg:person.01342457025.24
    118 rdf:rest Nb21e586edc094584bb0341f1d3b93f3a
    119 N11c282158f1241c99d7b72da068418da rdf:first sg:person.0753314234.08
    120 rdf:rest N39010def856d4c2eb7e17af2e6b0abf5
    121 N1309e4543bb44036a7f795b1f87623b7 schema:name pubmed_id
    122 schema:value 29560827
    123 rdf:type schema:PropertyValue
    124 N1fb9aa85dbf546998ea4e53b77636dfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Fluoxetine
    126 rdf:type schema:DefinedTerm
    127 N27a5164bd7db458599722d0903a1dd8a schema:name doi
    128 schema:value 10.1186/s12918-018-0547-0
    129 rdf:type schema:PropertyValue
    130 N363ef80445564b8999067d9142af83d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Algorithms
    132 rdf:type schema:DefinedTerm
    133 N39010def856d4c2eb7e17af2e6b0abf5 rdf:first sg:person.010620534765.55
    134 rdf:rest N6865ab22cec2450cb773e0aa71b8ea37
    135 N3ca352751122405bae857d384dda4f8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Cell Cycle
    137 rdf:type schema:DefinedTerm
    138 N5252b81878c944e384f97466ddc1972b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Computer Simulation
    140 rdf:type schema:DefinedTerm
    141 N5b680ac9d49346fa8dcab1ea31208cea rdf:first sg:person.01336053140.60
    142 rdf:rest rdf:nil
    143 N6865ab22cec2450cb773e0aa71b8ea37 rdf:first sg:person.01254722334.56
    144 rdf:rest N07c9e114aa054dc0a00dd5e10fae16db
    145 N6b92803b9b804b98b8293f9f06975aef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Humans
    147 rdf:type schema:DefinedTerm
    148 N6ce4471cc06a4b12b9834ddd546b2f28 rdf:first sg:person.01317070447.13
    149 rdf:rest N5b680ac9d49346fa8dcab1ea31208cea
    150 N7b28091e1e364391a83bf0fe5d04ef3f schema:name Springer Nature - SN SciGraph project
    151 rdf:type schema:Organization
    152 N808192c3bd17448faedb08b955638a6d schema:volumeNumber 12
    153 rdf:type schema:PublicationVolume
    154 N8085fe95247846c48d404ca6b3b24558 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Cell Line, Tumor
    156 rdf:type schema:DefinedTerm
    157 N9603438a16bc47fa82ee7782b1bcfe2a rdf:first sg:person.01210703411.78
    158 rdf:rest N11c282158f1241c99d7b72da068418da
    159 Nae6138b0bd82450090e4328ce85d9f47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Computational Biology
    161 rdf:type schema:DefinedTerm
    162 Nb21e586edc094584bb0341f1d3b93f3a rdf:first sg:person.011353744703.38
    163 rdf:rest N6ce4471cc06a4b12b9834ddd546b2f28
    164 Nd1e0dc22140340bbba80b3ab18e5f22b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Gene Regulatory Networks
    166 rdf:type schema:DefinedTerm
    167 Ndd4f84189fa84aa2853533a1481271ec schema:issueNumber Suppl 2
    168 rdf:type schema:PublicationIssue
    169 Ne6f88cafa41940dca762baf33050c9b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Time Factors
    171 rdf:type schema:DefinedTerm
    172 Nfc86684e5f4149fb8e38eb387103402a schema:name dimensions_id
    173 schema:value pub.1101625004
    174 rdf:type schema:PropertyValue
    175 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Biological Sciences
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Genetics
    180 rdf:type schema:DefinedTerm
    181 sg:journal.1327442 schema:issn 1752-0509
    182 schema:name BMC Systems Biology
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.010620534765.55 schema:affiliation grid-institutes:grid.222754.4
    186 schema:familyName Shin
    187 schema:givenName Wonho
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620534765.55
    189 rdf:type schema:Person
    190 sg:person.011353744703.38 schema:affiliation grid-institutes:grid.410885.0
    191 schema:familyName Jang
    192 schema:givenName Hyun Jin
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011353744703.38
    194 rdf:type schema:Person
    195 sg:person.01210703411.78 schema:affiliation grid-institutes:grid.222754.4
    196 schema:familyName Park
    197 schema:givenName Sungjoon
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210703411.78
    199 rdf:type schema:Person
    200 sg:person.01254722334.56 schema:affiliation grid-institutes:grid.222754.4
    201 schema:familyName Han
    202 schema:givenName Sung Won
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254722334.56
    204 rdf:type schema:Person
    205 sg:person.01317070447.13 schema:affiliation grid-institutes:grid.410885.0
    206 schema:familyName Jang
    207 schema:givenName Ik-Soon
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317070447.13
    209 rdf:type schema:Person
    210 sg:person.01336053140.60 schema:affiliation grid-institutes:grid.222754.4
    211 schema:familyName Kang
    212 schema:givenName Jaewoo
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336053140.60
    214 rdf:type schema:Person
    215 sg:person.01342457025.24 schema:affiliation grid-institutes:grid.222754.4
    216 schema:familyName Jeon
    217 schema:givenName Minji
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342457025.24
    219 rdf:type schema:Person
    220 sg:person.0753314234.08 schema:affiliation grid-institutes:None
    221 schema:familyName Kim
    222 schema:givenName Jung Min
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753314234.08
    224 rdf:type schema:Person
    225 sg:pub.10.1007/s10994-006-6226-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730804
    226 https://doi.org/10.1007/s10994-006-6226-1
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    229 https://doi.org/10.1023/a:1010933404324
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nature06955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027029937
    232 https://doi.org/10.1038/nature06955
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nbt.2635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026882214
    235 https://doi.org/10.1038/nbt.2635
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    238 https://doi.org/10.1038/nmeth.1226
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nmeth.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023029250
    241 https://doi.org/10.1038/nmeth.2016
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nprot.2006.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020845703
    244 https://doi.org/10.1038/nprot.2006.106
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nrg3244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009073159
    247 https://doi.org/10.1038/nrg3244
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/srep20533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039056367
    250 https://doi.org/10.1038/srep20533
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/srep37140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033069434
    253 https://doi.org/10.1038/srep37140
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/1471-2105-11-154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048562011
    256 https://doi.org/10.1186/1471-2105-11-154
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/1752-0509-7-106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010536389
    259 https://doi.org/10.1186/1752-0509-7-106
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/1752-0509-8-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035756556
    262 https://doi.org/10.1186/1752-0509-8-47
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1186/1752-0509-8-s4-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031867071
    265 https://doi.org/10.1186/1752-0509-8-s4-s6
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1186/gb-2006-7-5-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036826377
    268 https://doi.org/10.1186/gb-2006-7-5-r36
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/gm340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046681866
    271 https://doi.org/10.1186/gm340
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/s12964-014-0076-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039815772
    274 https://doi.org/10.1186/s12964-014-0076-4
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/s13046-014-0105-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010838413
    277 https://doi.org/10.1186/s13046-014-0105-6
    278 rdf:type schema:CreativeWork
    279 grid-institutes:None schema:alternateName Genoplan Korea, Inc. and NAR Center, Inc., Seoul, Republic of Korea
    280 schema:name Genoplan Korea, Inc. and NAR Center, Inc., Seoul, Republic of Korea
    281 rdf:type schema:Organization
    282 grid-institutes:grid.222754.4 schema:alternateName Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
    283 Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea
    284 School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea
    285 schema:name Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
    286 Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea
    287 School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea
    288 rdf:type schema:Organization
    289 grid-institutes:grid.410885.0 schema:alternateName Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Republic of Korea
    290 schema:name Division of Bioconvergence, Korea Basic Science Institute, Daejeon, Republic of Korea
    291 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...