Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Ian Vernon, Junli Liu, Michael Goldstein, James Rowe, Jen Topping, Keith Lindsey

ABSTRACT

BACKGROUND: Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. METHODS: Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. RESULTS: The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. CONCLUSIONS: Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s12918-017-0484-3

DOI

http://dx.doi.org/10.1186/s12918-017-0484-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100154073

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29291750


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, Durham University, South Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vernon", 
        "givenName": "Ian", 
        "id": "sg:person.01003441644.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003441644.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Junli", 
        "id": "sg:person.01076242066.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076242066.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, Durham University, South Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldstein", 
        "givenName": "Michael", 
        "id": "sg:person.01262256000.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262256000.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK", 
            "Current address: Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rowe", 
        "givenName": "James", 
        "id": "sg:person.0731316365.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731316365.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Topping", 
        "givenName": "Jen", 
        "id": "sg:person.01007035240.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007035240.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindsey", 
        "givenName": "Keith", 
        "id": "sg:person.0772622544.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772622544.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1038/msb.2008.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004201955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2008.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004201955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2009.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004222610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/705/1/156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005649943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/705/1/156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005649943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.13882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005679012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009409425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009409425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009409425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.13421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011135292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b10905-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011244295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012077098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470015902.a0023733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015698777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/12-sts412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015985539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118351475.ch26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018647873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(02)00656-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018775710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019077511", 
          "https://doi.org/10.1186/1752-0509-5-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025342398", 
          "https://doi.org/10.1186/1752-0509-5-142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/30/11/114007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025646028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028241246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028241246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2014.00116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028835139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2005.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029305638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1896-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029766476", 
          "https://doi.org/10.1007/s00382-013-1896-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.002618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031806596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/sagmb-2013-0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036607241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jspi.2008.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038398560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-4-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039217565", 
          "https://doi.org/10.1186/1752-0509-4-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/dvdy.23878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039585791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81535-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040537884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1306-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041373575", 
          "https://doi.org/10.1007/978-1-4612-1306-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1306-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041373575", 
          "https://doi.org/10.1007/978-1-4612-1306-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2013.00075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041541822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042110240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0606-667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043300130", 
          "https://doi.org/10.1038/nbt0606-667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0606-667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043300130", 
          "https://doi.org/10.1038/nbt0606-667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/rssc.12198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043416643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043937460", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3799-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043937460", 
          "https://doi.org/10.1007/978-1-4757-3799-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3799-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043937460", 
          "https://doi.org/10.1007/978-1-4757-3799-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2290-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045279895", 
          "https://doi.org/10.1007/978-1-4612-2290-3_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2290-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045279895", 
          "https://doi.org/10.1007/978-1-4612-2290-3_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316870.oth1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045502737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02562676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046084759", 
          "https://doi.org/10.1007/bf02562676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.106.040790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052816726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00031305.1992.10475856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058259376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1991.10475138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/89.4.769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/stw3269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059921568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2014.2304394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827503426693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501753168370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214506000000203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214507000000888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186008x384032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/tech.2009.08015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/tech.2009.08019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/jasa.2009.0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064200338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-ba524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-ba524rej", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177012413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v014.i16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v064.i12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2684170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070057587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-017-2420-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084956865", 
          "https://doi.org/10.1186/s12879-017-2420-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-017-2420-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084956865", 
          "https://doi.org/10.1186/s12879-017-2420-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1093008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091017111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470065662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470065662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b10905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109726990"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology.\nMETHODS: Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty.\nRESULTS: The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described.\nCONCLUSIONS: Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s12918-017-0484-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2761254", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c6b331a638c59d41c643ba219ddc5903f13a1298e556b83ae31b5fc154b77d5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29291750"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s12918-017-0484-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100154073"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s12918-017-0484-3", 
      "https://app.dimensions.ai/details/publication/pub.1100154073"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s12918-017-0484-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s12918-017-0484-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s12918-017-0484-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s12918-017-0484-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s12918-017-0484-3'


 

This table displays all metadata directly associated to this object as RDF triples.

296 TRIPLES      21 PREDICATES      88 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s12918-017-0484-3 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N3f5ba828e5a34c0286b03e6f239de9b5
4 schema:citation sg:pub.10.1007/978-1-4612-1306-2_1
5 sg:pub.10.1007/978-1-4612-2290-3_2
6 sg:pub.10.1007/978-1-4757-3799-8
7 sg:pub.10.1007/bf02562676
8 sg:pub.10.1007/s00382-013-1896-4
9 sg:pub.10.1038/nbt0606-667
10 sg:pub.10.1186/1752-0509-4-6
11 sg:pub.10.1186/1752-0509-5-1
12 sg:pub.10.1186/1752-0509-5-142
13 sg:pub.10.1186/s12879-017-2420-y
14 https://app.dimensions.ai/details/publication/pub.1043937460
15 https://doi.org/10.1002/9780470015902.a0023733
16 https://doi.org/10.1002/9780470065662
17 https://doi.org/10.1002/9780470316870.oth1
18 https://doi.org/10.1002/9781118351475.ch26
19 https://doi.org/10.1002/dvdy.23878
20 https://doi.org/10.1016/j.cell.2009.03.001
21 https://doi.org/10.1016/j.cell.2016.01.044
22 https://doi.org/10.1016/j.jspi.2008.07.019
23 https://doi.org/10.1016/j.ress.2005.11.025
24 https://doi.org/10.1016/s0092-8674(00)81535-4
25 https://doi.org/10.1016/s0092-8674(02)00656-6
26 https://doi.org/10.1038/msb.2008.8
27 https://doi.org/10.1038/msb.2010.26
28 https://doi.org/10.1080/00031305.1992.10475856
29 https://doi.org/10.1080/01621459.1991.10475138
30 https://doi.org/10.1088/0004-637x/705/1/156
31 https://doi.org/10.1088/0266-5611/30/11/114007
32 https://doi.org/10.1093/biomet/89.4.769
33 https://doi.org/10.1093/mnras/stw3269
34 https://doi.org/10.1105/tpc.002618
35 https://doi.org/10.1105/tpc.106.040790
36 https://doi.org/10.1109/tits.2014.2304394
37 https://doi.org/10.1111/1467-9868.00294
38 https://doi.org/10.1111/nph.13421
39 https://doi.org/10.1111/nph.13882
40 https://doi.org/10.1111/rssc.12198
41 https://doi.org/10.1137/16m1093008
42 https://doi.org/10.1137/s1064827503426693
43 https://doi.org/10.1198/016214501753168370
44 https://doi.org/10.1198/016214506000000203
45 https://doi.org/10.1198/016214507000000888
46 https://doi.org/10.1198/106186008x384032
47 https://doi.org/10.1198/jasa.2009.0005
48 https://doi.org/10.1198/tech.2009.08015
49 https://doi.org/10.1198/tech.2009.08019
50 https://doi.org/10.1201/b10905
51 https://doi.org/10.1201/b10905-2
52 https://doi.org/10.1214/10-ba524
53 https://doi.org/10.1214/10-ba524rej
54 https://doi.org/10.1214/12-sts412
55 https://doi.org/10.1214/ss/1177012413
56 https://doi.org/10.1371/journal.pcbi.1003968
57 https://doi.org/10.1515/sagmb-2013-0010
58 https://doi.org/10.18637/jss.v014.i16
59 https://doi.org/10.18637/jss.v064.i12
60 https://doi.org/10.2307/2684170
61 https://doi.org/10.3389/fpls.2013.00075
62 https://doi.org/10.3389/fpls.2014.00116
63 schema:datePublished 2018-12
64 schema:datePublishedReg 2018-12-01
65 schema:description BACKGROUND: Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. METHODS: Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. RESULTS: The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. CONCLUSIONS: Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree true
69 schema:isPartOf Nb814e32ae56e403ab4361578d0cca176
70 Nd7d439cd70494e038b3dcf0a69ea5649
71 sg:journal.1327442
72 schema:name Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions
73 schema:pagination 1
74 schema:productId N3ce9ffe5f1564e7baabb32856b5c4547
75 N7bec3196f6e941e3b657e5c67d75f243
76 N90175d45116a41bc9b17e9941ac008ff
77 Nafd9482edba64db6a196ac7b783a3f96
78 Nf898970666184c5a8a245af4529f91dc
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100154073
80 https://doi.org/10.1186/s12918-017-0484-3
81 schema:sdDatePublished 2019-04-10T16:55
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nd0a5b378c84c401ea0da75acd604efd3
84 schema:url http://link.springer.com/10.1186/s12918-017-0484-3
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N357b092dbffe49b7ab837971505a3cee rdf:first sg:person.0731316365.47
89 rdf:rest Nc0a08c122aa44f20be3140a3a9ace998
90 N3a2330ff03a34e5c9f886f0c445356b0 rdf:first sg:person.01262256000.55
91 rdf:rest N357b092dbffe49b7ab837971505a3cee
92 N3ce9ffe5f1564e7baabb32856b5c4547 schema:name readcube_id
93 schema:value 3c6b331a638c59d41c643ba219ddc5903f13a1298e556b83ae31b5fc154b77d5
94 rdf:type schema:PropertyValue
95 N3f5ba828e5a34c0286b03e6f239de9b5 rdf:first sg:person.01003441644.82
96 rdf:rest Nef654221f87544a0a1009a743a589f18
97 N7bec3196f6e941e3b657e5c67d75f243 schema:name pubmed_id
98 schema:value 29291750
99 rdf:type schema:PropertyValue
100 N90175d45116a41bc9b17e9941ac008ff schema:name doi
101 schema:value 10.1186/s12918-017-0484-3
102 rdf:type schema:PropertyValue
103 Nafd9482edba64db6a196ac7b783a3f96 schema:name nlm_unique_id
104 schema:value 101301827
105 rdf:type schema:PropertyValue
106 Nb814e32ae56e403ab4361578d0cca176 schema:volumeNumber 12
107 rdf:type schema:PublicationVolume
108 Nc0a08c122aa44f20be3140a3a9ace998 rdf:first sg:person.01007035240.98
109 rdf:rest Nc9db92f6ec744a958dff8c4c1b93cedb
110 Nc9db92f6ec744a958dff8c4c1b93cedb rdf:first sg:person.0772622544.88
111 rdf:rest rdf:nil
112 Nd0a5b378c84c401ea0da75acd604efd3 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nd7d439cd70494e038b3dcf0a69ea5649 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 Nef654221f87544a0a1009a743a589f18 rdf:first sg:person.01076242066.74
117 rdf:rest N3a2330ff03a34e5c9f886f0c445356b0
118 Nf898970666184c5a8a245af4529f91dc schema:name dimensions_id
119 schema:value pub.1100154073
120 rdf:type schema:PropertyValue
121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
122 schema:name Mathematical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
125 schema:name Statistics
126 rdf:type schema:DefinedTerm
127 sg:grant.2761254 http://pending.schema.org/fundedItem sg:pub.10.1186/s12918-017-0484-3
128 rdf:type schema:MonetaryGrant
129 sg:journal.1327442 schema:issn 1752-0509
130 schema:name BMC Systems Biology
131 rdf:type schema:Periodical
132 sg:person.01003441644.82 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
133 schema:familyName Vernon
134 schema:givenName Ian
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003441644.82
136 rdf:type schema:Person
137 sg:person.01007035240.98 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
138 schema:familyName Topping
139 schema:givenName Jen
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007035240.98
141 rdf:type schema:Person
142 sg:person.01076242066.74 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
143 schema:familyName Liu
144 schema:givenName Junli
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076242066.74
146 rdf:type schema:Person
147 sg:person.01262256000.55 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
148 schema:familyName Goldstein
149 schema:givenName Michael
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262256000.55
151 rdf:type schema:Person
152 sg:person.0731316365.47 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
153 schema:familyName Rowe
154 schema:givenName James
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731316365.47
156 rdf:type schema:Person
157 sg:person.0772622544.88 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
158 schema:familyName Lindsey
159 schema:givenName Keith
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772622544.88
161 rdf:type schema:Person
162 sg:pub.10.1007/978-1-4612-1306-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041373575
163 https://doi.org/10.1007/978-1-4612-1306-2_1
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-1-4612-2290-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045279895
166 https://doi.org/10.1007/978-1-4612-2290-3_2
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/978-1-4757-3799-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043937460
169 https://doi.org/10.1007/978-1-4757-3799-8
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf02562676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046084759
172 https://doi.org/10.1007/bf02562676
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00382-013-1896-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029766476
175 https://doi.org/10.1007/s00382-013-1896-4
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nbt0606-667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043300130
178 https://doi.org/10.1038/nbt0606-667
179 rdf:type schema:CreativeWork
180 sg:pub.10.1186/1752-0509-4-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039217565
181 https://doi.org/10.1186/1752-0509-4-6
182 rdf:type schema:CreativeWork
183 sg:pub.10.1186/1752-0509-5-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019077511
184 https://doi.org/10.1186/1752-0509-5-1
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/1752-0509-5-142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025342398
187 https://doi.org/10.1186/1752-0509-5-142
188 rdf:type schema:CreativeWork
189 sg:pub.10.1186/s12879-017-2420-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084956865
190 https://doi.org/10.1186/s12879-017-2420-y
191 rdf:type schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1043937460 schema:CreativeWork
193 https://doi.org/10.1002/9780470015902.a0023733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015698777
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1002/9780470065662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661384
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/9780470316870.oth1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045502737
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/9781118351475.ch26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018647873
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/dvdy.23878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039585791
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.cell.2009.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004222610
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.cell.2016.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009409425
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.jspi.2008.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038398560
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.ress.2005.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029305638
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0092-8674(00)81535-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040537884
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0092-8674(02)00656-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018775710
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1038/msb.2008.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004201955
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1038/msb.2010.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028241246
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1080/00031305.1992.10475856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058259376
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1080/01621459.1991.10475138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304167
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1088/0004-637x/705/1/156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005649943
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1088/0266-5611/30/11/114007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025646028
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/biomet/89.4.769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421210
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/mnras/stw3269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059921568
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1105/tpc.002618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031806596
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1105/tpc.106.040790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052816726
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/tits.2014.2304394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658340
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1111/1467-9868.00294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042110240
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1111/nph.13421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011135292
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1111/nph.13882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005679012
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1111/rssc.12198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043416643
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1137/16m1093008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091017111
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1137/s1064827503426693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884102
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1198/016214501753168370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197855
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1198/016214506000000203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198492
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1198/016214507000000888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198703
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1198/106186008x384032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199654
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1198/jasa.2009.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064200338
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1198/tech.2009.08015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199700
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1198/tech.2009.08019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199702
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1201/b10905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109726990
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1201/b10905-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011244295
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1214/10-ba524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391555
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1214/10-ba524rej schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391560
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1214/12-sts412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015985539
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1214/ss/1177012413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409909
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1371/journal.pcbi.1003968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012077098
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1515/sagmb-2013-0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036607241
278 rdf:type schema:CreativeWork
279 https://doi.org/10.18637/jss.v014.i16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672220
280 rdf:type schema:CreativeWork
281 https://doi.org/10.18637/jss.v064.i12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672963
282 rdf:type schema:CreativeWork
283 https://doi.org/10.2307/2684170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070057587
284 rdf:type schema:CreativeWork
285 https://doi.org/10.3389/fpls.2013.00075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041541822
286 rdf:type schema:CreativeWork
287 https://doi.org/10.3389/fpls.2014.00116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028835139
288 rdf:type schema:CreativeWork
289 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
290 schema:name Current address: Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN, Sheffield, UK
291 Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
294 schema:name Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
295 Department of Mathematical Sciences, Durham University, South Road, DH1 3LE, Durham, UK
296 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...